Identification and Quantification at ppb Levels of Common Cations and Amines by IC-MS

Size: px
Start display at page:

Download "Identification and Quantification at ppb Levels of Common Cations and Amines by IC-MS"

Transcription

1 Application Note 269 Identification and Quantification at ppb Levels of Common Cations and Amines by IC-MS INTRODUCTION Ion chromatography (IC) has been extensively used as the preferred separation technique for ionic species such as inorganic anions/cations, small amines, organic acids, peptides and proteins, nucleic acids, and carbohydrates. In recent years, the increasing demands for higher sensitivity, selectivity, structural, and confirmatory information has led to the emergence of mass spectrometry (MS) as a powerful complementary detector to conductivity, UV, and electrochemical detections. Given the mass range of the target analytes, common cations and small amines are usually below 1 mass-to-charge ratio (m/z); therefore, an ideal MS detector for these analyses will have the features of mass accuracy and high mass transmission efficiency in the low mass range (15 1 m/z) while maintaining the necessary mass resolution. Compared with other commercially available MS detectors, the MSQ Plus single quadrupole MS detector requires low maintenance, is reasonably affordable, and provides substantially enhanced performance for low molecular weight analyses, covering most analytes for small-molecule IC applications. The work shown here demonstrates the use of IC with MS detection for the determination of six commonly found cations and selected amines. Confirmatory information was obtained using full-scan MS spectra showing positively charged cation species and characteristic adduct patterns. Quantification was achieved using selected ion monitoring (SIM) acquisitions for each target analyte. This IC-MS method was applied to the analysis of real-world water samples and the results are presented. Method performance with respect to calibration range, reproducibility, and method detection limits is also presented. EQUIPMENT Dionex ICS-2 or ICS-21 Reagent-Free Ion Chromatography (RFIC ) system MSQ Plus single quadrupole mass spectrometer Chromeleon Chromatography Data System (CDS) software, Version 6.8, SR9 (for instrument control, data acquisition, data processing, and report generation)

2 CHROMATOGRAPHIC CONDITIONS Column: IonPac CS12A 5 µm (3 15 mm) with guard column (3 5 mm) Temperature: 3 ºC Eluent: Eluent Source: Flow Rate: Isocratic 33 mm methanesulfonic acid (MSA) EGC II MSA with CR-CTC.5 ml/min Injection Volume: 1 µl Detection: Ionization Interface: Desolvation Solvent: Needle Voltage: Suppressed conductivity (external water at 2 ml/min delivered by an AXP-MS pump), MSQ Plus mass spectrometric detector Electrospray ionization (ESI) with positive polarity.2 ml/min isopropanol delivered by an AXP-MS auxiliary pump 2 kv Probe Temperature: 5 ºC Nebulizer Gas: MS Detection Mode: Nitrogen at 85 psi Selected Ion Monitoring (SIM) Details of SIM scans (Table 1) Table 1. SIM Scans for Studied Analytes Analyte t R (min) m/z Adduct* Cone Voltage (V) Potassium K + 45 Trimethylamine [M+H] + 5 Ethanolamine [M+H] + 4 Ammonium [NH 4 +IPA] + 2 Diethanolamine [M+H ]+ 4 Lithium [Li+2IPA] + 3 Sodium [Na+2IPA] + 2 Triethanolamine [M+H] + 6 Magnesium [Mg+6IPA] 2+ 3 Calcium [3Ca+5OH - +IPA] + 5 Reagents and Standards Prepared stock solutions at 1 ppm were purchased from Ultra Scientific: Ammonium (NH 4 ) (Ultra Scientific P/N CC-11) Lithium (Li) (Ultra Scientific P/N ICC-14) Sodium (Na) (Ultra Scientific P/N ICC-17) Potassium (K) (Ultra Scientific P/N ICC-16) Magnesium (Mg) (Ultra Scientific P/N ICC-15) Calcium (Ca) (Ultra Scientific P/N ICC-13) Dilute the cation stock solutions in deionized water to 1 ppm as the mixed working standard. Four amines were purchased from Sigma-Aldrich: Ethanolamine (EA) (Sigma Aldrich P/N 411) Diethanolamine (DEA) (Fluka P/N 31589) Triethanolamine (TEA) (Fluka P/N 9279) Trimethylamine (TMA) (Fluka P/N 92262) Prepare stock solution for each of the four amines in deionized water and then dilute to 1 ppm as working standards. Deionized water with 18.2 MΩ-cm resistivity (Millipore Corporation) Isopropanol (IPA) (General Chemical Corporation , Class 1 certified grade) Acetonitrile (CH 3 CN) (Burdick & Jackson Cat. No. 15-4, HPLC/GC grade, Honeywell) Methanol (CH 3 OH) (Burdick & Jackson Cat. No HPLC/GC grade, Honeywell) Prepare calibration standards in deionized water at 1 partper-billion (ppb or µl), 2 ppb, 5 ppb, 1 ppb, 2 ppb, 5 ppb, 1 ppb, and 2 ppb. * Proposed adduct structures were based on observed m/z. 2 Identification and Quantification at ppb Levels of Common Cations and Amines by IC-MS

3 RESULTS AND DISCUSSION Chromatography Typical IC-MS chromatograms for six cations and four amines using suppressed conductivity and SIM detection are shown in Figure 1. The six commonly seen cations lithium, sodium, ammonium, potassium, magnesium, and calcium were separated using an IonPac CS12A 5 µm cation-exchange column within 6 min. The four selected common amines ethanolamine, diethanolamine, triethanolamine, and trimethylamine were not baseline resolved from the six common cations (i.e., coelution of some analytes was observed). However, using SIM detection, coeluted analytes are differentiated by mass-to-charge ratio (m/z), can be accurately quantified, and are a single peak in each monitored SIM channel in Figure 1. Mass Spectrometry Mass spectrometers are not inherently compatible with ion-exchange chromatography due to two factors: first, the highly ionic mobile phase can cause fouling or premature wear of the mass spectrometer entrance apertures, consequently leading to more frequent interruptions of normal operation for instrument maintenance; and second, the mobile phase used in IC is essentially 1% aqueous, and the ESI interface will require higher temperatures and/or higher nebulizer gas flow for optimization of the thermally assisted pneumatic nebulization process. To enable MS detection for IC, a self-regenerating suppressor and the addition of a desolvation solvent are used to ameliorate the afore-mentioned considerations for IC-MS applications. The suppressor currently used on IC instruments electrolytically replaces potassium/sodium with hydronium ions (anion-exchange applications) or methanesulfonate anion (MSA) with hydroxide ions (cation-exchange applications) in the mobile phase, thus converting the mobile phase to virtually deionized water which is more compatible with mass spectrometers. A desolvation solvent, such as acetonitrile, methanol, or IPA, can be added and mixed into the IC stream before entering the mass spectrometer to improve the evaporation of the mobile phase, thus improving the release of the ions from the liquid to gas phase. Chromatographic Conditions Column: IonPac CS12A 5 µm (3 15 mm) with guard column (3 5 mm) Temperature: 3 C Eluent: Isocratic 33 mm MSA Eluent Source: EGC II MSA with CR-CTC Flow Rate:.5 ml/min Inj. Volume: 1 µl Detection: Intensity (counts) 5.e4 1.2e5 TMA 1.2e5 EA 5.e5 NH 4 2.e5 DEA 9.e5 Li 4.e5 1.4e5 TEA 4.e5 Mg Na 1.2e5 Ca SIM_1: 265 m/z [3Ca + 5OH - + IPA] Li ECD_1 Response (µs) Suppressed conductivity (external water at 2 ml/min delivered by an AXP-MS pump), MSQ Plus mass spectrometric detector Ionization Electrospray ionization Interface: (ESI) with positive polarity Desolvation.2 ml/min isopropanol Solvent: delivered by an AXP-MS auxiliary pump Needle 2 kv Voltage: Probe Temp.: 5 C Nebulizer Nitrogen at 85 psi Gas: MS Detection Selected Ion Monitoring (SIM) Mode: Details of SIM scans (Table 1) Minutes Figure 1. SIM and conductivity chromatograms of six cations and four amines. The addition of a moderate volume of an organic solvent not only improves the desolvation/ionization efficiency, but adding organic solvent to the IC eluent also promotes formation of analyte-solvent adducts with improved response intensity, and these adducts may be used as quantitative ions to achieve lower detection limits. K NH 4 TEA Na EA, DEA Mg, TMA K Ca SIM_1: 39 m/z K + SIM_2: 6 m/z SIM_3: 62 m/z SIM_4: 78 m/z [NH 4 + IPA] + SIM_5: 16 m/z SIM_6: 127 m/z [Li + 2IPA] + SIM_7: 143 m/z [Na + 2IPA] + SIM_8: 15 m/z SIM_9: 192 m/z [Mg + 6IPA] 2+ Application Note 269 3

4 Isopropanol was selected as the desolvation solvent because it showed relatively cleaner full-scan MS spectra, and higher observed analyte and/or adduct intensity. An example is shown in Figure 2 for the comparison of lithium mass spectra with three organic solvents. When using IPA as the desolvation solvent, the cleanest MS spectrum with the lowest background was observed, compared to the spectra obtained using CH 3 CN and CH 3 OH solvents. Higher intensity was also observed for the major IPA adduct ion: [Li+2 IPA] + at 4.75 x 1 5, compared to the major CH 3 CN adduct [Li+3CH 3 CN] + at 1.5 x 1 5. The specificity of each adduct to the original analyte was evaluated by extracting the individual adduct ion from the full-scan spectrum and confirmed by comparing the retention times of the adduct ion in extracted MS and the conductivity channels. The details of SIM scans for quantitative ions and adduct assignments are shown in Table 1. Method Performance The method performance was evaluated by measuring analytical parameters such as calibration range, correlation of determination, precision and accuracy, and detection limits. This method was also used to quantify the target analytes in water and beverage samples. Calibration curves were generated from calibration standards with concentrations from the lower limit of quantitation (LLOQ) to 1 ppb with correlation of determination (r 2 ) greater than.99 for each analyte using linear, quadratic, or cubic fittings. Figure 3 shows the calibration curves for magnesium and trimethylamine as examples. LLOQ was defined as the lowest concentration in calibration standards that consistently showed signalto-noise ratios greater than 1 (S/N >1) and within 2% bias of quantitation precision and accuracy. 111 NL: 1.1e5 Rel. Intensity [%] NL: 4.73e Rel. Intensity [%] Intensity [%] 111 NL: 4.74e [Li+2CH 3 CN] + [Li+3CH 3 CN] [Li+2IPA]+ [Li+3IPA] [Li+5IPA] Acetonitrile Methanol Isopropanol Figure 2. MS spectra of Li with different desolvation solvents. The cone voltage was 5 V e5 Area [counts*min] Magnesium SIM_9: 192 m/z 1 1 ppb R 2 =.9982 m/z Amount [ppb] 2.e5 Trimethylamine SIM_2: 6 m/z 5 1 ppb 2819 Area [counts*min] Amount [ppb] 282 Figure 3. Calibration curves for magnesium and trimethylamine. 4 Identification and Quantification at ppb Levels of Common Cations and Amines by IC-MS

5 Table 2. Calibration, Coefficient of Determination, and Detection Limits Analyte Calibration Range Fitting r 2 RSD* MDL (ppb) LLOQ (ppb) S/N at LLOQ Potassium 1 1 Quadratic % Trimethylamine 5 1 Quadratic % Ethanolamine 1 1 Cubic % Ammonium 1 1 Quadratic % Diethanolamine 1 1 Cubic % Lithium 1 1 Cubic % Sodium 1 1 Quadratic % Triethanolamine 1 1 Quadratic % Magnesium 1 1 Quadratic % Calcium 1 1 Linear % *RSD was calculated based on 7 replicate injections of a 2 ppb standard, except for trimethylamine, ammonium, and calcium, which were obtained from a 1 ppb standard. The LLOQ is also related to the background level of target analytes, with various levels of background contamination observed for trace level quantitation. In this study, ~2 ppb of ammonium and calcium were observed (estimated by peak area) in method blanks that may be attributed to the leaching of autosampler vials. Thus, the LLOQ for ammonium and calcium was set as 5 the observed background level, i.e. 1 ppb. Method detection limit (MDL) was statistically calculated by MDL = S t 99%, n=7 where S is the standard deviation and t is the Student s t at 99% confidence interval. Standard deviation was obtained from seven replicate injections of a calibration standard at 2 ppb, and relative standard deviation (RSD) was used to measure the precision of analysis. The evaluation results for method performance are summarized in Table 2. Application Note 269 5

6 Table 3. Cation Concentrations in Water Samples (mg/l) Sample Potassium Sodium Magnesium Calcium Municipal Drinking Water Bottled Drinking Water Bottled Mineral Water Bottled Ice Tea Beverage > Bottled Deep Sea Drinking Water 4.37* * 2.63* *Based on 1:1 dilution. Water Sample Analysis This method was applied to the quantification of target analytes in several water and beverage samples: local municipal drinking water (A), bottled drinking water (B), bottled mineral water (C), bottled ice tea (D), and bottled deep sea drinking water (E). All water samples were diluted in deionized water at 1:1 ratio (sample E was diluted 1:1) and directly injected for analysis. (Filtering may be performed as required to remove sample particulates.) The results are shown in Table 3. The MS SIM and suppressed conductivity chromatograms of detected cations in sample E are shown in Figure 4. CONCLUSION The methods here demonstrate the use of IC-MS for the determination of six commonly occurring cations and four amines at ppb levels. With MS detection, confirmation of the analyte identity can be achieved from full-scan spectra, and quantitation can be achieved at low ppb levels with greater confidence by using selective SIM scans. Successful applications using this method for analysis of real-world samples have also been demonstrated. Note: The optimum settings and responses may vary on different instruments; thus, optimization of MSQ Plus local source conditions and acquisition parameters is highly recommended for best results. Chromatographic Conditions Column: IonPac CS12A 5 µm (3 15 mm) with guard column (3 5 mm) Temperature: 3 C Eluent: Isocratic 33 mm MSA Eluent Source: EGC II MSA with CR-CTC Flow Rate:.5 ml/min Inj. Volume: 1 µl Detection: Intensity [counts] 1.1e5 2.e6 8.e5 1.6e5.9 µs Suppressed conductivity (external water at 2 ml/min delivered by an AXP-MS pump), MSQ Plus mass spectrometric detector Sodium Sodium Ionization Electrospray ionization Interface: (ESI) with positive polarity Desolvation.2 ml/min isopropanol Solvent: delivered by an AXP-MS auxiliary pump Needle 2 kv Voltage: Probe Temp.: 5 C Nebulizer Nitrogen at 85 psi Gas: MS Detection Selected Ion Monitoring (SIM) Mode: Details of SIM scans (Table 1) Potassium Potassium Magnesium Magnesium Calcium Calcium Minutes 2821 Figure 4. Cations in a bottled deep sea drinking water. SIM_1: 39 m/z SIM_7: 143 m/z SIM_9: 192 m/z SIM_1: 265 m/z ECD_1 Chromeleon and IonPac are registered trademarks, and Reagent-Free, and RFIC are trademarks of Dionex Corporation. MSQ Plus is a trademark of Thermo Fisher Scientific, Inc. Passion. Power. Productivity. Dionex Corporation North America Europe Asia Pacific 1228 Titan Way U.S./Canada (847) Austria (43) Benelux (31) (32) P.O. Box 363 Denmark (45) France (33) Germany (49) Sunnyvale, CA Ireland (353) Italy (39) Sweden (46) Taiwan (886) South America Switzerland (41) United Kingdom (44) Brazil (55) (48) Australia (61) China (852) India (91) Japan (81) Korea (82) Singapore (65) LPN 2676 PDF 1/ Dionex Corporation

IC-MS Environmental Applications - Water Testing. Application Notebook

IC-MS Environmental Applications - Water Testing. Application Notebook IC-MS Environmental Applications - Water Testing Application Notebook Table of Contents Environmental Sample Using IC-MS 3 Environmental Applications: Water Testing Acrylamide in Water 4 Trace Urea in

More information

Determination of Ethyl Sulfate Impurity in Indinavir Sulfate Drug Using Ion Chromatography

Determination of Ethyl Sulfate Impurity in Indinavir Sulfate Drug Using Ion Chromatography Application Note 8 Determination of Ethyl Sulfate Impurity in INTRODUCTION Indinavir sulfate is a specific and potent inhibitor of HIV- protease and is widely used in the treatment of AIDS. Indinavir sulfate

More information

Mercury Speciation Determinations in Asian Dietary Supplements

Mercury Speciation Determinations in Asian Dietary Supplements Mercury Speciation Determinations in Asian Dietary Supplements Terri Christison, Deepali Mohindra, Frank Hoefler, and Linda Lopez, Thermo Fisher Scientific, Sunnyvale, California, USA Overview Purpose:

More information

Measuring Phytosterols in Health Supplements by LC/MS. Marcus Miller and William Schnute Thermo Fisher Scientific, San Jose, CA, USA

Measuring Phytosterols in Health Supplements by LC/MS. Marcus Miller and William Schnute Thermo Fisher Scientific, San Jose, CA, USA Measuring Phytosterols in Health Supplements by LC/MS Marcus Miller and William Schnute Thermo Fisher Scientific, San Jose, CA, USA Overview Purpose: Develop a method for the extraction of phytosterols

More information

Determination of Inorganic Ions and Organic Acids in Non-Alcoholic Carbonated Beverages

Determination of Inorganic Ions and Organic Acids in Non-Alcoholic Carbonated Beverages Application Note Determination of Inorganic Ions and Organic Acids in Non-Alcoholic Carbonated Beverages INTRODUCTION The determination of inorganic anions and cations and organic acids in non-alcoholic

More information

Robust and Fast Analysis of Tobacco-Specific Nitrosamines by LC-MS/MS

Robust and Fast Analysis of Tobacco-Specific Nitrosamines by LC-MS/MS Application Note 242 Robust and Fast Analysis of Tobacco-Specific Nitrosamines by LC-MS/MS INTRODUCTION Tobacco-specific nitrosamines (TSNA) are a group of carcinogens found only in tobacco products. They

More information

Improved Extraction and Analysis of Hexavalent Chromium from Soil and Water

Improved Extraction and Analysis of Hexavalent Chromium from Soil and Water Improved Extraction and Analysis of Hexavalent Chromium from Soil and Water Richard F. Jack, 1 Jinshui Che, 2 Lipika Basumallick, 1 and Jeffrey Rohrer 1 1 Thermo Fisher Scientific, Sunnyvale, CA, USA;

More information

Detection and Quantification of Inorganic Arsenic in Fruit Juices by Capillary Ion Chromatography with Suppressed Conductivity Detection

Detection and Quantification of Inorganic Arsenic in Fruit Juices by Capillary Ion Chromatography with Suppressed Conductivity Detection Detection and Quantification of Inorganic Arsenic in Fruit Juices by Capillary Ion Chromatography with Suppressed Conductivity Detection Hua Yang, Linda Lopez Thermo Fisher Scientific, Sunnyvale, CA, USA

More information

Determination of Benzoate in Liquid Food Products by Reagent-Free Ion Chromatography

Determination of Benzoate in Liquid Food Products by Reagent-Free Ion Chromatography Application Note 65 Determination of Benzoate in Liquid Food Products by Reagent-Free Ion Chromatography INTRODUCTION Preservatives are commonly added to many food products, such as soda, fruit juice,

More information

Rapid determination of phosphate and citrate in carbonated soft drinks using ion chromatography

Rapid determination of phosphate and citrate in carbonated soft drinks using ion chromatography APPLICATION NOTE 7250 Rapid determination of phosphate and citrate in carbonated soft drinks using ion chromatography Authors Jingli Hu and Jeffrey Rohrer Thermo Fisher Scientific, Sunnyvale, CA, USA Keywords

More information

Determination of Carbachol In Ophthalmic Solutions Using a Reagent-Free Ion Chromatography System

Determination of Carbachol In Ophthalmic Solutions Using a Reagent-Free Ion Chromatography System Application Note 9 Determination of Carbachol In Ophthalmic s Using a Reagent-Free Ion Chromatography System INTRODUCTION Carbachol is a choline ester and a positively charged quaternary ammonium compound

More information

A New HILIC/RP Mixed-Mode Column and Its Applications in Surfactant Analysis

A New HILIC/RP Mixed-Mode Column and Its Applications in Surfactant Analysis A New HILIC/RP Mixed-Mode Column and Its Applications in Surfactant Analysis X. Liu, C. Pohl, Dionex Corporation, Sunnyvale, CA, USA ABSTRACT Although reversed-phase (RP) silica columns (e.g., C18 and

More information

Determination of Carbohydrates in Kombucha Using HPAE-PAD

Determination of Carbohydrates in Kombucha Using HPAE-PAD Determination of Carbohydrates in Kombucha Using HPAE-PAD Beibei Huang, Jingli Hu, and Jeffrey Rohrer Thermo Fisher Scientific, Sunnyvale, CA USA Application Note 1152 Key Words Glucose, Fructose, Sucrose,

More information

Quantitative Analysis of Carbohydrates and Artificial Sweeteners in Food Samples Using GFC- MS with APCI Interface and Post-column Reagent Addition

Quantitative Analysis of Carbohydrates and Artificial Sweeteners in Food Samples Using GFC- MS with APCI Interface and Post-column Reagent Addition PO-CON1321E Quantitative Analysis of Carbohydrates and Artificial Sweeteners in Food Samples Using GFC- MS with APCI Interface and Post-column Reagent Addition ASMS 213 TP 71 Jie Xing 1, Yin Ling Chew*

More information

Bioanalytical Quantitation of Biotherapeutics Using Intact Protein vs. Proteolytic Peptides by LC-HR/AM on a Q Exactive MS

Bioanalytical Quantitation of Biotherapeutics Using Intact Protein vs. Proteolytic Peptides by LC-HR/AM on a Q Exactive MS Bioanalytical Quantitation of Biotherapeutics Using Intact Protein vs. Proteolytic Peptides by LC-HR/AM on a Q Exactive MS Jenny Chen, Hongxia Wang, Zhiqi Hao, Patrick Bennett, and Greg Kilby Thermo Fisher

More information

Carl Fisher, Terri Christison, Hua Yang, Monika Verma, and Linda Lopez Thermo Fisher Scientific, Sunnyvale, CA, USA

Carl Fisher, Terri Christison, Hua Yang, Monika Verma, and Linda Lopez Thermo Fisher Scientific, Sunnyvale, CA, USA Fast Determination of Lactose and Lactulose in Dairy Products Using a 4 μm Particle Column and High-Performance Anion-Exchange Chromatography with Carl Fisher, Terri Christison, Hua Yang, Monika Verma,

More information

Analysis of Testosterone, Androstenedione, and Dehydroepiandrosterone Sulfate in Serum for Clinical Research

Analysis of Testosterone, Androstenedione, and Dehydroepiandrosterone Sulfate in Serum for Clinical Research Analysis of Testosterone, Androstenedione, and Dehydroepiandrosterone Sulfate in Serum for Clinical Research Dominic Foley, Michelle Wills, and Lisa Calton Waters Corporation, Wilmslow, UK APPLICATION

More information

High-Throughput, Cost-Efficient LC-MS/MS Forensic Method for Measuring Buprenorphine and Norbuprenorphine in Urine

High-Throughput, Cost-Efficient LC-MS/MS Forensic Method for Measuring Buprenorphine and Norbuprenorphine in Urine High-Throughput, Cost-Efficient LC-MS/MS Forensic Method for Measuring and in Urine Xiaolei Xie, Joe DiBussolo, Marta Kozak; Thermo Fisher Scientific, San Jose, CA Application Note 627 Key Words, norbuprenorphine,

More information

High-Throughput Quantitative LC-MS/MS Analysis of 6 Opiates and 14 Benzodiazepines in Urine

High-Throughput Quantitative LC-MS/MS Analysis of 6 Opiates and 14 Benzodiazepines in Urine High-Throughput Quantitative LC-MS/MS Analysis of and 14 Benzodiazepines in Urine Bill Yu, Kristine Van Natta, Marta Kozak, Thermo Fisher Scientific, San Jose, CA Application Note 588 Key Words Opiates,

More information

Sialic Acid Determination in Glycoproteins: Comparison of Two Liquid Chromatography Methods. Experimental. Introduction. Method 1.

Sialic Acid Determination in Glycoproteins: Comparison of Two Liquid Chromatography Methods. Experimental. Introduction. Method 1. Sialic Acid Determination in Glycoproteins: Comparison of Two Liquid Chromatography Methods Deanne Hurum and Jeffrey Rohrer, Thermo Fisher Scientific, Sunnyvale, CA, USA Introduction Sialic acids are critical

More information

Determination of Water- and Fat-Soluble Vitamins in Nutritional Supplements by HPLC with UV Detection

Determination of Water- and Fat-Soluble Vitamins in Nutritional Supplements by HPLC with UV Detection Application Note 5 Determination of Water- and Fat- Vitamins in Nutritional Supplements by HPLC with UV Detection Introduction Vitamins are a well-known a group of compounds that are essential for human

More information

Determination of Methacholine Chloride and Potential Impurities Using a Reagent-Free Ion Chromatography System

Determination of Methacholine Chloride and Potential Impurities Using a Reagent-Free Ion Chromatography System Application Note 49 Determination of Methacholine Chloride and Potential Impurities Using a Reagent-Free Ion Chromatography System INTRODUCTION Methacholine chloride [-(acetyloxy)-n,n,ntrimethyl-1-propanaminium

More information

THE POWER OF MASS SPECTROMETRY FOR IC ANALYTICAL CHEMISTS. Unleash New Possibilities with Enhanced Detection for IC Applications

THE POWER OF MASS SPECTROMETRY FOR IC ANALYTICAL CHEMISTS. Unleash New Possibilities with Enhanced Detection for IC Applications THE PWER F MA PECTRMETRY FR IC ANALYTICAL CHEMIT Unleash New Possibilities with Enhanced Detection for IC Applications THE PWER F MA PECTRMETRY Ion chromatography (IC) excels in analyzing ionic species

More information

The Determination of Sugars in Molasses by High-Performance Anion Exchange with Pulsed Amperometric Detection

The Determination of Sugars in Molasses by High-Performance Anion Exchange with Pulsed Amperometric Detection Application Note 9 The Determination of Sugars in Molasses by High-Performance Anion Exchange with Pulsed Amperometric Detection INTRODUCTION The accurate measurement of the amount of sugar in final molasses

More information

Determination of Trace Sodium in Cranberry Powder

Determination of Trace Sodium in Cranberry Powder Determination of Trace Sodium in Cranberry Powder Brian De Borba and Jeffrey Rohrer; Thermo Fisher Scientific Inc., Sunnyvale, CA, USA Application Note 00 Key Words Dietary Supplements, Ion Chromatography,

More information

UPLC/MS Monitoring of Water-Soluble Vitamin Bs in Cell Culture Media in Minutes

UPLC/MS Monitoring of Water-Soluble Vitamin Bs in Cell Culture Media in Minutes UPLC/MS Monitoring of Water-Soluble Vitamin Bs in Cell Culture Media in Minutes Catalin E. Doneanu, Weibin Chen, and Jeffrey R. Mazzeo Waters Corporation, Milford, MA, U.S. A P P L I C AT ION B E N E F

More information

MS/MS as an LC Detector for the Screening of Drugs and Their Metabolites in Race Horse Urine

MS/MS as an LC Detector for the Screening of Drugs and Their Metabolites in Race Horse Urine Application Note: 346 MS/MS as an LC Detector for the Screening of Drugs and Their Metabolites in Race Horse Urine Gargi Choudhary and Diane Cho, Thermo Fisher Scientific, San Jose, CA Wayne Skinner and

More information

A HPAE-PAD Chromatographic Assay for Carbohydrates in Urine as a Measure of Intestinal Permeability

A HPAE-PAD Chromatographic Assay for Carbohydrates in Urine as a Measure of Intestinal Permeability A HPAE-PAD Chromatographic Assay for Carbohydrates in Urine as a Measure of Intestinal Permeability Deanna Hurum and Jeffrey Rohrer, Thermo Fisher Scientific, Sunnyvale, CA, USA Overview Purpose: A high-performance

More information

Determination of Amantadine Residues in Chicken by LCMS-8040

Determination of Amantadine Residues in Chicken by LCMS-8040 Liquid Chromatography Mass Spectrometry Determination of Amantadine Residues in Chicken by LCMS-8040 A method for the determination of amantadine in chicken was established using Shimadzu Triple Quadrupole

More information

LC-MS/MS Method for the Determination of Tenofovir from Plasma

LC-MS/MS Method for the Determination of Tenofovir from Plasma LC-MS/MS Method for the Determination of Tenofovir from Plasma Kimberly Phipps, Thermo Fisher Scientific, Runcorn, Cheshire, UK Application Note 687 Key Words SPE, SOLA CX, Hypersil GOLD, tenofovir Abstract

More information

Determination of perchlorate in environmental waters using a compact ion chromatography system coupled with a single quadrupole mass spectrometer

Determination of perchlorate in environmental waters using a compact ion chromatography system coupled with a single quadrupole mass spectrometer APPLICATION UPDATE 72507 Determination of perchlorate in environmental waters using a compact ion chromatography system coupled with a single quadrupole mass spectrometer Authors Beibei Huang and Jeffrey

More information

Rapid and sensitive UHPLC screening of additives in carbonated beverages with a robust organic acid column

Rapid and sensitive UHPLC screening of additives in carbonated beverages with a robust organic acid column APPLICATION NOTE 21673 Rapid and sensitive UHPLC screening of additives in carbonated beverages with a robust organic acid column Authors Aaron Lamb and Brian King, Thermo Fisher Scientific, Runcorn, UK

More information

Rapid Determination of Phosphate and Citrate in Carbonated Soft Drinks Using a Reagent-Free Ion Chromatography System

Rapid Determination of Phosphate and Citrate in Carbonated Soft Drinks Using a Reagent-Free Ion Chromatography System Application Note 69 Rapid Determination of Phosphate and Citrate in Carbonated Soft Drinks Using a Reagent-Free Ion Chromatography System INTRODUCTION Soft drinks are complex mixtures containing a variety

More information

Application Note 178 INTRODUCTION

Application Note 178 INTRODUCTION Application Note 78 Improved Determination of Trace Concentrations of Perchlorate in Drinking Water Using Preconcentration with Two-Dimensional Ion Chromatography and Suppressed Conductivity Detection

More information

Application Note. Agilent Application Solution Analysis of ascorbic acid, citric acid and benzoic acid in orange juice. Author. Abstract.

Application Note. Agilent Application Solution Analysis of ascorbic acid, citric acid and benzoic acid in orange juice. Author. Abstract. Agilent Application Solution Analysis of ascorbic acid, citric acid and benzoic acid in orange juice Application Note Author Food Syed Salman Lateef Agilent Technologies, Inc. Bangalore, India 8 6 4 2

More information

The Investigation of Factors Contributing to Immunosuppressant Drugs Response Variability in LC-MS/MS Analysis

The Investigation of Factors Contributing to Immunosuppressant Drugs Response Variability in LC-MS/MS Analysis The Investigation of Factors Contributing to Immunosuppressant Drugs Variability in LC-MS/MS Analysis Joseph Herman, Dayana Argoti, and Sarah Fair Thermo Fisher Scientific, Franklin, MA, USA Overview Purpose:

More information

Enhanced LC-MS Sensitivity of Vitamin D Assay by Selection of Appropriate Mobile Phase

Enhanced LC-MS Sensitivity of Vitamin D Assay by Selection of Appropriate Mobile Phase Enhanced LC-MS Sensitivity of Vitamin D Assay by Selection of Appropriate Mobile Phase Subhra Bhattacharya and Stephen C. Roemer Thermo Fisher Scientific Global Chemicals, Fair Lawn, NJ, USA AbstrAct Liquid

More information

Rapid and sensitive UHPLC screening for water soluble vitamins in sports beverages

Rapid and sensitive UHPLC screening for water soluble vitamins in sports beverages APPLICATION NOTE 21671 Rapid and sensitive UHPLC screening for water soluble vitamins in sports beverages Authors Jon Bardsley, Thermo Fisher Scientific, Runcorn, UK Keywords Vanquish Flex, Acclaim PolarAdvantage

More information

LC-MS/MS Method for the Determination of 21 Opiates and Opiate Derivatives in Urine

LC-MS/MS Method for the Determination of 21 Opiates and Opiate Derivatives in Urine LC-MS/MS Method for the Determination of 21 Opiates and Opiate Derivatives in Urine J. Jones, S. Westwood, T. Liddicoat, L. Pereira, T. Edge Thermo Fisher Scientific, Manor Park, Runcorn, UK Overview Purpose:

More information

[ APPLICATION NOTE ] Profiling Mono and Disaccharides in Milk and Infant Formula Using the ACQUITY Arc System and ACQUITY QDa Detector

[ APPLICATION NOTE ] Profiling Mono and Disaccharides in Milk and Infant Formula Using the ACQUITY Arc System and ACQUITY QDa Detector Profiling Mono and Disaccharides in Milk and Infant Formula Using the ACQUITY Arc System and ACQUITY QDa Detector Mark Benvenuti, Gareth Cleland, and Jennifer Burgess Waters Corporation, Milford, MA, USA

More information

Rapid and Accurate LC-MS/MS Analysis of Nicotine and Related Compounds in Urine Using Raptor Biphenyl LC Columns and MS-Friendly Mobile Phases

Rapid and Accurate LC-MS/MS Analysis of Nicotine and Related Compounds in Urine Using Raptor Biphenyl LC Columns and MS-Friendly Mobile Phases Clinical, Forensic & Toxicology Applications Rapid and Accurate LC-MS/MS Analysis of Nicotine and Related Compounds in Urine Using Raptor Biphenyl LC Columns and MS-Friendly Mobile Phases By Shun-Hsin

More information

Providing a Universal, One-step Alternative to Liquid-Liquid Extraction in Bioanalysis

Providing a Universal, One-step Alternative to Liquid-Liquid Extraction in Bioanalysis Providing a Universal, ne-step Alternative to Liquid-Liquid Extraction in Bioanalysis Jessalynn P. Wheaton, Erin E. Chambers, and Kenneth J. Fountain APPLICATIN BENEFITS n Simple, one-step sample preparation

More information

Ensuring High Sensitivity and Consistent Response in UHPLC-MS Analyses

Ensuring High Sensitivity and Consistent Response in UHPLC-MS Analyses Ensuring High ensitivity and Consistent Response in UHPLC-M Analyses Markus Martin, Michael Heidorn, Frank teiner, Tobias Fehrenbach, and Fraser McLeod, Dionex Corporation, Germering, Germany Introduction

More information

Determination of Plant-Derived Neutral Oligo- and Polysaccharides Using the CarboPac PA200

Determination of Plant-Derived Neutral Oligo- and Polysaccharides Using the CarboPac PA200 Application Update 15 Determination of Plant-Derived Neutral Oligo- and Polysaccharides Using the CarboPac PA2 INTRODUCTION High-performance anion-exchange chromatography with pulsed amperometric detection

More information

Rapid Analysis of Water-Soluble Vitamins in Infant Formula by Standard-Addition

Rapid Analysis of Water-Soluble Vitamins in Infant Formula by Standard-Addition Rapid Analysis of Water-Soluble Vitamins in Infant Formula by Standard-Addition Evelyn Goh Waters Pacific, Singapore APPLICATION BENEFITS This method allows for the simultaneous analysis of 12 water-soluble

More information

Separation of Chromium (III) and Chromium (VI) by Ion Chromatography

Separation of Chromium (III) and Chromium (VI) by Ion Chromatography Application Update 65 Separation of Chromium (III) and Chromium (VI) by Ion Chromatography Introduction Chromium in the environment exists primarily in two oxidation states: Cr(III) and Cr(VI). While the

More information

Impurity Profiling of Carbamazepine by HPLC/UV

Impurity Profiling of Carbamazepine by HPLC/UV Application Note: 52049 Impurity Profiling of Carbamazepine by HPLC/UV Terry Zhang, Guifeng Jiang, Thermo Fisher Scientific, San Jose, CA, USA Key Words Accela Hypersil GOLD Carbamazepine Drug Analysis

More information

SPE-LC-MS/MS Method for the Determination of Nicotine, Cotinine, and Trans-3-hydroxycotinine in Urine

SPE-LC-MS/MS Method for the Determination of Nicotine, Cotinine, and Trans-3-hydroxycotinine in Urine SPE-LC-MS/MS Method for the Determination of Nicotine, Cotinine, and Trans-3-hydroxycotinine in Urine J. Jones, Thermo Fisher Scientific, Runcorn, Cheshire, UK Application Note 709 Key Words SPE, SOLA

More information

GC-MS/MS Analysis of Benzodiazepines Using Analyte Protectants

GC-MS/MS Analysis of Benzodiazepines Using Analyte Protectants GC-MS/MS Analysis of Benzodiazepines Using Analyte Protectants Jeremy Matthews, 1 Alex Chen, 2 and Flavio Bedini 1 1 Thermo Fisher Scientific, Singapore; 2 Alpha Analytical Pte Ltd, Singapore Overview

More information

Comparison of Full Scan MS2 and MS3 Linear Ion Trap Approaches for Quantitation of Vitamin D

Comparison of Full Scan MS2 and MS3 Linear Ion Trap Approaches for Quantitation of Vitamin D Comparison of Full Scan MS2 and MS3 Linear Ion Trap Approaches for Quantitation of Vitamin D Julie A. Horner 1, Marta Kozak 1, Subodh Nimkar 1, and August A. Specht 1 1 Thermo Fisher Scientific, San Jose,

More information

UPLC-MS/MS Analysis of Azole Antifungals in Serum for Clinical Research

UPLC-MS/MS Analysis of Azole Antifungals in Serum for Clinical Research Stephen Balloch and Gareth Hammond Waters Corporation, Wilmslow, UK APPLICATION BENEFITS Analytical selectivity afforded by mass selective detection Wide linear measuring range Simple, inexpensive sample

More information

Determination of Organic Acids in Kombucha Using a High-Pressure Ion Chromatography System

Determination of Organic Acids in Kombucha Using a High-Pressure Ion Chromatography System APPLICATION NOTE Determination of Organic Acids in Kombucha Using a High-Pressure Ion Chromatography System No. 1157 Beibei Huang, Jingli Hu, and Jeffrey Rohrer Keywords Dionex IonPac AS11-HC-4µm column,

More information

Analysis of Rosuvastatin in Dried Blood Spot and Plasma Using ACQUITY UPLC with 2D Technology

Analysis of Rosuvastatin in Dried Blood Spot and Plasma Using ACQUITY UPLC with 2D Technology Analysis of Rosuvastatin in Dried Blood Spot and Plasma Using ACQUITY UPLC with 2D Technology Claude Mallet, 1 Jennifer Simeone, 2 Paul Rainville 3 1 Workflow Integration Group, Separations Technologies,

More information

Determination of Clinically Relevant Compounds using HPLC and Electrochemical Detection with a Boron-Doped Diamond Electrode

Determination of Clinically Relevant Compounds using HPLC and Electrochemical Detection with a Boron-Doped Diamond Electrode Deteration of Clinically Relevant Compounds using HPLC and Electrochemical Detection with a Boron-Doped Diamond Electrode Bruce Bailey, Marc Plante, David Thomas, Qi Zhang and Ian Acworth Thermo Fisher

More information

[ APPLICATION NOTE ] High Sensitivity Intact Monoclonal Antibody (mab) HRMS Quantification APPLICATION BENEFITS INTRODUCTION WATERS SOLUTIONS KEYWORDS

[ APPLICATION NOTE ] High Sensitivity Intact Monoclonal Antibody (mab) HRMS Quantification APPLICATION BENEFITS INTRODUCTION WATERS SOLUTIONS KEYWORDS Yun Wang Alelyunas, Henry Shion, Mark Wrona Waters Corporation, Milford, MA, USA APPLICATION BENEFITS mab LC-MS method which enables users to achieve highly sensitive bioanalysis of intact trastuzumab

More information

A RAPID AND SENSITIVE ANALYSIS METHOD OF SUDAN RED I, II, III & IV IN TOMATO SAUCE USING ULTRA PERFORMANCE LC MS/MS

A RAPID AND SENSITIVE ANALYSIS METHOD OF SUDAN RED I, II, III & IV IN TOMATO SAUCE USING ULTRA PERFORMANCE LC MS/MS A RAPID AD SESITIVE AALYSIS METD OF SUDA RED I, II, III & IV I TOMATO SAUCE USIG ULTRA PERFORMACE LC MS/MS Choon Keow G, aomi TAAKA, Michelle KIM, Swee Lee YAP Waters Asia, Regional Technology Center,

More information

ApplicationNOTE EXACT MASS MEASUREMENT OF ACTIVE COMPONENTS OF TRADITIONAL HERBAL MEDICINES BY ORTHOGONAL ACCELERATION TIME-OF-FLIGHT.

ApplicationNOTE EXACT MASS MEASUREMENT OF ACTIVE COMPONENTS OF TRADITIONAL HERBAL MEDICINES BY ORTHOGONAL ACCELERATION TIME-OF-FLIGHT. Objective The aim of the study presented is to determine the presence of target Gingkolides in Gingko biloba leaf extract. The data presented shows Gingkolides determined to be present in the extract analyzed.

More information

Simultaneous Analysis of Active Pharmaceutical Ingredients and Their Counter-Ions Using a Mixed-Mode Column

Simultaneous Analysis of Active Pharmaceutical Ingredients and Their Counter-Ions Using a Mixed-Mode Column P-CN54E Simultaneous Analysis of Active Pharmaceutical Ingredients and Their Counter-Ions Using a Mixed-Mode Column Pittcon 5 9-6P Kenichiro Tanaka, William Hedgepeth, Yuki Sato Shimadzu Scientific Instruments,

More information

Analysis of anti-epileptic drugs in human serum using an Agilent Ultivo LC/TQ

Analysis of anti-epileptic drugs in human serum using an Agilent Ultivo LC/TQ Application Note Clinical Research Analysis of anti-epileptic drugs in human serum using an Agilent Ultivo LC/TQ Authors Jennifer Hitchcock 1, Lauren Frick 2, Peter Stone 1, and Vaughn Miller 2 1 Agilent

More information

Quantitative Analysis of Underivatized Amino Acids in Plant Matrix by Hydrophilic Interaction Chromatography (HILIC) with LC/MS Detection

Quantitative Analysis of Underivatized Amino Acids in Plant Matrix by Hydrophilic Interaction Chromatography (HILIC) with LC/MS Detection Application Note Food Testing, Metabolomics, Agricultural Chemistry, Environmental Quantitative Analysis of Underivatized Amino Acids in Plant Matrix by Hydrophilic Interaction Chromatography (HILIC) with

More information

Vitamin D3 and related compounds by ESI and APCI

Vitamin D3 and related compounds by ESI and APCI Liquid Chromatography Mass Spectrometry SSI-LCMS-9 Vitamin D and related compounds by ESI and APCI LCMS-8 Summary Vitamin D and related compounds were measured by LC-ESI/APCI-MS-MS. Background Accurate

More information

columns CarboPac PA20 Column

columns CarboPac PA20 Column columns CarboPac PA Column Anion-exchange columns for the analysis of mono- and disaccharides in glycoprotein therapeutics, foods, and beverages: Simple, direct approach using pulsed electrochemical detection

More information

[ Care and Use Manual ]

[ Care and Use Manual ] MALDI Calibration Kit I. Introduction The MALDI Calibration Kit is a conveniently packaged selection of MALDI matrices and calibration standards (includes high-purity Neg Ion Mode Calibrant for accurate

More information

Increased Identification Coverage and Throughput for Complex Lipidomes

Increased Identification Coverage and Throughput for Complex Lipidomes Increased Identification Coverage and Throughput for Complex Lipidomes Reiko Kiyonami, David Peake, Yingying Huang, Thermo Fisher Scientific, San Jose, CA USA Application Note 607 Key Words Q Exactive

More information

Detection of oxygenated polycyclic aromatic hydrocarbons (oxy-pahs) in APCI mode with a single quadrupole mass spectrometer

Detection of oxygenated polycyclic aromatic hydrocarbons (oxy-pahs) in APCI mode with a single quadrupole mass spectrometer APPLICATION NOTE 72819 Detection of oxygenated polycyclic aromatic hydrocarbons (oxy-pahs) in APCI mode with a single quadrupole mass spectrometer Author Maria Grübner; Thermo Fisher Scientific, Germering,

More information

Detection of Cotinine and 3- hydroxycotine in Smokers Urine

Detection of Cotinine and 3- hydroxycotine in Smokers Urine Detection of Cotinine and 3- hydroxycotine in Smokers Urine Behavioural and Situational Research Group School of Medicine, University of Tasmania Version number: 2 Effective date: 01/12/2015 Review due:

More information

Quantification of lovastatin in human plasma by LC/ESI/MS/MS using the Agilent 6410 Triple Quadrupole LC/MS system

Quantification of lovastatin in human plasma by LC/ESI/MS/MS using the Agilent 6410 Triple Quadrupole LC/MS system Quantification of lovastatin in human plasma by LC/ESI/MS/MS using the Agilent 641 Triple Quadrupole LC/MS system Application Note Clinical Research Author Siji Joseph Agilent Technologies Bangalore, India

More information

Determination of Aflatoxins in Food by LC/MS/MS. Application. Authors. Abstract. Experimental. Introduction. Food Safety

Determination of Aflatoxins in Food by LC/MS/MS. Application. Authors. Abstract. Experimental. Introduction. Food Safety Determination of Aflatoxins in Food by LC/MS/MS Application Food Safety Authors Masahiko Takino Agilent Technologies 9-1 Takakura-Cho Hachiouji-Shi, Tokyo Japan Toshitsugu Tanaka Kobe Institute of Health

More information

Application Note. Author. Abstract. Introduction. Food Safety

Application Note. Author. Abstract. Introduction. Food Safety Determination of β2-agonists in Pork with SPE eanup and LC-MS/MS Detection Using Agilent BondElut PCX Solid-Phase Extraction Cartridges, Agilent Poroshell 120 column and Liquid Chromatography-Tandem Mass

More information

A Rapid UHPLC Method for the Analysis of Biogenic Amines and Metabolites in Microdialysis Samples

A Rapid UHPLC Method for the Analysis of Biogenic Amines and Metabolites in Microdialysis Samples A Rapid UHPLC Method for the Analysis of Biogenic Aes and Metabolites in Microdialysis Samples Bruce Bailey and Ian Acworth; Thermo Fisher Scientific, Chelmsford, MA Overview Purpose: To develop an Ultra

More information

Neosolaniol. [Methods listed in the Feed Analysis Standards]

Neosolaniol. [Methods listed in the Feed Analysis Standards] Neosolaniol [Methods listed in the Feed Analysis Standards] 1 Simultaneous analysis of mycotoxins by liquid chromatography/ tandem mass spectrometry [Feed Analysis Standards, Chapter 5, Section 1 9.1 ]

More information

Application Note 178. Brian DeBorba and Jeff Rohrer Thermo Fisher Scientific, Sunnyvale, CA, USA. 10 Typically, this requires the use of sample

Application Note 178. Brian DeBorba and Jeff Rohrer Thermo Fisher Scientific, Sunnyvale, CA, USA. 10 Typically, this requires the use of sample Improved Determination of Trace Concentrations of Perchlorate in Drinking Water Using Preconcentration with Two-Dimensional Ion Chromatography and Suppressed Conductivity Detection Brian DeBorba and Jeff

More information

Single Quadrupole Compact Mass Spectrometer for Liquid Sample

Single Quadrupole Compact Mass Spectrometer for Liquid Sample Single Quadrupole Compact Mass Spectrometer for Liquid Sample YL INSTRUMENT CO., LTD. YL9900 MS quickly provides essential information and improves the chemist's workflow. Mordern organic labs have become

More information

Rapid and Direct Analysis of Free Phytosterols by Reversed Phase HPLC with Electrochemical Detection

Rapid and Direct Analysis of Free Phytosterols by Reversed Phase HPLC with Electrochemical Detection Rapid and Direct Analysis of Free Phytosterols by Reversed Phase HPLC with Electrochemical Detection Bruce Bailey, Marc Plante, David Thomas, Qi Zhang and Ian Acworth Thermo Fisher Scientific, Chelmsford,

More information

New Solvent Grade Targeted for Trace Analysis by UHPLC-MS

New Solvent Grade Targeted for Trace Analysis by UHPLC-MS New Solvent Grade Targeted for Trace Analysis by UHPLC-MS Subhra Bhattacharya, Deva H. Puranam, and Stephen C. Roemer Thermo Fisher Scientific Fisher Chemical, One Reagent Lane, Fair Lawn, NJ Material

More information

2D-LC as an Automated Desalting Tool for MSD Analysis

2D-LC as an Automated Desalting Tool for MSD Analysis 2D-LC as an Automated Desalting Tool for MSD Analysis Direct Mass Selective Detection of a Pharmaceutical Peptide from an MS-Incompatible USP Method Application Note Biologics and Biosimilars Author Sonja

More information

A Robustness Study for the Agilent 6470 LC-MS/MS Mass Spectrometer

A Robustness Study for the Agilent 6470 LC-MS/MS Mass Spectrometer A Robustness Study for the Agilent 7 LC-MS/MS Mass Spectrometer Application Note Clinical Research Authors Linda Côté, Siji Joseph, Sreelakshmy Menon, and Kevin McCann Agilent Technologies, Inc. Abstract

More information

Analysis of Food Sugars in Various Matrices Using UPLC with Refractive Index (RI) Detection

Analysis of Food Sugars in Various Matrices Using UPLC with Refractive Index (RI) Detection Analysis of Food Sugars in Various Matrices Using UPLC with Refractive Index (RI) Detection Mark E. Benvenuti Waters Corporation, Milford, MA, USA APPLICATION BENEFITS Using UPLC with RI detection enables

More information

Analysis of Chloride, Phosphate, Malate, Sulfite, Tartrate, Sulfate, and Oxalate in Red and White Wine

Analysis of Chloride, Phosphate, Malate, Sulfite, Tartrate, Sulfate, and Oxalate in Red and White Wine Application Work AW US6-0249-062017 Analysis of Chloride, Phosphate, Malate, Sulfite, Tartrate, Sulfate, Branch Food, stimulants, beverages, flavors Keywords IC; 940; Conductivity; Chloride; Phosphate;

More information

Introduction to LC/MS/MS

Introduction to LC/MS/MS Trends in 2006 Introduction to LC/MS/MS By Crystal Holt, LC/MS Product Specialist, Varian Inc. Toxicology laboratories Increased use of LC/MS Excellent LD Cheaper (still expensive) Much more robust Solves

More information

New Solvent Grade Targeted for Trace Analysis by UHPLC-MS

New Solvent Grade Targeted for Trace Analysis by UHPLC-MS New Solvent Grade Targeted for Trace Analysis by UHPLC-MS Subhra Bhattacharya, Deva H. Puranam, and Stephen C. Roemer Thermo Fisher Scientific Fisher Chemical, One Reagent Lane, Fair Lawn, NJ Material

More information

Authors. Abstract. Introduction. Environmental

Authors. Abstract. Introduction. Environmental Determination of Ultratrace Amitrol in Water Samples by in situ Derivatization-Solid Phase Extraction-Liquid Chromatography-Mass Selective Detector Application Environmental Authors Gerd Vanhoenacker,

More information

Application of LC/Electrospray Ion Trap Mass Spectrometry for Identification and Quantification of Pesticides in Complex Matrices

Application of LC/Electrospray Ion Trap Mass Spectrometry for Identification and Quantification of Pesticides in Complex Matrices Application ote #LCMS-2 esquire series Application of LC/Electrospray Ion Trap Mass Spectrometry for Identification and Quantification of Pesticides in Complex Matrices Introduction The simple monitoring

More information

Cannabinoid Profiling and Quantitation in Hemp Extracts using the Agilent 1290 Infinity II/6230B LC/TOF system

Cannabinoid Profiling and Quantitation in Hemp Extracts using the Agilent 1290 Infinity II/6230B LC/TOF system Cannabinoid Profiling and Quantitation in Hemp Extracts using the Agilent 9 Infinity II/63B LC/TOF system Application Brief Authors Mike Adams, Karen Kaikaris, and A. Roth CWC Labs Joan Stevens, Sue D

More information

Determination of red blood cell fatty acid profiles in clinical research

Determination of red blood cell fatty acid profiles in clinical research Application Note Clinical Research Determination of red blood cell fatty acid profiles in clinical research Chemical ionization gas chromatography tandem mass spectrometry Authors Yvonne Schober 1, Hans

More information

New Solvent Grade Targeted for Trace Analysis by UHPLC-MS

New Solvent Grade Targeted for Trace Analysis by UHPLC-MS New Solvent Grade Targeted for Trace Analysis by UHPLC-MS Subhra Bhattacharya, Deva H. Puranam, and Stephen C. Roemer Thermo Fisher Scientific Fisher Chemical, One Reagent Lane, Fair Lawn, NJ Material

More information

Fast Separation of Triacylglycerols in Oils using UltraPerformance Convergence Chromatography (UPC 2 )

Fast Separation of Triacylglycerols in Oils using UltraPerformance Convergence Chromatography (UPC 2 ) Fast Separation of Triacylglycerols in Oils using UltraPerformance Convergence Chromatography (UPC 2 ) Mehdi Ashraf-Khorassani, 1 Larry T. Taylor, 1 Jinchuan Yang, 2 and Giorgis Isaac 2 1 Department of

More information

Quantitative Analysis of THC and Main Metabolites in Whole Blood Using Tandem Mass Spectrometry and Automated Online Sample Preparation

Quantitative Analysis of THC and Main Metabolites in Whole Blood Using Tandem Mass Spectrometry and Automated Online Sample Preparation Quantitative Analysis of THC and Main Metabolites in Whole Blood Using Tandem Mass Spectrometry and Automated Online Sample Preparation Valérie Thibert, Bénédicte Duretz Thermo Fisher Scientific, Courtaboeuf,

More information

Qualitative and quantitative determination of cannabinoid profiles and potency in CBD hemp oil using LC/UV and Mass Selective Detection

Qualitative and quantitative determination of cannabinoid profiles and potency in CBD hemp oil using LC/UV and Mass Selective Detection Application Note Cannabis Qualitative and quantitative determination of cannabinoid profiles and potency in CBD hemp oil using LC/UV and Mass Selective Detection Authors Mike Adams, Annette Roth, Sue D

More information

A Versatile Detector for the Sensitive and Selective Measurement of Numerous Fat-Soluble Vitamins and Antioxidants in Human Plasma and Plant Extracts

A Versatile Detector for the Sensitive and Selective Measurement of Numerous Fat-Soluble Vitamins and Antioxidants in Human Plasma and Plant Extracts A Versatile Detector for the Sensitive and Selective Measurement of Numerous Fat-Soluble Vitamins and Antioxidants in Human Plasma and Plant Extracts Ian Acworth, Bruce Bailey, Paul Gamache, and John Waraska

More information

Quantitative Analysis of Vit D Metabolites in Human Plasma using Exactive System

Quantitative Analysis of Vit D Metabolites in Human Plasma using Exactive System Quantitative Analysis of Vit D Metabolites in Human Plasma using Exactive System Marta Kozak Clinical Research Applications Group Thermo Fisher Scientific San Jose CA Clinical Research use only, Not for

More information

Join the mass movement towards mass spectrometry

Join the mass movement towards mass spectrometry Join the mass movement towards mass spectrometry Thermo Scientific ISQ EC single quadrupole mass spectrometer Embrace the power of mass spectrometry Achieving a comprehensive understanding of the samples

More information

Robust extraction, separation, and quantitation of structural isomer steroids from human plasma by SPE-UHPLC-MS/MS

Robust extraction, separation, and quantitation of structural isomer steroids from human plasma by SPE-UHPLC-MS/MS TECHNICAL NOTE 21882 Robust extraction, separation, and quantitation of structural isomer steroids human plasma by SPE-UHPLC-MS/MS Authors Jon Bardsley 1, Kean Woodmansey 1, and Stacy Tremintin 2 1 Thermo

More information

Direct Determination of Native N-linked Glycans by UHPLC with Charged Aerosol Detection

Direct Determination of Native N-linked Glycans by UHPLC with Charged Aerosol Detection Direct Determination of Native N-linked Glycans by UHPLC with Charged Aerosol Detection David Thomas, Ian Acworth, Bruce Bailey, Marc Plante, and Qi Zhang Thermo Fisher Scientific, Chelmsford, MA Overview

More information

Vitamin D Metabolite Analysis in Biological Samples Using Agilent Captiva EMR Lipid

Vitamin D Metabolite Analysis in Biological Samples Using Agilent Captiva EMR Lipid Vitamin D Metabolite Analysis in Biological Samples Using Agilent Captiva EMR Lipid Application Note Clinical Research Authors Derick Lucas and Limian Zhao Agilent Technologies, Inc. Abstract Lipids from

More information

A Novel Solution for Vitamin K₁ and K₂ Analysis in Human Plasma by LC-MS/MS

A Novel Solution for Vitamin K₁ and K₂ Analysis in Human Plasma by LC-MS/MS A Novel Solution for Vitamin K₁ and K₂ Analysis in Human Plasma by LC-MS/MS By Shun-Hsin Liang and Frances Carroll Abstract Vitamin K₁ and K₂ analysis is typically complex and time-consuming because these

More information

Extraction of a Comprehensive Steroid Panel from Human Serum Using ISOLUTE. SLE+ Prior to LC/MS-MS Analysis

Extraction of a Comprehensive Steroid Panel from Human Serum Using ISOLUTE. SLE+ Prior to LC/MS-MS Analysis Application Note AN890 Extraction of a Comprehensive Steroid Panel from Human Serum Using ISOLUTE SLE+ Page Extraction of a Comprehensive Steroid Panel from Human Serum Using ISOLUTE SLE+ Prior to LC/MS-MS

More information

Evaluation of an LC-MS/MS Research Method for the Analysis of 33 Benzodiazepines and their Metabolites

Evaluation of an LC-MS/MS Research Method for the Analysis of 33 Benzodiazepines and their Metabolites Evaluation of an LC-MS/MS Research Method for the Analysis of 33 Benzodiazepines and their Metabolites Valérie Thibert 1, Norbert Dirsch 2, Johannes Engl 2, Martin Knirsch 2 1 Thermo Fisher Scientific,

More information

Method Development for the Analysis of Endogenous Steroids Using Convergence Chromatography with Mass Spectrometric Detection

Method Development for the Analysis of Endogenous Steroids Using Convergence Chromatography with Mass Spectrometric Detection Method Development for the Analysis of Endogenous Steroids Using Convergence Chromatography with Mass Spectrometric Detection Christopher J. Hudalla, Stuart Chadwick, Fiona Liddicoat, Andrew Peck, and

More information