Integration Of Metabolism

Size: px
Start display at page:

Download "Integration Of Metabolism"

Transcription

1 Integration Of Metabolism

2 Metabolism Consist of Highly Interconnected Pathways The basic strategy of catabolic metabolism is to form ATP, NADPH, and building blocks for biosyntheses. 1. ATP is the universal currency of energy Energy source in muscle contraction, active transport, signal amplification, and biosyntheses.

3 2. ATP is generated by the oxidation of fuel molecules such as glucose, fatty acids, and amino acids. The common intermediate in most of these oxidations is acetyl CoA. The carbon atoms of the acetyl unit are completely oxidized to CO2 by the citric acid cycle with the concomitant formation of NADH and FADH2. These electron carriers then transfer their high potential electrons to the respiratory chain.

4 3. NADPH is the major electron donor in reductive biosyntheses. In most biosyntheses, the products are more reduced than the precursors, and so reductive power is needed as well as ATP. The highpotential electrons required to drive these reactions are usually provided by NADPH. The pentose phosphate pathway supplies much of the required NADPH.

5 4. Biomolecules are constructed from a small set of building blocks The metabolic pathways that generate ATP and NADPH also provide building blocks for the biosynthesis of more-complex molecules. For example, acetyl CoA, the common intermediate in the breakdown of most fuels, supplies a two-carbon unit in a wide variety of biosyntheses, such as those leading to fatty acids, prostaglandins, and cholesterol.

6 5. Biosynthetic and degradative pathways are almost always distinct For example, the pathway for the synthesis of fatty acids is different from that of their degradation. This separation enables both biosynthetic and degradative pathways to be thermodynamically favorable at all times.

7 Metabolic Regulation Anabolism and catabolism must be precisely coordinated 1. Allosteric interactions Enzymes that catalyze essentially irreversible reactions are likely control sites, and the first irreversible reaction in a pathway (the committed step) is nearly always tightly controlled.

8 2. Covalent modification Some regulatory enzymes are controlled by covalent modification in addition to allosteric interactions. For example, the catalytic activity of glycogen phosphorylase is enhanced by phosphorylation, whereas that of glycogen synthase is diminished.

9 3. Enzyme levels The amounts of enzymes, as well as their activities, are controlled. The rates of synthesis and degradation of many regulatory enzymes are altered by hormones.

10

11 4. Compartmentation The metabolic patterns of eukaryotic cells are markedly affected by the presence of compartments.the fates of certain molecules depend on whether they are in the cytosol or in mitochondria, and so their flow across the inner mitochondrial membrane is often regulated.

12 Compartmentation of the Major Pathways of Metabolism

13 5. Metabolic specializations of organs. Regulation in higher eukaryotes is enhanced by the existence of organs with different metabolic roles. Metabolic specialization is the result of differential gene expression.

14 Major Metabolic Pathways and Control Sites 1. Glycolysis 2. Citric acid cycle and oxidative phosphorylation 3. Pentose phosphate pathway 4. Gluconeogenesis 5. Glycogen synthesis and degradation 6. Fatty acid synthesis and degradation 7. Nucleotide metabolism

15 Key Junctions: Glucose 6-phosphate, Pyruvate, and Acetyl CoA 1. Glucose 6-phosphate. Stored as glycogen, degraded to pyruvate, or converted into ribose 5-phosphate.. Glucose 6-phosphate can be formed by the mobilization of glycogen or it can be synthesized from pyruvate and glucogenic amino acids by the gluconeogenic pathway.

16 Metabolic Fates of Glucose 6-Phosphate

17 2. Pyruvate Primarily from glucose 6-phosphate, alanine, and lactate. Pyruvate can be reduced to lactate by LDH to regenerate NAD+. This reaction enables glycolysis to proceed transiently under anaerobic conditions in active tissues such as contracting muscle. The lactate formed in active tissue is subsequently oxidized back to pyruvate, in other tissues. The essence of this interconversion buys time and shifts part of the metabolic burden of active muscle to other tissues.

18 Another readily reversible reaction in the cytosol is the transamination of pyruvate, an α-ketoacid, to alanine, the corresponding amino acid. Several amino acids can be converted into pyruvate. Thus, transamination is a major link between amino acid and carbohydrate metabolism.

19 A third fate of pyruvate is its carboxylation to oxaloacetate inside mitochondria, the first step in gluconeogenesis. This reaction and the subsequent conversion of oxaloacetate into phosphoenolpyruvate bypass an irreversible step of glycolysis and hence enable glucose to be synthesized from pyruvate.

20 A fourth fate of pyruvate is its oxidative decarboxylation to acetyl CoA. This irreversible reaction inside mitochondria is a decisive reaction in metabolism: it commits the carbon atoms of carbohydrates and amino acids to oxidation by the citric acid cycle or to the synthesis of lipids.

21 Major Metabolic Fates of Pyruvate and Acetyl CoA in Mammals

22 3. Acetyl CoA. The major sources of this activated two-carbon unit are the oxidative decarboxylation of pyruvate and the β-oxidation of fatty acids. Acetyl CoA is also derived from ketogenic amino acids. The fate of acetyl CoA, in contrast with that of many molecules in metabolism, is quite restricted. The acetyl unit can be completely oxidized to CO2 by the citric acid cycle.

23 Alternatively, 3-hydroxy-3-methylglutaryl CoA can be formed from three molecules of acetyl CoA. This six-carbon unit is a precursor of cholesterol and of ketone bodies, which are transport forms of acetyl units released from the liver for use by some peripheral tissues. A third major fate of acetyl CoA is its export to the cytosol in the form of citrate for the synthesis of fatty acids.

24 Regulation of Glycolysis

25 Regulation of Gluconeogenesis

26 Regulation of the Pentose Phosphate Pathway

27 Regulation of Fatty Acid Synthesis

28 Control of Fatty Acid Degradation

29 Each Organ Has a Unique Metabolic Profile 1. Brain. Glucose is virtually the sole fuel for the human brain, except during prolonged starvation. It consumes about 120 g daily, which corresponds to an energy input of about 420 kcal, accounting for some 60% of the utilization of glucose by the whole body in the resting state. Much of the energy, estimates suggest from 60% to 70%, is used to power transport mechanisms that maintain the Na+-K+ membrane potential required for the transmission of the nerve impulses.

30 This danger point is reached when the plasmaglucose level drops below about 2.2 mm /L (40 mg/dl) Fatty acids do not serve as fuel for the brain, because they are bound to albumin in plasma and so do not traverse the blood-brain barrier. In starvation, ketone bodies generated by the liver partly replace glucose as fuel for the brain.

31

32 2. Muscle The major fuels for muscle are glucose, fatty acids, and ketone bodies. Muscle differs from the brain in having a large store of glycogen (1200 kcal. In fact, about 3/4 of all the glycogen in the body is stored in muscle. This glycogen is readily converted into glucose-6-p for use within muscle cells. Muscle, like the brain, lacks glucose 6-phosphatase, and so it does not export glucose. Rather, muscle retains glucose, its preferred fuel for bursts of activity.

33 In actively contracting skeletal muscle, the rate of glycolysis far exceeds that of the citric acid cycle, and much of the pyruvate formed is reduced to lactate, some of which flows to the liver, where it is converted into glucose. These interchanges, known as the Cori cycle shift part of the metabolic burden of muscle to the liver.

34 In addition, a large amount of alanine is formed in active muscle by the transamination of pyruvate. Alanine, like lactate, can be converted into glucose by the liver. Why does the muscle release alanine? Muscle can absorb and transaminate branched-chain amino acids; however, it cannot form urea. Consequently, the nitrogen is released into the blood as alanine.

35 Metabolic Interchanges between Muscle and Liver

36 3. Heart Unlike skeletal muscle, heart muscle functions almost exclusively aerobically, as evidenced by the density of mitochondria in heart muscle. Moreover, the heart has virtually no glycogen reserves. Fatty acids are the heart's main source of fuel, although ketone bodies as well as lactate can serve as fuel for heart muscle. In fact, heart muscle consumes acetoacetate in preference to glucose.

37 4. Adipose tissue The triacylglycerols stored in adipose tissue are an enormous reservoir of metabolic fuel. In a typical 70-kg man, the 11 kg of triacylglycerols have an energy content of 100,000 kcal. Adipose tissue is specialized for the esterification of fatty acids and for their release from triacylglycerols. In human beings, the liver is the major site of fatty acid synthesis. Recall that these fatty acids are esterified in the liver to glycerol phosphate to form triacylglycerol and are transported to the adipose tissue in lipoprotein particles, such as VLDL

38 Triacylglycerols are not taken up by adipocytes; rather, they are first hydrolyzed by an extracellular lipoprotein lipase for uptake. This lipase is stimulated by processes initiated by insulin. After the fatty acids enter the cell, the principal task of adipose tissue is to activate these fatty acids and transfer the resulting CoA derivatives to glycerol in the form of glycerol 3-phosphate. This essential intermediate in lipid biosynthesis comes from the reduction of the glycolytic intermediate dihydroxyacetone phosphate. Thus, adipose cells need glucose for the synthesis of triacylglycerols.

39 Triacylglycerols are hydrolyzed to fatty acids and glycerol by intracellular lipases. The release of the first fatty acid from a triacylglycerol, the ratelimiting step, is catalyzed by a hormone-sensitive lipase that is reversibly phosphorylated. The hormone epinephrine stimulates the formation of cyclic AMP, the intracellular messenger in the amplifying cascade.

40 Synthesis and Degradation of Triacylglycerols by Adipose Tissue

41 5. Kidneys The kidneys require large amounts of energy to accomplish the reabsorption. Although constituting only 0.5% of body mass, kidneys consume 10% of the oxygen used in cellular respiration. Much of the glucose that is reabsorbed is carried into the kidney cells by the sodium-glucose cotransporter.

42 During starvation, the kidney becomes an important site of gluconeogenesis and may contribute as much as 1/2 of the blood glucose.

43 6. Liver The metabolic activities of the liver are essential for providing fuel to the brain, muscle, and other peripheral organs. Indeed, the liver, which can be from 2% to 4% of body weight, is an organism's metabolic hub ( center of metabolism ). Most compounds absorbed by the intestine first pass through the liver, which is thus able to regulate the level of many metabolites in the blood.

44 END of Metabolism Part I >>

45 Food Intake and Starvation Induce Metabolic Changes This nightly starved fed cycle has three stages: the postabsorptive state after a meal, the early fasting during the night, and the refed state after breakfast. A major goal of the many biochemical alterations in this period is to maintain glucose homeostasis that is, a constant blood-glucose level.

46 What happened in the well-fed, or postabsorptive, state?

47 1. The well-fed, or postabsorptive, state. After we consume and digest an evening meal, glucose and amino acids are transported from the intestine to the blood. The dietary lipids are packaged into chylomicrons and transported to the blood by the lymphatic system. This fed condition leads to the secretion of insulin, which is one of the two most important regulators of fuel metabolism, the other regulator being glucagon.

48

49 The liver helps to limit the amount of glucose in the blood during times of plenty by storing it as glycogen so as to be able to release glucose in times of scarcity. How is the excess blood glucose present after a meal removed? Insulin accelerates the uptake of blood glucose into the liver by GLUT2. The level of glucose 6- phosphate in the liver rises because only then do the catalytic sites of glucokinase become filled with glucose.

50 The high insulin level in the fed state also promotes the entry of glucose into muscle and adipose tissue. Insulin stimulates the synthesis of glycogen by muscle as well as by the liver. The entry of glucose into adipose tissue provides glycerol 3-phosphate for the synthesis of triacylglycerols. The action of insulin also extends to amino acid and protein metabolism. Insulin promotes the uptake of branched-chain amino acids (valine, leucine, and isoleucine) by muscles.

51 What happened in the early fasting state?

52 2. The early fasting state The blood-glucose level begins to drop several hours after a meal, leading to a decrease in insulin secretion and a rise in glucagon secretion; glucagon is secreted by the a cells of the pancreas in response to a low blood-sugar level in the fasting state. Just as insulin signals the fed state, glucagon signals the starved state. It serves to mobilize glycogen stores when there is no dietary intake of glucose. The main target organ of glucagon is the liver.

53

54 The large amount of glucose formed by the hydrolysis of glucose 6-phosphate derived from glycogen is then released from the liver into the blood. The entry of glucose into muscle and adipose tissue decreases in response to a low insulin level. The diminished utilization of glucose by muscle and adipose tissue also contributes to the maintenance of the blood glucose level. The net result of these actions of glucagon is to markedly increase the release of glucose by the liver.

55 Both muscle and liver use fatty acids as fuel when the blood-glucose level drops. Thus, the blood-glucose level is kept at or above 80 mg/dl by three major factors: (1) the mobilization of glycogen and the release of glucose by the liver, (2) the release of fatty acids by adipose tissue, and (3) the shift in the fuel used from glucose to fatty acids by muscle and the liver.

56 What happened in the refed state?

57 3. The refed state What are the biochemical responses to a breakfast? Fat is processed exactly as it is processed in the normal fed state. However, this is not the case for glucose. The liver does not initially absorb glucose from the blood, but rather leaves it for the peripheral tissues. Moreover, the liver remains in a gluconeogenic mode. Now, however, the newly synthesized glucose is used to replenish the liver's glycogen stores. As the blood-glucose levels continue to rise, the liver completes the replenishment of its glycogen stores and begins to process the remaining excess glucose for fatty acid synthesis.

58 Metabolic Adaptations in Prolonged Starvation Minimize Protein Degradation What are the adaptations if fasting is prolonged to the point of starvation? A typical wellnourished 70-kg man has fuel reserves totaling about 161,000 kcal. The energy need for a 24- hour period ranges from about 1600 kcal to 6000 kcal, depending on the extent of activity. Thus, stored fuels sufficient to meet caloric needs in starvation for 1 to 3 months. However, the carbohydrate reserves are exhausted in only a day.

59 What is the first priority in starvation & why?

60 The first priority Even under starvation conditions, the bloodglucose level must be maintained above 2.2 mm (40 mg/dl). The first priority of metabolism in starvation is to provide sufficient glucose to the brain and other tissues (such as red blood cells) that are absolutely dependent on this fuel.

61 What is the second priority in starvation & why?

62 The second priority Thus, the second priority of metabolism in starvation is to preserve protein, which is accomplished by shifting the fuel being used from glucose to fatty acids and ketone bodies.

63 The metabolic changes on the first day of starvation are like those after an overnight fast. The low blood-sugar level leads to decreased secretion of insulin and increased secretion of glucagon. The dominant metabolic processes are the mobilization of triacylglycerols in adipose tissue and gluconeogenesis by the liver. The liver obtains energy for its own needs by oxidizing fatty acids released from adipose tissue.

64 The concentrations of acetyl CoA and citrate consequently increase, which switches off glycolysis. The uptake of glucose by muscle is markedly diminished because of the low insulin level, whereas fatty acids enter freely. Consequently, muscle shifts almost entirely from glucose to fatty acids for fuel.

65 The β-oxidation of fatty acids by muscle halts the conversion of pyruvate into acetyl CoA, because acetyl CoA stimulates the phosphorylation of the pyruvate dehydrogenase complex, which renders it inactive. Hence, pyruvate, lactate, and alanine are exported to the liver for conversion into glucose. Glycerol derived from the cleavage of triacylglycerols is another raw material for the synthesis of glucose by the liver.

66 Proteolysis also provides carbon skeletons for gluconeogenesis. During starvation, degraded proteins are not replenished and serve as carbon sources for glucose synthesis. Initial sources of protein are those that turn over rapidly, such as proteins of the intestinal epithelium and the secretions of the pancreas

67 How is the loss of muscle curtailed? After about 3 days of starvation, the liver forms large amounts of acetoacetate and β-hydroxybutyrate (ketone bodies). Their synthesis from acetyl CoA increases markedly because the citric acid cycle is unable to oxidize all the acetyl units generated by the degradation of fatty acids. Gluconeogenesis depletes the supply of oxaloacetate, which is essential for the entry of acetyl CoA into the citric acid cycle. Consequently, the liver produces large quantities of ketone bodies, which are released into the blood.

68 At this time, the brain begins to consume appreciable amounts of acetoacetate in place of glucose. After 3 days of starvation, about a 1/3 of the energy needs of the brain are met by ketone bodies. The heart also uses ketone bodies as fuel.

69 After several weeks of starvation, ketone bodies become the major fuel of the brain. Acetoacetate is activated by the transfer of CoA from succinyl CoA to give acetoacetyl CoA. Cleavage by thiolase then yields two molecules of acetyl CoA, which enter the citric acid cycle. In essence, ketone bodies are equivalents of fatty acids that can pass through the bloodbrain barrier. Only 40 g of glucose is then needed per day for the brain, compared with about 120 g in the first day of starvation.

70 The effective conversion of fatty acids into ketone bodies by the liver and their use by the brain markedly diminishes the need for glucose. Hence, less muscle is degraded than in the first days of starvation. The breakdown of 20 g of muscle daily compared with 75 g early in starvation is most important for survival. A person's survival time is mainly determined by the size of the triacylglycerol depot.

71 What happens after depletion of the triacylglycerol stores?

72 The only source of fuel that remains is proteins. Protein degradation accelerates, and death inevitably results from a loss of heart, liver, or kidney function. حسب عملك أما جنة أو الى الجحيم وبئس المصير

73 Fuel Choice During Starvation

74 Fuel metabolism in starvation Amount formed or consumed in 24 hours (grams) Fuel exchanges and consumption 3d day 40th day Fuel use by the brain Glucose Ketone bodies All other use of glucose Fuel mobilization Adipose-tissue lipolysis Muscle-protein degradation Fuel output of the liver Glucose Ketone bodies

75 END of Metabolism Part II >>

Integration Of Metabolism

Integration Of Metabolism Integration Of Metabolism Metabolism Consist of Highly Interconnected Pathways The basic strategy of catabolic metabolism is to form ATP, NADPH, and building blocks for biosyntheses. 1. ATP is the universal

More information

Integration of Metabolism 1. made by: Noor M. ALnairat. Sheet No. 18

Integration of Metabolism 1. made by: Noor M. ALnairat. Sheet No. 18 Integration of Metabolism 1 made by: Noor M. ALnairat Sheet No. 18 Data :24/11/2016 SLIDE 2: Metabolism Consist of Highly Interconnected Pathways The basic strategy of catabolic metabolism is to form ATP,

More information

Oxidation of Long Chain Fatty Acids

Oxidation of Long Chain Fatty Acids Oxidation of Long Chain Fatty Acids Dr NC Bird Oxidation of long chain fatty acids is the primary source of energy supply in man and animals. Hibernating animals utilise fat stores to maintain body heat,

More information

Integrative Metabolism: Significance

Integrative Metabolism: Significance Integrative Metabolism: Significance Energy Containing Nutrients Carbohydrates Fats Proteins Catabolism Energy Depleted End Products H 2 O NH 3 ADP + Pi NAD + NADP + FAD + Pi NADH+H + NADPH+H + FADH2 Cell

More information

Integration Of Metabolism

Integration Of Metabolism لكية الطب البرشي البلقاء التطبيقية / املركز أحياها 2016/2022 و من Integration Of Metabolism Metabolism Consist of Highly Interconnected Pathways The basic strategy of catabolic metabolism(in another words

More information

In glycolysis, glucose is converted to pyruvate. If the pyruvate is reduced to lactate, the pathway does not require O 2 and is called anaerobic

In glycolysis, glucose is converted to pyruvate. If the pyruvate is reduced to lactate, the pathway does not require O 2 and is called anaerobic Glycolysis 1 In glycolysis, glucose is converted to pyruvate. If the pyruvate is reduced to lactate, the pathway does not require O 2 and is called anaerobic glycolysis. If this pyruvate is converted instead

More information

Intermediary metabolism. Eva Samcová

Intermediary metabolism. Eva Samcová Intermediary metabolism Eva Samcová Metabolic roles of tissues Four major tissues play a dominant role in fuel metabolism : liver, adipose, muscle, and brain. These tissues do not function in isolation.

More information

CHY2026: General Biochemistry UNIT 7& 8: CARBOHYDRATE METABOLISM

CHY2026: General Biochemistry UNIT 7& 8: CARBOHYDRATE METABOLISM CHY2026: General Biochemistry UNIT 7& 8: CARBOHYDRATE METABOLISM Metabolism Bioenergetics is the transfer and utilization of energy in biological systems The direction and extent to which a chemical reaction

More information

Roles of Lipids. principal form of stored energy major constituents of cell membranes vitamins messengers intra and extracellular

Roles of Lipids. principal form of stored energy major constituents of cell membranes vitamins messengers intra and extracellular Roles of Lipids principal form of stored energy major constituents of cell membranes vitamins messengers intra and extracellular = Oxidation of fatty acids Central energy-yielding pathway in animals. O

More information

Energy stores in different organs for a 155 lb male, in Calories

Energy stores in different organs for a 155 lb male, in Calories Energy stores in different organs for a 155 lb male, in Calories Organ Glucose/ Glycogen Triacyl Glycerols* Liver 400 450 400 Brain 8 0 0 Mobile Proteins Muscle 1,200 450 24,000 Adipose Tissue 80 135,000

More information

Final Review Sessions. 3/16 (FRI) 126 Wellman (4-6 6 pm) 3/19 (MON) 1309 Surge 3 (4-6 6 pm) Office Hours

Final Review Sessions. 3/16 (FRI) 126 Wellman (4-6 6 pm) 3/19 (MON) 1309 Surge 3 (4-6 6 pm) Office Hours Final Review Sessions 3/16 (FRI) 126 Wellman (4-6 6 pm) 3/19 (MON) 1309 Surge 3 (4-6 6 pm) Office ours 3/14 (WED) 9:30 11:30 am (Rebecca) 3/16 (FRI) 9-11 am (Abel) Final ESSENTIALS Posted Lecture 20 ormonal

More information

Integration & Hormone Regulation

Integration & Hormone Regulation Integration Branchpoints in metabolism where metabolites can go several directions 1. Glucose 6-phosphate Energy needed (low energy charge): glycolysis Low blood sugar: high [glucagon], low [insulin] glycogen

More information

Biochemistry: A Short Course

Biochemistry: A Short Course Tymoczko Berg Stryer Biochemistry: A Short Course Second Edition CHAPTER 27 Fatty Acid Degradation Dietary Lipid (Triacylglycerol) Metabolism - In the small intestine, fat particles are coated with bile

More information

5.0 HORMONAL CONTROL OF CARBOHYDRATE METABOLISM

5.0 HORMONAL CONTROL OF CARBOHYDRATE METABOLISM 5.0 HORMONAL CONTROL OF CARBOHYDRATE METABOLISM Introduction: Variety of hormones and other molecules regulate the carbohydrates metabolism. Some of these have already been cited in previous sections.

More information

23.1 Lipid Metabolism in Animals. Chapter 23. Micelles Lipid Metabolism in. Animals. Overview of Digestion Lipid Metabolism in

23.1 Lipid Metabolism in Animals. Chapter 23. Micelles Lipid Metabolism in. Animals. Overview of Digestion Lipid Metabolism in Denniston Topping Caret Copyright! The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Chapter 23 Fatty Acid Metabolism Triglycerides (Tgl) are emulsified into fat droplets

More information

number Done by Corrected by Doctor Nayef Karadsheh

number Done by Corrected by Doctor Nayef Karadsheh number 13 Done by Asma Karameh Corrected by Saad hayek Doctor Nayef Karadsheh Gluconeogenesis This lecture covers gluconeogenesis with aspects of: 1) Introduction to glucose distribution through tissues.

More information

Multiple choice: Circle the best answer on this exam. There are 12 multiple choice questions, each question is worth 3 points.

Multiple choice: Circle the best answer on this exam. There are 12 multiple choice questions, each question is worth 3 points. CHEM 4420 Exam 4 Spring 2015 Dr. Stone Page 1 of 6 Name Use complete sentences when requested. There are 120 possible points on this exam. Therefore there are 20 bonus points. Multiple choice: Circle the

More information

Metabolism. Chapter 5. Catabolism Drives Anabolism 8/29/11. Complete Catabolism of Glucose

Metabolism. Chapter 5. Catabolism Drives Anabolism 8/29/11. Complete Catabolism of Glucose 8/29/11 Metabolism Chapter 5 All of the reactions in the body that require energy transfer. Can be divided into: Cell Respiration and Metabolism Anabolism: requires the input of energy to synthesize large

More information

Lipid Metabolism. Remember fats?? Triacylglycerols - major form of energy storage in animals

Lipid Metabolism. Remember fats?? Triacylglycerols - major form of energy storage in animals Remember fats?? Triacylglycerols - major form of energy storage in animals Your energy reserves: ~0.5% carbs (glycogen + glucose) ~15% protein (muscle, last resort) ~85% fat Why use fat for energy? 1 gram

More information

Glucose is the only source of energy in red blood cells. Under starvation conditions ketone bodies become a source of energy for the brain

Glucose is the only source of energy in red blood cells. Under starvation conditions ketone bodies become a source of energy for the brain Glycolysis 4 / The Text :- Some Points About Glucose Glucose is very soluble source of quick and ready energy. It is a relatively stable and easily transported. In mammals, the brain uses only glucose

More information

6. How Are Fatty Acids Produced? 7. How Are Acylglycerols and Compound Lipids Produced? 8. How Is Cholesterol Produced?

6. How Are Fatty Acids Produced? 7. How Are Acylglycerols and Compound Lipids Produced? 8. How Is Cholesterol Produced? Lipid Metabolism Learning bjectives 1 How Are Lipids Involved in the Generationand Storage of Energy? 2 How Are Lipids Catabolized? 3 What Is the Energy Yield from the xidation of Fatty Acids? 4 How Are

More information

Regulation of Metabolism

Regulation of Metabolism Regulation of Metabolism Pratt and Cornely Chapter 19 Regulation by Compartmentalization Form of reciprocal regulation Degradation vs biosynthesis Requires transporters 1 Specialization of organs Fuel

More information

Energy metabolism - the overview

Energy metabolism - the overview Energy metabolism - the overview Josef Fontana EC - 40 Overview of the lecture Important terms of the energy metabolism The overview of the energy metabolism The main pathways of the energy metabolism

More information

Overview of Metabolism and provision of metabolic fuel. Dr. Uzma Nasib

Overview of Metabolism and provision of metabolic fuel. Dr. Uzma Nasib Overview of Metabolism and provision of metabolic fuel Dr. Uzma Nasib Metabolism The Transformation of Energy Cells Can t Eat Hamburgers How Does the Body Fuel Metabolism Metabolism (from Greek: metabolē,

More information

Chapter 24 Lecture Outline

Chapter 24 Lecture Outline Chapter 24 Lecture Outline Carbohydrate Lipid and Protein! Metabolism! In the catabolism of carbohydrates, glycolysis converts glucose into pyruvate, which is then metabolized into acetyl CoA. Prepared

More information

Fatty Acid and Triacylglycerol Metabolism 1

Fatty Acid and Triacylglycerol Metabolism 1 Fatty Acid and Triacylglycerol Metabolism 1 Mobilization of stored fats and oxidation of fatty acids Lippincott s Chapter 16 What is the first lecture about What is triacylglycerol Fatty acids structure

More information

UNIVERSITY OF PNG SCHOOL OF MEDICINE AND HEALTH SCIENCES DIVISION OF BASIC MEDICAL SCIENCES DISCIPLINE OF BIOCHEMISTRY AND MOLECULAR BIOLOGY

UNIVERSITY OF PNG SCHOOL OF MEDICINE AND HEALTH SCIENCES DIVISION OF BASIC MEDICAL SCIENCES DISCIPLINE OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 1 UNIVERSITY OF PNG SCHOOL OF MEDICINE AND HEALTH SCIENCES DIVISION OF BASIC MEDICAL SCIENCES DISCIPLINE OF BIOCHEMISTRY AND MOLECULAR BIOLOGY GLUCOSE HOMEOSTASIS An Overview WHAT IS HOMEOSTASIS? Homeostasis

More information

THE GLUCOSE-FATTY ACID-KETONE BODY CYCLE Role of ketone bodies as respiratory substrates and metabolic signals

THE GLUCOSE-FATTY ACID-KETONE BODY CYCLE Role of ketone bodies as respiratory substrates and metabolic signals Br. J. Anaesth. (1981), 53, 131 THE GLUCOSE-FATTY ACID-KETONE BODY CYCLE Role of ketone bodies as respiratory substrates and metabolic signals J. C. STANLEY In this paper, the glucose-fatty acid cycle

More information

Moh Tarek. Razi Kittaneh. Jaqen H ghar

Moh Tarek. Razi Kittaneh. Jaqen H ghar 14 Moh Tarek Razi Kittaneh Jaqen H ghar Naif Karadsheh Gluconeogenesis is making glucose from non-carbohydrates precursors. Although Gluconeogenesis looks like Glycolysis in many steps, it is not the simple

More information

Biol 219 Lec 7 Fall 2016

Biol 219 Lec 7 Fall 2016 Cellular Respiration: Harvesting Energy to form ATP Cellular Respiration and Metabolism Glucose ATP Pyruvate Lactate Acetyl CoA NAD + Introducing The Players primary substrate for cellular respiration

More information

Lecture 5: Cell Metabolism. Biology 219 Dr. Adam Ross

Lecture 5: Cell Metabolism. Biology 219 Dr. Adam Ross Lecture 5: Cell Metabolism Biology 219 Dr. Adam Ross Cellular Respiration Set of reactions that take place during the conversion of nutrients into ATP Intricate regulatory relationship between several

More information

Physiology Unit 1 METABOLISM OF LIPIDS AND PROTEINS

Physiology Unit 1 METABOLISM OF LIPIDS AND PROTEINS Physiology Unit 1 METABOLISM OF LIPIDS AND PROTEINS Alternate Fuel Sources When glucose levels are low Proteins and Triglycerides will be metabolized Tissues will use different fuel sources depending on:

More information

Biochemistry 7/11/ Bio-Energetics & ATP. 5.1) ADP, ATP and Cellular Respiration OVERVIEW OF ENERGY AND METABOLISM

Biochemistry 7/11/ Bio-Energetics & ATP. 5.1) ADP, ATP and Cellular Respiration OVERVIEW OF ENERGY AND METABOLISM Biochemistry 5. Bio-Energetics & ATP 5.1) ADP, ATP and Cellular Respiration Prof. Dr. Klaus Heese OVERVIEW OF ENERGY AND METABOLISM 1. The food we eat, (carbohydrates/ glucose /sugar, lipids/fat, proteins),

More information

What systems are involved in homeostatic regulation (give an example)?

What systems are involved in homeostatic regulation (give an example)? 1 UNIVERSITY OF PNG SCHOOL OF MEDICINE AND HEALTH SCIENCES DIVISION OF BASIC MEDICAL SCIENCES DISCIPLINE OF BIOCHEMISTRY AND MOLECULAR BIOLOGY GLUCOSE HOMEOSTASIS (Diabetes Mellitus Part 1): An Overview

More information

Dr. Mohnen s notes on GLUCONEOGENESIS

Dr. Mohnen s notes on GLUCONEOGENESIS Dr. Mohnen s notes on GLUCONEOGENESIS Note: Even though we did not get through all of these slides during lecture, I advise you to look them all through because they will be helpful to you as you learn

More information

Chemistry 1120 Exam 4 Study Guide

Chemistry 1120 Exam 4 Study Guide Chemistry 1120 Exam 4 Study Guide Chapter 12 12.1 Identify and differentiate between macronutrients (lipids, amino acids and saccharides) and micronutrients (vitamins and minerals). Master Tutor Section

More information

OVERVIEW OF ENERGY AND METABOLISM

OVERVIEW OF ENERGY AND METABOLISM Biochemistry 5. Bio-Energetics & ATP 5.1) ADP, ATP and Cellular Respiration OVERVIEW OF ENERGY AND METABOLISM 1. The food we eat, (carbohydrates/ glucose /sugar, lipids/fat, proteins), are our only source

More information

CHY2026: General Biochemistry. Lipid Metabolism

CHY2026: General Biochemistry. Lipid Metabolism CHY2026: General Biochemistry Lipid Metabolism Lipid Digestion Lipid Metabolism Fats (triglycerides) are high metabolic energy molecules Fats yield 9.3 kcal of energy (carbohydrates and proteins 4.1 kcal)

More information

Physiological Chemistry II Exam IV Dr. Melissa Kelley April 13, 2004

Physiological Chemistry II Exam IV Dr. Melissa Kelley April 13, 2004 Name Write your name on the back of the exam Physiological Chemistry II Exam IV Dr. Melissa Kelley April 13, 2004 This examination consists of forty-four questions, each having 2 points. The remaining

More information

Lecture 36. Key Concepts. Overview of lipid metabolism. Reactions of fatty acid oxidation. Energy yield from fatty acid oxidation

Lecture 36. Key Concepts. Overview of lipid metabolism. Reactions of fatty acid oxidation. Energy yield from fatty acid oxidation Lecture 36 Lipid Metabolism 1 Fatty Acid Oxidation Ketone Bodies Key Concepts Overview of lipid metabolism Reactions of fatty acid oxidation Energy yield from fatty acid oxidation Formation of ketone bodies

More information

Glycolysis Part 2. BCH 340 lecture 4

Glycolysis Part 2. BCH 340 lecture 4 Glycolysis Part 2 BCH 340 lecture 4 Regulation of Glycolysis There are three steps in glycolysis that have enzymes which regulate the flux of glycolysis These enzymes catalyzes irreversible reactions of

More information

the fates of acetyl coa which produced by B oixidation :

the fates of acetyl coa which produced by B oixidation : Ketone bodies the fates of acetyl coa which produced by B oixidation : 1) oxidized at the TCA cycle 2)synthesis of ketone bodies Ketone bodies : 1)acetoacetate 2) acetone 3) 3_hydroxybutyrate Naming acetonacetone:

More information

Integration of Metabolism

Integration of Metabolism Integration of Metabolism Metabolism is a continuous process. Thousands of reactions occur simultaneously in order to maintain homeostasis. It ensures a supply of fuel, to tissues at all times, in fed

More information

Chemical Energy. Valencia College

Chemical Energy. Valencia College 9 Pathways that Harvest Chemical Energy Valencia College 9 Pathways that Harvest Chemical Energy Chapter objectives: How Does Glucose Oxidation Release Chemical Energy? What Are the Aerobic Pathways of

More information

University of Palestine. Final Exam 2016/2017 Total Grade:

University of Palestine. Final Exam 2016/2017 Total Grade: Part 1 : Multiple Choice Questions (MCQs) 1)Which of the following statements about Michaelis-Menten kinetics is correct? a)k m, the Michaelis constant, is defined as the concentration of substrate required

More information

ANSC/NUTR 618 LIPIDS & LIPID METABOLISM. Triacylglycerol and Fatty Acid Metabolism

ANSC/NUTR 618 LIPIDS & LIPID METABOLISM. Triacylglycerol and Fatty Acid Metabolism ANSC/NUTR 618 LIPIDS & LIPID METABOLISM II. Triacylglycerol synthesis A. Overall pathway Glycerol-3-phosphate + 3 Fatty acyl-coa à Triacylglycerol + 3 CoASH B. Enzymes 1. Acyl-CoA synthase 2. Glycerol-phosphate

More information

The molecule that serves as the major source of readily available body fuel is: a. fat. b. glucose. c. acetyl CoA. d. cellulose.

The molecule that serves as the major source of readily available body fuel is: a. fat. b. glucose. c. acetyl CoA. d. cellulose. The molecule that serves as the major source of readily available body fuel is: a. fat. b. glucose. c. acetyl CoA. d. cellulose. Dietary fats are important because: a. they keep blood pressure normal.

More information

INTEGRATION OF METABOLISM DR. A. TARAB DEPT. OF BIOCHEMISTRY HKMU

INTEGRATION OF METABOLISM DR. A. TARAB DEPT. OF BIOCHEMISTRY HKMU INTEGRATION OF METABOLISM DR. A. TARAB DEPT. OF BIOCHEMISTRY HKMU To appreciate fully the significance of individual metabolic pathways and their regulation, we must view these pathways in the context

More information

BCM 221 LECTURES OJEMEKELE O.

BCM 221 LECTURES OJEMEKELE O. BCM 221 LECTURES BY OJEMEKELE O. OUTLINE INTRODUCTION TO LIPID CHEMISTRY STORAGE OF ENERGY IN ADIPOCYTES MOBILIZATION OF ENERGY STORES IN ADIPOCYTES KETONE BODIES AND KETOSIS PYRUVATE DEHYDROGENASE COMPLEX

More information

III. 6. Test. Respiració cel lular

III. 6. Test. Respiració cel lular III. 6. Test. Respiració cel lular Chapter Questions 1) What is the term for metabolic pathways that release stored energy by breaking down complex molecules? A) anabolic pathways B) catabolic pathways

More information

Chapter 22, Fatty Acid Metabolism CH 3 (CH 2 ) 14 CO 2 R C C O2 CH 2 OH O R. Lipase + 3 H 2 O

Chapter 22, Fatty Acid Metabolism CH 3 (CH 2 ) 14 CO 2 R C C O2 CH 2 OH O R. Lipase + 3 H 2 O hapter 22, Fatty Acid Metabolism Pages: 603-613 I. Introduction - Fatty acids have 4 major physiological roles: - omponents of phospholipids and glycolipids (membranes) - Attachment to Proteins targets

More information

Cellular Pathways That Harvest Chemical Energy. Cellular Pathways That Harvest Chemical Energy. Cellular Pathways In General

Cellular Pathways That Harvest Chemical Energy. Cellular Pathways That Harvest Chemical Energy. Cellular Pathways In General Cellular Pathways That Harvest Chemical Energy A. Obtaining Energy and Electrons from Glucose Lecture Series 12 Cellular Pathways That Harvest Chemical Energy B. An Overview: Releasing Energy from Glucose

More information

Module No. # 01 Lecture No. # 19 TCA Cycle

Module No. # 01 Lecture No. # 19 TCA Cycle Biochemical Engineering Prof. Dr. Rintu Banerjee Department of Agricultural and Food Engineering Asst. Prof. Dr. Saikat Chakraborty Department of Chemical Engineering Indian Institute of Technology, Kharagpur

More information

How Cells Release Chemical Energy. Chapter 7

How Cells Release Chemical Energy. Chapter 7 How Cells Release Chemical Energy Chapter 7 7.1 Overview of Carbohydrate Breakdown Pathways All organisms (including photoautotrophs) convert chemical energy of organic compounds to chemical energy of

More information

Biosynthesis of Fatty Acids. By Dr.QUTAIBA A. QASIM

Biosynthesis of Fatty Acids. By Dr.QUTAIBA A. QASIM Biosynthesis of Fatty Acids By Dr.QUTAIBA A. QASIM Fatty Acids Definition Fatty acids are comprised of hydrocarbon chains terminating with carboxylic acid groups. Fatty acids and their associated derivatives

More information

CHE 242 Exam 3 Practice Questions

CHE 242 Exam 3 Practice Questions CHE 242 Exam 3 Practice Questions Glucose metabolism 1. Below is depicted glucose catabolism. Indicate on the pathways the following: A) which reaction(s) of glycolysis are irreversible B) where energy

More information

Name: Chem 351 Exam 3

Name: Chem 351 Exam 3 Multiple hoice: Pick the BEST answer and write it in the box at the end of the section. 1) The TA (Krebs) ycle depends on oxygen availability, though it does not directly use it. How can you best explain

More information

Ahmad Ulnar. Faisal Nimri ... Dr.Faisal

Ahmad Ulnar. Faisal Nimri ... Dr.Faisal 24 Ahmad Ulnar Faisal Nimri... Dr.Faisal Fatty Acid Synthesis - Occurs mainly in the Liver (to store excess carbohydrates as triacylglycerols(fat)) and in lactating mammary glands (for the production of

More information

Chapter 13 Carbohydrate Metabolism

Chapter 13 Carbohydrate Metabolism Chapter 13 Carbohydrate Metabolism Chapter bjectives: Learn about Blood glucose. Learn about the glycolysis reaction pathways and the regulation of glycolysis. Learn about the fates of pyruvate under various

More information

Lehninger 5 th ed. Chapter 17

Lehninger 5 th ed. Chapter 17 Lehninger 5 th ed. Chapter 17 December 26, 2010 Prof. Shimon Schuldiner Email: Shimon.Schuldiner@huji.ac.il Phone: 6585992 CHAPTER 17 Fatty Acid Catabolism Key topics: How fats are digested in animals

More information

LIPID METABOLISM. Sri Widia A Jusman Department of Biochemistry & Molecular Biology FMUI

LIPID METABOLISM. Sri Widia A Jusman Department of Biochemistry & Molecular Biology FMUI LIPID METABOLISM Sri Widia A Jusman Department of Biochemistry & Molecular Biology FMUI Lipid metabolism is concerned mainly with fatty acids cholesterol Source of fatty acids from dietary fat de novo

More information

anabolic pathways- Catabolic Amphibolic

anabolic pathways- Catabolic Amphibolic METABOLISM Introduction The fate of dietary components after digestion and absorption constitute metabolism regulated by metabolic pathway 3 types: anabolic pathways- Synthesis of compound e.g. synthesis

More information

4. Which step shows a split of one molecule into two smaller molecules? a. 2. d. 5

4. Which step shows a split of one molecule into two smaller molecules? a. 2. d. 5 1. Which of the following statements about NAD + is false? a. NAD + is reduced to NADH during both glycolysis and the citric acid cycle. b. NAD + has more chemical energy than NADH. c. NAD + is reduced

More information

Introduction to Carbohydrate metabolism

Introduction to Carbohydrate metabolism Introduction to Carbohydrate metabolism Some metabolic pathways of carbohydrates 1- Glycolysis 2- Krebs cycle 3- Glycogenesis 4- Glycogenolysis 5- Glyconeogenesis - Pentose Phosphate Pathway (PPP) - Curi

More information

GLYCOLYSIS Generation of ATP from Metabolic Fuels

GLYCOLYSIS Generation of ATP from Metabolic Fuels GLYCOLYSIS Generation of ATP from Metabolic Fuels - Catabolic process degradative pathway - Energy stored in sugars (carbohydrates) released to perform biological work - Transforms GLUCOSE to PYRUVATE

More information

BASIC SCIENCES & BIOCHEMISTRY FOR BETZPAENIC BRIMBLERS

BASIC SCIENCES & BIOCHEMISTRY FOR BETZPAENIC BRIMBLERS BASIC SCIENCES & BIOCHEMISTRY FOR BETZPAENIC BRIMBLERS Lymphatic Vessels One main lymph vessel receives lymph from the right upper arm and the right side of the head and the thorax and empties into the

More information

Table of Contents. Section 1 Glycolysis and Fermentation. Section 2 Aerobic Respiration

Table of Contents. Section 1 Glycolysis and Fermentation. Section 2 Aerobic Respiration Table of Contents Section 1 Glycolysis and Fermentation Section 2 Aerobic Respiration Objectives Identify the two major steps of cellular respiration. Describe the major events in glycolysis. Compare lactic

More information

METABOLISM Biosynthetic Pathways

METABOLISM Biosynthetic Pathways METABOLISM Biosynthetic Pathways Metabolism Metabolism involves : Catabolic reactions that break down large, complex molecules to provide energy and smaller molecules. Anabolic reactions that use ATP energy

More information

(de novo synthesis of glucose)

(de novo synthesis of glucose) Gluconeogenesis (de novo synthesis of glucose) Gluconeogenesis Gluconeogenesis is the biosynthesis of new glucose. The main purpose of gluconeogenesis is to maintain the constant blood Glc concentration.

More information

Carbohydrate Metabolism I

Carbohydrate Metabolism I Carbohydrate Metabolism I Outline Glycolysis Stages of glycolysis Regulation of Glycolysis Carbohydrate Metabolism Overview Enzyme Classification Dehydrogenase - oxidizes substrate using cofactors as

More information

Transfer of food energy to chemical energy. Includes anabolic and catabolic reactions. The cell is the metabolic processing center

Transfer of food energy to chemical energy. Includes anabolic and catabolic reactions. The cell is the metabolic processing center Metabolism There are a lot of diagrams here. DO NOT, I repeat, DO NOT get overly anxious or excited about them. We will go through them again slowly!! Read the slides, read the book, DO NOT TAKE NOTES.

More information

BIOL2171 ANU TCA CYCLE

BIOL2171 ANU TCA CYCLE TCA CYCLE IMPORTANCE: Oxidation of 2C Acetyl Co-A 2CO 2 + 3NADH + FADH 2 (8e-s donated to O 2 in the ETC) + GTP (energy) + Heat OVERVIEW: Occurs In the mitochondrion matrix. 1. the acetyl portion of acetyl-coa

More information

Medical Biochemistry and Molecular Biology department

Medical Biochemistry and Molecular Biology department Medical Biochemistry and Molecular Biology department Cardiac Fuels [Sources of energy for the Cardiac muscle] Intended learning outcomes of the lecture: By the end of this lecture you would be able to:-

More information

Major Pathways in Carbohydrate Metabolism

Major Pathways in Carbohydrate Metabolism Major Pathways in Carbohydrate Metabolism 70 Stage 1: Digestion of Carbohydrates In Stage 1, the digestion of carbohydrates Begins in the mouth where salivary amylase breaks down polysaccharides to smaller

More information

INTEGRATION OF METABOLISM

INTEGRATION OF METABOLISM SIBC511- INTEGRATION OF METABOLISM Assistant Professor Dr. Chatchawan Srisawat INTEGRATION OF METABOLISM INTEGRATION OF METABOLISM Dietary intake Fed state Fasting state The metabolism of carbohydrate,

More information

Carbohydrate Metabolism

Carbohydrate Metabolism Chapter 34 Carbohydrate Metabolism Carbohydrate metabolism is important for both plants and animals. Introduction to General, Organic, and Biochemistry, 10e John Wiley & Sons, Inc Morris Hein, Scott Pattison,

More information

Lipid Metabolism * OpenStax

Lipid Metabolism * OpenStax OpenStax-CNX module: m46462 1 Lipid Metabolism * OpenStax This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 3.0 By the end of this section, you will be able

More information

CELLULAR GLYCOGEN Why Glycogen as an Energy Storage Molecule? Glycogenolysis NOT phosphorolysis

CELLULAR GLYCOGEN Why Glycogen as an Energy Storage Molecule? Glycogenolysis NOT phosphorolysis CHM333 LECTURE 29 & 30: 4/12 15/13 SPRING 2013 Professor Christine Hrycyna CELLULAR GLYCOGEN Why Glycogen as an Energy Storage Molecule? 1. Fat cannot be as rapidly mobilized in skeletal muscle. 2. Fat

More information

CITRIC ACID CYCLE ERT106 BIOCHEMISTRY SEM /19 BY: MOHAMAD FAHRURRAZI TOMPANG

CITRIC ACID CYCLE ERT106 BIOCHEMISTRY SEM /19 BY: MOHAMAD FAHRURRAZI TOMPANG CITRIC ACID CYCLE ERT106 BIOCHEMISTRY SEM 1 2018/19 BY: MOHAMAD FAHRURRAZI TOMPANG Chapter Outline (19-1) The central role of the citric acid cycle in metabolism (19-2) The overall pathway of the citric

More information

Metabolism: From Food to Life

Metabolism: From Food to Life CHAPTER 7 Metabolism: From Food to Life Chapter Summary Metabolism is the sum total of all chemical and physical processes by which the body catabolizes and anabolizes molecules. Metabolic pathways are

More information

Fatty Acid and Triacylglycerol Metabolism 1

Fatty Acid and Triacylglycerol Metabolism 1 Fatty Acid and Triacylglycerol Metabolism 1 Mobilization of stored fats and oxidation of fatty acids Lippincott s Chapter 16 What is the first lecture about What is triacylglycerol Fatty acids structure

More information

Glycogen Metabolism. BCH 340 lecture 9

Glycogen Metabolism. BCH 340 lecture 9 Glycogen Metabolism BC 340 lecture 9 Structure of glycogen Glycogen is homopolysaccharide formed of branched D-glucose units The primary glycosidic bond is 1-4-linkage Each branch is made of 6-12 glucose

More information

TCA CYCLE (Citric Acid Cycle)

TCA CYCLE (Citric Acid Cycle) TCA CYCLE (Citric Acid Cycle) TCA CYCLE The Citric Acid Cycle is also known as: Kreb s cycle Sir Hans Krebs Nobel prize, 1953 TCA (tricarboxylic acid) cycle The citric acid cycle requires aerobic conditions!!!!

More information

This is an example outline of 3 lectures in BSC (Thanks to Dr. Ellington for sharing this information.)

This is an example outline of 3 lectures in BSC (Thanks to Dr. Ellington for sharing this information.) This is an example outline of 3 lectures in BSC 2010. (Thanks to Dr. Ellington for sharing this information.) Topic 10: CELLULAR RESPIRATION (lectures 14-16) OBJECTIVES: 1. Know the basic reactions that

More information

Citric Acid Cycle: Central Role in Catabolism. Entry of Pyruvate into the TCA cycle

Citric Acid Cycle: Central Role in Catabolism. Entry of Pyruvate into the TCA cycle Citric Acid Cycle: Central Role in Catabolism Stage II of catabolism involves the conversion of carbohydrates, fats and aminoacids into acetylcoa In aerobic organisms, citric acid cycle makes up the final

More information

Lipid and Amino Acid Metabolism

Lipid and Amino Acid Metabolism CHEM 3331 Fundamentals of Biochemistry Chapter 14 Lipid and Amino Acid Metabolism Organic and Biochemistry for Today Spencer L. Seager / Michael R. Slabaugh Mr. Kevin A. Boudreaux Angelo State University

More information

number Done by Corrected by Doctor F. Al-Khateeb

number Done by Corrected by Doctor F. Al-Khateeb number 23 Done by A. Rawajbeh Corrected by Doctor F. Al-Khateeb Ketone bodies Ketone bodies are used by the peripheral tissues like the skeletal and cardiac muscles, where they are the preferred source

More information

Dr. Abir Alghanouchi Biochemistry department Sciences college

Dr. Abir Alghanouchi Biochemistry department Sciences college Dr. Abir Alghanouchi Biochemistry department Sciences college Under aerobic conditions, pyruvate(the product of glycolysis) passes by special pyruvatetransporter into mitochondria which proceeds as follows:

More information

Principles of Anatomy and Physiology

Principles of Anatomy and Physiology Principles of Anatomy and Physiology 14 th Edition CHAPTER 25 Metabolism and Nutrition Metabolic Reactions Metabolism refers to all of the chemical reactions taking place in the body. Reactions that break

More information

Biochemistry: A Short Course

Biochemistry: A Short Course Tymoczko Berg Stryer Biochemistry: A Short Course Second Edition CHAPTER 30 Amino Acid Degradation and the Urea Cycle 2013 W. H. Freeman and Company Chapter 30 Outline Amino acids are obtained from the

More information

CELLULAR METABOLISM. Metabolic pathways can be linear, branched, cyclic or spiral

CELLULAR METABOLISM. Metabolic pathways can be linear, branched, cyclic or spiral CHM333 LECTURE 24 & 25: 3/27 29/13 SPRING 2013 Professor Christine Hrycyna CELLULAR METABOLISM What is metabolism? - How cells acquire, transform, store and use energy - Study reactions in a cell and how

More information

number Done by Corrected by Doctor Faisal Al-Khatibe

number Done by Corrected by Doctor Faisal Al-Khatibe number 24 Done by Mohammed tarabieh Corrected by Doctor Faisal Al-Khatibe 1 P a g e *Please look over the previous sheet about fatty acid synthesis **Oxidation(degradation) of fatty acids, occurs in the

More information

Metabolic integration and Regulation

Metabolic integration and Regulation Metabolic integration and Regulation 109700: Graduate Biochemistry Trimester 2/2016 Assistant Prof. Dr. Panida Khunkaewla kpanida@sut.ac.th School of Chemistry Suranaree University of Technology 1 Overview

More information

Metabolism Energy Pathways Biosynthesis. Catabolism Anabolism Enzymes

Metabolism Energy Pathways Biosynthesis. Catabolism Anabolism Enzymes Topics Microbial Metabolism Metabolism Energy Pathways Biosynthesis 2 Metabolism Catabolism Catabolism Anabolism Enzymes Breakdown of complex organic molecules in order to extract energy and dform simpler

More information

Cellular Respiration Other Metabolites & Control of Respiration. AP Biology

Cellular Respiration Other Metabolites & Control of Respiration. AP Biology Cellular Respiration Other Metabolites & Control of Respiration Cellular respiration: Beyond glucose: Other carbohydrates: Glycolysis accepts a wide range of carbohydrates fuels. polysaccharides glucose

More information

BY: RASAQ NURUDEEN OLAJIDE

BY: RASAQ NURUDEEN OLAJIDE BY: RASAQ NURUDEEN OLAJIDE LECTURE CONTENT INTRODUCTION CITRIC ACID CYCLE (T.C.A) PRODUCTION OF ACETYL CoA REACTIONS OF THE CITIRC ACID CYCLE THE AMPHIBOLIC NATURE OF THE T.C.A CYCLE THE GLYOXYLATE CYCLE

More information

Cellular Respiration

Cellular Respiration Cellular Respiration 1. To perform cell work, cells require energy. a. A cell does three main kinds of work: i. Mechanical work, such as the beating of cilia, contraction of muscle cells, and movement

More information

Citrate Cycle Supplemental Reading

Citrate Cycle Supplemental Reading Citrate Cycle Supplemental Reading Key Concepts - The Citrate Cycle captures energy using redox reactions - Eight enzymatic reactions of the Citrate Cycle - Key control points in the citrate cycle regulate

More information