Biological oxidation I Respiratory chain

Size: px
Start display at page:

Download "Biological oxidation I Respiratory chain"

Transcription

1 Biological oxidation I Respiratory chain

2 Outline Metabolism Macroergic compound Redox in metabolism Respiratory chain Inhibitors of oxidative phosphorylation

3 Metabolism Metabolism consists of catabolism and anabolism Catabolism: degradative pathways Usually energy-yielding! Anabolism: biosynthetic pathways energy-requiring!

4

5 The ATP Cycle ATP is the energy currency of cells In phototrophs, light energy is transformed into the light energy of ATP In heterotrophs, catabolism produces ATP, which drives activities of cells ATP cycle carries energy from photosynthesis or catabolism to the energyrequiring processes of cells

6

7 High energy bonds Phosphoanhydride bonds (formed by splitting out H 2 O between 2 phosphoric acids or between carboxylic and phosphoric acids) have a large negative DG of hydrolysis.

8 Phosphoanhydride linkages are said to be "high energy" bonds. Bond energy is not high, just DG of hydrolysis. "High energy" bonds are represented by the "~" symbol. ~P represents a phosphate group with a large negative DG of hydrolysis.

9 Phosphocreatine (creatine phosphate), another compound with a "high energy" phosphate linkage, is used in nerve and muscle for storage of ~P bonds. Phosphocreatine is produced when ATP levels are high. When ATP is depleted during exercise in muscle, phosphate is transferred from phosphocreatine to ADP, to replenish ATP.

10 Phosphoenolpyruvate (PEP), involved in ATP synthesis in Glycolysis, has a very high DG of P i hydrolysis. Removal of P i from ester linkage in PEP is spontaneous because the enol spontaneously converts to a ketone. The ester linkage in PEP is an exception.

11 Other examples of phosphate esters with low but negative DG of hydrolysis: the linkage between phosphate and a hydroxyl group in glucose-6-phosphate or glycerol-3- phosphate.

12 ATP has special roles in energy coupling and P i transfer. DG of phosphate hydrolysis from ATP is intermediate among examples below. ATP can thus act as a P i donor, and ATP can be synthesized by P i transfer, e.g., from PEP. Compound Phosphoenolpyruvate (PEP) Phosphocreatine Pyrophosphate ATP (to ADP) Glucose-6-phosphate Glycerol-3-phosphate DG o of phosphate hydrolysis (kj/mol)

13 Some other high energy bonds: A thioester forms between a carboxylic acid and a thiol (SH), e.g., the thiol of coenzyme A (abbreviated CoA-SH). Thioesters are ~ linkages. In contrast to phosphate esters, thioesters have a large negative DG of hydrolysis.

14 The thiol of coenzyme A can react with a carboxyl group of acetic acid (yielding acetyl-coa) or a fatty acid (yielding fatty acyl-coa). The spontaneity of thioester cleavage is essential to the role of coenzyme A as an acyl group carrier. Like ATP, CoA has a high group transfer potential.

15 Coenzyme A includes b-mercaptoethylamine, in amide linkage to the carboxyl group of the B vitamin pantothenate. The hydroxyl of pantothenate is in ester linkage to a phosphate of ADP-3'-phosphate. The functional group is the thiol (SH) of b-mercaptoethylamine.

16 High energy (macroergic) compounds exemplifying the following roles: Energy transfer or storage ATP, PP i, polyphosphate, creatinephosphate Group transfer ATP, Coenzyme A Transient signal camp

17 Oxidation and reduction Oxidation of an iron atom involves loss of an electron (to an acceptor): Fe 2+ (reduced) Fe 3+ (oxidized) + e - Since electrons in a C-O bond are associated more with O, increased oxidation of a C atom means increased number of C-O bonds. Oxidation of C is spontaneous. Increasing oxidation number of C

18 Redox in Metabolism NAD + collects electrons released in catabolism Catabolism is oxidative - substrates lose reducing equivalents, usually H + ions Anabolism is reductive NAD(P)H provides the reducing power (electrons) for anabolic processes

19 NAD +, Nicotinamide Adenine Dinucleotide, is an electron acceptor in catabolic pathways. The nicotinamide ring, derived from the vitamin niacin, accepts 2 e - and 1 H + (a hydride) in going to the reduced state, NADH. NADP + /NADPH is similar except for P i. NADPH is e donor in synthetic pathways.

20 NAD + /NADH The electron transfer reaction may be summarized as : NAD + + 2e + H + NADH. It may also be written as: NAD + + 2e + 2H + NADH + H +

21 FAD (Flavin Adenine Dinucleotide), derived from the vitamin riboflavin, functions as an e acceptor. The dimethylisoalloxazine ring undergoes reduction/oxidation. FAD accepts 2 e H + in going to its reduced state: FAD + 2 e H + FADH 2

22 NAD + is a coenzyme, that reversibly binds to enzymes. FAD is a prosthetic group, that remains tightly bound at the active site of an enzyme.

23 Oxidation of the coenzyme Q

24 Respiratory Chain An Overview Electron Transport: Electrons carried by reduced coenzymes are passed through a chain of proteins and coenzymes to drive the generation of a proton gradient across the inner mitochondrial membrane Oxidative Phosphorylation: The proton gradient runs downhill to drive the synthesis of ATP It all happens in or at the inner mitochondrial membrane

25

26 Electron Transport Four protein complexes in the inner mitochondrial membrane A lipid soluble coenzyme (UQ, CoQ) and a water soluble protein (cyt c) shuttle between protein complexes Electrons generally fall in energy through the chain - from complexes I and II to complex IV

27 Sequence of electron carriers in the respiratory chain Coenzyme Q electron shuttle Complex I proton pump Complex II, does not pump protons Cytochrome c electron shuttle Complex III proton pump Complex IV proton pump 27

28 Complexes of Respiratory chain Complex Name No. of Proteins Prosthetic Groups Complex I Complex II NADH Dehydrogenase Succinate-CoQ Reductase 46 FMN, 9 Fe-S centers 5 FAD, cyt b 560, 3 Fe-S centers Complex III CoQ-cyt c Reductase Complex IV Cytochrome Oxidase 11 cyt b H, cyt b L, cyt c 1, Fe-S Rieske 13 cyt a, cyt a 3, Cu A, Cu B

29 Electron transfer from NADH to CoQ Path: NADH FMN Fe-S UQ FeS UQ Four H + transported out per 2 e- Complex I NADH-CoQ Reductase

30 Role of FMN: Since it can accept/donate either 1 or 2 e -, FMN has an important role in mediating electron transfer between carriers that transfer 2 e - (e.g., NADH) and carriers that can only accept 1 e - (e.g., Fe 3+ ).

31 Complex II Succinate-CoQ Reductase aka succinate dehydrogenase (from TCA cycle!) aka flavoprotein 2 (FP 2 ) - FAD covalently bound four subunits, including 2 Fe-S proteins Three types of Fe-S cluster: 4Fe-4S, 3Fe-4S, 2Fe-2S Path: succinate FADH 2 2Fe 2+ UQH 2 Net reaction: succinate + UQ fumarate + UQH 2

32 Complex III CoQ-Cytochrome c Reductase CoQ passes electrons to cyt c (and pumps H + ) in a unique redox cycle known as the Q cycle The principal transmembrane protein in complex III is the b cytochrome Cytochromes, like Fe in Fe-S clusters, are one- electron transfer agents UQH 2 is a lipid-soluble electron carrier cyt c is a water-soluble electron carrier

33 Heme is a prosthetic group of cytochromes. Heme contains an iron atom embedded in a porphyrin ring system. The Fe is bonded to 4 N atoms of the porphyrin ring. Hemes in the three classes of cytochrome (a, b, c) differ slightly in substituents on the porphyrin ring system. A common feature is two propionate side-chains.

34 Complex IV Cytochrome c Oxidase Electrons from cyt c are used in a four-electron reduction of O 2 to produce 2H 2 O Oxygen is thus the terminal acceptor of electrons in the electron transport pathway - the end! Cytochrome c oxidase utilizes 2 hemes (a and a 3 ) and 2 copper sites Complex IV also transports H +

35

36 Coupling e - Transport and Oxidative Phosphorylation This coupling was a mystery for many years Many biochemists squandered careers searching for the elusive "high energy intermediate" Peter Mitchell proposed a novel idea - a proton gradient across the inner membrane could be used to drive ATP synthesis Mitchell was ridiculed, but the chemiosmotic hypothesis eventually won him a Nobel prize

37 Peter Mitchell Proposed chemiosmotic hypothesis revolutionary idea at the time proton motive force

38

39 ATP Synthase

40 subunit ATP synthase Moving unit (rotor) is c ring and Remainder is stationary (stator) c ring subunit a subunit binds to outside of ring Exterior column has 1 a subunit 2 b subunits, and the subunit subunit F 0 contains the proton channel ring of c subunits F 1 subunit has 5 types of polypeptide chains ( 3, b 3,,, ), displays ATPase activity b subunit and b are members of P-loop family

41 The Chemiosmotic Theory of oxidative phosphorylation, for which Peter Mitchell received the Nobel prize: Coupling of ATP synthesis to respiration is indirect, via a H + electrochemical gradient.

42 Chemiosmotic theory - respiration: Spontaneous e transfer through complexes I, III, & IV is coupled to non-spontaneous H + ejection from the matrix. H + ejection creates a membrane potential (DY, negative in matrix) and a ph gradient (DpH, alkaline in matrix).

43 Chemiosmotic theory - F 1 F o ATP synthase: Non-spontaneous ATP synthesis is coupled to spontaneous H + transport into the matrix. The ph and electrical gradients created by respiration are the driving force for H + uptake. H + return to the matrix via F o "uses up" ph and electrical gradients.

44 ATP-ADP Translocase ATP must be transported out of the mitochondria ATP out, ADP in - through a "translocase" ATP movement out is favored because the cytosol is "+" relative to the "-" matrix But ATP out and ADP in is net movement of a negative charge out - equivalent to a H + going in So every ATP transported out costs one H + One ATP synthesis costs about 3 H + Thus, making and exporting 1 ATP = 4H +

45 What is the P/O Ratio? i.e., How many ATP made per electron pair through the chain? e - transport chain yields 10 H + pumped out per electron pair from NADH to oxygen 4 H + flow back into matrix per ATP to cytosol 10/4 = 2.5 for electrons entering as NADH For electrons entering as succinate (FADH 2 ), about 6 H + pumped per electron pair to oxygen 6/4 = 1.5 for electrons entering as succinate

46 Shuttle Systems for e - Most NADH used in electron transport is cytosolic and NADH doesn't cross the inner mitochondrial membrane What to do? "Shuttle systems" effect electron movement without actually carrying NADH Glycerophosphate shuttle stores electrons in glycerol-3-p, which transfers electrons to FAD Malate-aspartate shuttle uses malate to carry electrons across the membrane

47

48

49 Respiratory chain = oxidative phosphoryltion + electron transport

50 Inhibitors of Oxidative Phosphorylation Rotenone inhibits Complex I - and helps natives of the Amazon rain forest catch fish! Cyanide, azide and CO inhibit Complex IV, binding tightly to the ferric form (Fe 3+ ) of a 3 Oligomycin are ATP synthase inhibitors

51

52 Uncouplers Uncoupling e- transport and oxidative phosphorylation Uncouplers disrupt the tight coupling between electron transport and oxidative phosphorylation by dissipating the proton gradient Uncouplers are hydrophobic molecules with a dissociable proton They shuttle back and forth across the membrane, carrying protons to dissipate the gradient

53 Uncouplers and Inhibitors There are six distinct types of poison which may affect mitochondrial function: 1. Respiratory chain inhibitors (e.g. cyanide, antimycin, rotenone and TTFA) block respiration in the presence of either ADP or uncouplers. 2. Phosphorylation inhibitors (e.g. oligomycin) abolish the burst of oxygen consumption after adding ADP, but have no effect on uncouplerstimulated respiration.

54 3. Uncoupling agents (e.g. dinitrophenol, CCCP, FCCP) abolish the obligatory linkage between the respiratory chain and the phosphorylation system which is observed with intact mitochondria. 4. Transport inhibitors (e.g. atractyloside, bongkrekic acid, NEM) either prevent the export of ATP, or the import of raw materials across the the mitochondrial inner membrane. 5. Ionophores (e.g. valinomycin, nigericin) make the inner membrane permeable to compounds which are ordinarily unable to cross. 6. Krebs cycle inhibitors (e.g. arsenite, aminooxyacetate) which block one or more of the TCA cycle enzymes, or an ancillary reation.

55 Inhibitors of respiratory chain Name Function Site of action retenone e transport inhibitor Complex I amytal e transport inhibitor Complex I antimycin A e transport inhibitor Complex III cyanide e transport inhibitor Complex IV carbon monoxide e transport inhibitor Complex IV azide e transport inhibitor Complex IV 2,4-initrophenol uncoupling agent transmembrane H+ carrier pentachlorophenol uncoupling agent transmembrane H+ carrier oligomycin inhibits ATP-ase OSCP protein

Oxidative Phosphorylation

Oxidative Phosphorylation Electron Transport Chain (overview) The NADH and FADH 2, formed during glycolysis, β- oxidation and the TCA cycle, give up their electrons to reduce molecular O 2 to H 2 O. Electron transfer occurs through

More information

Electron Transport and Oxidative. Phosphorylation

Electron Transport and Oxidative. Phosphorylation Electron Transport and Oxidative Phosphorylation Electron-transport chain electron- Definition: The set of proteins and small molecules involved in the orderly sequence of transfer to oxygen within the

More information

Synthesis of ATP, the energy currency in metabolism

Synthesis of ATP, the energy currency in metabolism Synthesis of ATP, the energy currency in metabolism Note that these are simplified summaries to support lecture material Either Substrate-level phosphorylation (SLP) Or Electron transport phosphorylation

More information

Chapter 14 - Electron Transport and Oxidative Phosphorylation

Chapter 14 - Electron Transport and Oxidative Phosphorylation Chapter 14 - Electron Transport and Oxidative Phosphorylation The cheetah, whose capacity for aerobic metabolism makes it one of the fastest animals Prentice Hall c2002 Chapter 14 1 14.4 Oxidative Phosphorylation

More information

Oxidative phosphorylation & Photophosphorylation

Oxidative phosphorylation & Photophosphorylation Oxidative phosphorylation & Photophosphorylation Oxidative phosphorylation is the last step in the formation of energy-yielding metabolism in aerobic organisms. All oxidative steps in the degradation of

More information

FREE ENERGY Reactions involving free energy: 1. Exergonic 2. Endergonic

FREE ENERGY Reactions involving free energy: 1. Exergonic 2. Endergonic BIOENERGETICS FREE ENERGY It is the portion of the total energy change in a system that is available for doing work at constant temperature and pressure; it is represented as ΔG. Reactions involving free

More information

Electron transport chain chapter 6 (page 73) BCH 340 lecture 6

Electron transport chain chapter 6 (page 73) BCH 340 lecture 6 Electron transport chain chapter 6 (page 73) BCH 340 lecture 6 The Metabolic Pathway of Cellular Respiration All of the reactions involved in cellular respiration can be grouped into three main stages

More information

Vocabulary. Chapter 20: Electron Transport and Oxidative Phosphorylation

Vocabulary. Chapter 20: Electron Transport and Oxidative Phosphorylation Vocabulary ATP Synthase: the enzyme responsible for production of ATP in mitochondria Chemiosmotic Coupling: the mechanism for coupling electron transport to oxidative phosphorylation; it requires a proton

More information

Metabolism is regulated by the rate of ATP production

Metabolism is regulated by the rate of ATP production BCHM2972 Human Biochemistry Introduction to Metabolism Metabolism is regulated by the rate of ATP production Anabolism/Catabolism Anabolism Reactions that build macromolecules Use energy from catabolism

More information

) one consumes in breathing is converted to:, which of the following would be found in the oxidized state?

) one consumes in breathing is converted to:, which of the following would be found in the oxidized state? MCB 102: Pantea s Sxn Chapter 19 Problem Set Answer Key 1) Page: 690 Ans: E Almost all of the oxygen (O 2 ) one consumes in breathing is converted to: A) acetyl-coa. B) carbon dioxide (CO 2 ). C) carbon

More information

CELL BIOLOGY - CLUTCH CH AEROBIC RESPIRATION.

CELL BIOLOGY - CLUTCH CH AEROBIC RESPIRATION. !! www.clutchprep.com CONCEPT: OVERVIEW OF AEROBIC RESPIRATION Cellular respiration is a series of reactions involving electron transfers to breakdown molecules for (ATP) 1. Glycolytic pathway: Glycolysis

More information

Electron Transport and oxidative phosphorylation (ATP Synthesis) Dr. Howaida Nounou Biochemistry department Sciences college

Electron Transport and oxidative phosphorylation (ATP Synthesis) Dr. Howaida Nounou Biochemistry department Sciences college Electron Transport and oxidative phosphorylation (ATP Synthesis) Dr. Howaida Nounou Biochemistry department Sciences college The Metabolic Pathway of Cellular Respiration All of the reactions involved

More information

Electron Transport Chain and Oxidative phosphorylation

Electron Transport Chain and Oxidative phosphorylation Electron Transport Chain and Oxidative phosphorylation So far we have discussed the catabolism involving oxidation of 6 carbons of glucose to CO 2 via glycolysis and CAC without any oxygen molecule directly

More information

Chapter 5. Microbial Metabolism

Chapter 5. Microbial Metabolism Chapter 5 Microbial Metabolism Metabolism Collection of controlled biochemical reactions that take place within a microbe Ultimate function of metabolism is to reproduce the organism Metabolic Processes

More information

Oxidative Phosphorylation

Oxidative Phosphorylation Oxidative Phosphorylation Energy from Reduced Fuels Is Used to Synthesize ATP in Animals Carbohydrates, lipids, and amino acids are the main reduced fuels for the cell. Electrons from reduced fuels are

More information

MEMBRANE-BOUND ELECTRON TRANSFER AND ATP SYNTHESIS (taken from Chapter 18 of Stryer)

MEMBRANE-BOUND ELECTRON TRANSFER AND ATP SYNTHESIS (taken from Chapter 18 of Stryer) MEMBRANE-BOUND ELECTRON TRANSFER AND ATP SYNTHESIS (taken from Chapter 18 of Stryer) FREE ENERGY MOST USEFUL THERMODYNAMIC CONCEPT IN BIOCHEMISTRY Living things require an input of free energy for 3 major

More information

Energy Transformation: Cellular Respiration Outline 1. Sources of cellular ATP 2. Turning chemical energy of covalent bonds between C-C into energy

Energy Transformation: Cellular Respiration Outline 1. Sources of cellular ATP 2. Turning chemical energy of covalent bonds between C-C into energy Energy Transformation: Cellular Respiration Outline 1. Sources of cellular ATP 2. Turning chemical energy of covalent bonds between C-C into energy for cellular work (ATP) 3. Importance of electrons and

More information

19 Oxidative Phosphorylation and Photophosphorylation W. H. Freeman and Company

19 Oxidative Phosphorylation and Photophosphorylation W. H. Freeman and Company 19 Oxidative Phosphorylation and Photophosphorylation 2013 W. H. Freeman and Company CHAPTER 19 Oxidative Phosphorylation and Photophosphorylation Key topics: Electron transport chain in mitochondria Capture

More information

Cellular Respiration- -conversion of stored energy in glucose to usable energy for the cell -energy in cells is stored in the form of ATP

Cellular Respiration- -conversion of stored energy in glucose to usable energy for the cell -energy in cells is stored in the form of ATP Cellular Respiration Notes Chapter 7 How Cells Make ATP Energy Releasing Pathways Cellular Respiration- -conversion of stored energy in glucose to usable energy for the cell -energy in cells is stored

More information

A cell has enough ATP to last for about three seconds.

A cell has enough ATP to last for about three seconds. Energy Transformation: Cellular Respiration Outline 1. Energy and carbon sources in living cells 2. Sources of cellular ATP 3. Turning chemical energy of covalent bonds between C-C into energy for cellular

More information

III. 6. Test. Respiració cel lular

III. 6. Test. Respiració cel lular III. 6. Test. Respiració cel lular Chapter Questions 1) What is the term for metabolic pathways that release stored energy by breaking down complex molecules? A) anabolic pathways B) catabolic pathways

More information

Nafith Abu Tarboush DDS, MSc, PhD

Nafith Abu Tarboush DDS, MSc, PhD Nafith Abu Tarboush DDS, MSc, PhD natarboush@ju.edu.jo www.facebook.com/natarboush OMM: permeable to small molecules (MW

More information

Nafith Abu Tarboush DDS, MSc, PhD

Nafith Abu Tarboush DDS, MSc, PhD Nafith Abu Tarboush DDS, MSc, PhD natarboush@ju.edu.jo www.facebook.com/natarboush OMM: permeable to small molecules (MW

More information

Biology 638 Biochemistry II Exam-2

Biology 638 Biochemistry II Exam-2 Biology 638 Biochemistry II Exam-2 Biol 638, Exam-2 (Code-1) 1. Assume that 16 glucose molecules enter into a liver cell and are attached to a liner glycogen one by one. Later, this glycogen is broken-down

More information

Electron transport chain, oxidative phosphorylation, mitochondrial transport systems

Electron transport chain, oxidative phosphorylation, mitochondrial transport systems Electron transport chain, oxidative phosphorylation, mitochondrial transport systems JAN ILLNER Respiratory chain & oxidative phosphorylation INTERMEMBRANE SPACE ubiquinone cytochrome c ATPase Production

More information

Ch. 9 Cell Respiration. Title: Oct 15 3:24 PM (1 of 53)

Ch. 9 Cell Respiration. Title: Oct 15 3:24 PM (1 of 53) Ch. 9 Cell Respiration Title: Oct 15 3:24 PM (1 of 53) Essential question: How do cells use stored chemical energy in organic molecules and to generate ATP? Title: Oct 15 3:28 PM (2 of 53) Title: Oct 19

More information

Chemical Energy. Valencia College

Chemical Energy. Valencia College 9 Pathways that Harvest Chemical Energy Valencia College 9 Pathways that Harvest Chemical Energy Chapter objectives: How Does Glucose Oxidation Release Chemical Energy? What Are the Aerobic Pathways of

More information

Electron Transport Chain and Oxidative Phosphorylation 20-1

Electron Transport Chain and Oxidative Phosphorylation 20-1 Electron Transport Chain and Oxidative Phosphorylation 20-1 Learning Objectives 1. What Role Does Electron Transport Play in Met.? 2. What Are the Reduction Potentials for the Electron Transport Chain?

More information

A) Choose the correct answer: 1) Reduction of a substance can mostly occur in the living cells by:

A) Choose the correct answer: 1) Reduction of a substance can mostly occur in the living cells by: Code: 1 1) Reduction of a substance can mostly occur in the living cells by: (a) Addition of oxygen (b) Removal of electrons (c) Addition of electrons (d) Addition of hydrogen 2) Starting with succinate

More information

Metabolism of Carbohydrates Inhibitors of Electron Transport Chain

Metabolism of Carbohydrates Inhibitors of Electron Transport Chain Paper : 04 Module : 19 Principal Investigator Paper Coordinator Content Reviewer Content Writer Dr.S.K.Khare,Professor IIT Delhi. Dr. Ramesh Kothari,Professor UGC-CAS Department of Biosciences Saurashtra

More information

Electron Transport System Supplemental Reading. Key Concepts PETER MITCHELL'S CHEMIOSMOTIC THEORY

Electron Transport System Supplemental Reading. Key Concepts PETER MITCHELL'S CHEMIOSMOTIC THEORY Electron Transport System Supplemental Reading Key Concepts - PETER MITCHELL'S CHEMIOSMOTIC THEORY - THE ELECTRON TRANSPORT SYSTEM IS A SERIES OF COUPLED REDOX REACTIONS Complex I: NADH-ubiquinone oxidoreductase

More information

Chapter 9 Overview. Aerobic Metabolism I: The Citric Acid Cycle. Live processes - series of oxidation-reduction reactions. Aerobic metabolism I

Chapter 9 Overview. Aerobic Metabolism I: The Citric Acid Cycle. Live processes - series of oxidation-reduction reactions. Aerobic metabolism I n n Chapter 9 Overview Aerobic Metabolism I: The Citric Acid Cycle Live processes - series of oxidation-reduction reactions Ingestion of proteins, carbohydrates, lipids Provide basic building blocks for

More information

Enzymes and Metabolism

Enzymes and Metabolism PowerPoint Lecture Slides prepared by Vince Austin, University of Kentucky Enzymes and Metabolism Human Anatomy & Physiology, Sixth Edition Elaine N. Marieb 1 Protein Macromolecules composed of combinations

More information

respiration mitochondria mitochondria metabolic pathways reproduction can fuse or split DRP1 interacts with ER tubules chapter DRP1 ER tubule

respiration mitochondria mitochondria metabolic pathways reproduction can fuse or split DRP1 interacts with ER tubules chapter DRP1 ER tubule mitochondria respiration chapter 3-4 shape highly variable can fuse or split structure outer membrane inner membrane cristae intermembrane space mitochondrial matrix free ribosomes respiratory enzymes

More information

Cellular Pathways That Harvest Chemical Energy. Cellular Pathways That Harvest Chemical Energy. Cellular Pathways In General

Cellular Pathways That Harvest Chemical Energy. Cellular Pathways That Harvest Chemical Energy. Cellular Pathways In General Cellular Pathways That Harvest Chemical Energy A. Obtaining Energy and Electrons from Glucose Lecture Series 12 Cellular Pathways That Harvest Chemical Energy B. An Overview: Releasing Energy from Glucose

More information

Chapter 20. Before the class. Introduction. Do you know. Electron transport and oxidative

Chapter 20. Before the class. Introduction. Do you know. Electron transport and oxidative Chapter 20 Electron transport and oxidative phosphorylation p Reginald H. Garrett Charles M. Grisham 1 Before the class Do you know. What is reduction potential? How electron transferred between two molecule?

More information

Electron transport chain,oxidative phosphorylation & mitochondrial transport systems. M.Kohutiar, B.Sopko

Electron transport chain,oxidative phosphorylation & mitochondrial transport systems. M.Kohutiar, B.Sopko Electron transport chain,oxidative phosphorylation & mitochondrial transport systems. M.Kohutiar, B.Sopko Content 1. Structure of mitochondria Mitochondrial transport systems 2. Electron transport 3. Parts

More information

Biochemistry: A Short Course Second Edition

Biochemistry: A Short Course Second Edition Tymoczko Berg Stryer Biochemistry: A Short Course Second Edition CHAPTERS 20 and 21 The Electron-Transport Chain And Oxidative Phosphorylation 2013 W. H. Freeman and Company Cellular Respiration and Physiologic

More information

BIOLOGY - CLUTCH CH.9 - RESPIRATION.

BIOLOGY - CLUTCH CH.9 - RESPIRATION. !! www.clutchprep.com CONCEPT: REDOX REACTIONS Redox reaction a chemical reaction that involves the transfer of electrons from one atom to another Oxidation loss of electrons Reduction gain of electrons

More information

METABOLISM -Introduction- Serkan SAYINER, DVM PhD. Assist. Prof.

METABOLISM -Introduction- Serkan SAYINER, DVM PhD. Assist. Prof. METABOLISM -Introduction- Serkan SAYINER, DVM PhD. Assist. Prof. Near East University, Faculty of Veterinary Medicine, Department of Biochemistry serkan.sayiner@neu.edu.tr Overview Living organisms need

More information

OVERVIEW OF RESPIRATION AND LOOSE ENDS. What agents? What war?

OVERVIEW OF RESPIRATION AND LOOSE ENDS. What agents? What war? 5.19.06 OVERVIEW OF RESPIRATION AND LOOSE ENDS What agents? What war? 1 Ubiquinone or Coenzyme Q: small hydrophobic molecule that can pick up or donate electrons The respiratory chain contains 3 large

More information

Ch 9: Cellular Respiration

Ch 9: Cellular Respiration Ch 9: Cellular Respiration Cellular Respiration An overview Exergonic reactions and catabolic pathway Energy stored in bonds of food molecules is transferred to ATP Cellular respiration provides the energy

More information

Cellular Respiration: Harvesting Chemical Energy Chapter 9

Cellular Respiration: Harvesting Chemical Energy Chapter 9 Cellular Respiration: Harvesting Chemical Energy Chapter 9 Assemble polymers, pump substances across membranes, move and reproduce The giant panda Obtains energy for its cells by eating plants which get

More information

How Cells Harvest Energy. Chapter 7. Respiration

How Cells Harvest Energy. Chapter 7. Respiration How Cells Harvest Energy Chapter 7 Respiration Organisms classified on how they obtain energy: autotrophs: produce their own organic molecules through photosynthesis heterotrophs: live on organic compounds

More information

MITOCHONDRIA LECTURES OVERVIEW

MITOCHONDRIA LECTURES OVERVIEW 1 MITOCHONDRIA LECTURES OVERVIEW A. MITOCHONDRIA LECTURES OVERVIEW Mitochondrial Structure The arrangement of membranes: distinct inner and outer membranes, The location of ATPase, DNA and ribosomes The

More information

Citric Acid Cycle and Oxidative Phosphorylation

Citric Acid Cycle and Oxidative Phosphorylation Citric Acid Cycle and Oxidative Phosphorylation Page by: OpenStax Summary The Citric Acid Cycle In eukaryotic cells, the pyruvate molecules produced at the end of glycolysis are transported into mitochondria,

More information

7 Pathways That Harvest Chemical Energy

7 Pathways That Harvest Chemical Energy 7 Pathways That Harvest Chemical Energy Pathways That Harvest Chemical Energy How Does Glucose Oxidation Release Chemical Energy? What Are the Aerobic Pathways of Glucose Metabolism? How Is Energy Harvested

More information

Lecture Sixteen: METABOLIC ENERGY: [Based on GENERATION Chapter 15

Lecture Sixteen: METABOLIC ENERGY: [Based on GENERATION Chapter 15 Lecture Sixteen: METABOLIC ENERGY: [Based on GENERATION Chapter 15 AND STORAGE Berg, (Figures in red are for the 7th Edition) Tymoczko (Figures in Blue are for the 8th Edition) & Stryer] Two major questions

More information

Oxidative phosphorylation

Oxidative phosphorylation OXIDATIVE PHOSPHORYLATION Oxidative phosphorylation Oxidative reaction Coupled by phosphorylation to the generation of high energy intermediate (ATP or other high phosphagen) Oxidative phosphorylation

More information

Respiration. Respiration. Respiration. How Cells Harvest Energy. Chapter 7

Respiration. Respiration. Respiration. How Cells Harvest Energy. Chapter 7 How Cells Harvest Energy Chapter 7 Organisms can be classified based on how they obtain energy: autotrophs: are able to produce their own organic molecules through photosynthesis heterotrophs: live on

More information

Cellular Respiration: Harvesting Chemical Energy

Cellular Respiration: Harvesting Chemical Energy Chapter 9 Cellular Respiration: Harvesting Chemical Energy You should be able to: 1. Explain how redox reactions are involved in energy exchanges. Name and describe the three stages of cellular respiration;

More information

3.7.1 Define cell respiration [Cell respiration is the controlled release of energy from organic compounds in cells to form ATP]

3.7.1 Define cell respiration [Cell respiration is the controlled release of energy from organic compounds in cells to form ATP] 3.7 Cell respiration ( Chapter 9 in Campbell's book) 3.7.1 Define cell respiration [Cell respiration is the controlled release of energy from organic compounds in cells to form ATP] Organic compounds store

More information

Respiration. Respiration. How Cells Harvest Energy. Chapter 7

Respiration. Respiration. How Cells Harvest Energy. Chapter 7 How Cells Harvest Energy Chapter 7 Respiration Organisms can be classified based on how they obtain energy: autotrophs: are able to produce their own organic molecules through photosynthesis heterotrophs:

More information

MULTIPLE CHOICE QUESTIONS

MULTIPLE CHOICE QUESTIONS MULTIPLE CHOICE QUESTIONS 1. Which of the following statements concerning anabolic reactions is FALSE? A. They are generally endergonic. B. They usually require ATP. C. They are part of metabolism. D.

More information

ANSWERS Problem Set 8

ANSWERS Problem Set 8 ANSWERS Problem Set 8 Problem 1. All oxidation steps in the pathway from glucose to CO 2 result in the production of NADH, except the succinate dehydrogenase (SDH) step in the TCA cycle, which yields FADH2.

More information

Mitochondria and ATP Synthesis

Mitochondria and ATP Synthesis Mitochondria and ATP Synthesis Mitochondria and ATP Synthesis 1. Mitochondria are sites of ATP synthesis in cells. 2. ATP is used to do work; i.e. ATP is an energy source. 3. ATP hydrolysis releases energy

More information

Chemistry 5.07 Problem Set

Chemistry 5.07 Problem Set Chemistry 5.07 Problem Set 8 2013 Problem 1. All oxidation steps in the pathway from glucose to CO 2 result in the production of NADH, except the succinate dehydrogenase (SDH) step in the TCA cycle, which

More information

بسم هللا الرحمن الرحيم

بسم هللا الرحمن الرحيم بسم هللا الرحمن الرحيم -Please refer to the slides from (4-20) -Slides (4, 5) -Oxidative phosphorylation consists of 2 parts: 1.electron transport chain (series of electron transport proteins much filled

More information

number Done by Corrected by Doctor Nafeth Abu Tarboush

number Done by Corrected by Doctor Nafeth Abu Tarboush number 7 Done by حسام أبو عوض Corrected by Shahd Alqudah Doctor Nafeth Abu Tarboush 1 P a g e As we have studied before, in the fourth reaction of the Krebs cycle, α- ketoglutarate is converted into Succinyl-CoA

More information

10/25/2010 CHAPTER 9 CELLULAR RESPIRATION. Life is Work. Types of cellular respiration. Catabolic pathways = oxidizing fuels

10/25/2010 CHAPTER 9 CELLULAR RESPIRATION. Life is Work. Types of cellular respiration. Catabolic pathways = oxidizing fuels CHAPTER 9 CELLULAR RESPIRATION Life is Work Living cells require transfusions of energy from outside sources to perform their many tasks: Chemical work Transport work Mechanical work Energy stored in the

More information

Chapter Seven (Cellular Respiration)

Chapter Seven (Cellular Respiration) Chapter Seven (Cellular Respiration) 1 SECTION ONE: GLYCOLYSIS AND FERMENTATION HARVESTING CHEMICAL ENERGY Cellular respiration is the process in which cells make adenosine triphosphate (ATP) by breaking

More information

Biologic Oxidation BIOMEDICAL IMPORTAN

Biologic Oxidation BIOMEDICAL IMPORTAN Biologic Oxidation BIOMEDICAL IMPORTAN Chemically, oxidation is defined as the removal of electrons and reduction as the gain of electrons. Thus, oxidation is always accompanied by reduction of an electron

More information

Chapter 9. Cellular Respiration and Fermentation

Chapter 9. Cellular Respiration and Fermentation Chapter 9 Cellular Respiration and Fermentation Energy flows into an ecosystem as sunlight and leaves as heat Photosynthesis generates O 2 and organic molecules, which are used in cellular respiration

More information

WHY IS THIS IMPORTANT?

WHY IS THIS IMPORTANT? CHAPTER 3 ESSENTIALS OF METABOLISM WHY IS THIS IMPORTANT? It is important to have a basic understanding of metabolism because it governs the survival and growth of microorganisms The growth of microorganisms

More information

3.2 Aerobic Respiration

3.2 Aerobic Respiration 3.2 Aerobic Respiration Aerobic Cellular Respiration Catabolic pathways Breaks down energy-rich compounds to make ATP Requires oxygen Occurs in different parts of the cell C 6 H 12 O 6 (s) + 6O 2 (g) 6CO

More information

Chapter 9 Notes. Cellular Respiration and Fermentation

Chapter 9 Notes. Cellular Respiration and Fermentation Chapter 9 Notes Cellular Respiration and Fermentation Objectives Distinguish between fermentation and anaerobic respiration. Name the three stages of cellular respiration and state the region of the cell

More information

number Done by Corrected by Doctor Nafeth Abu Tarboush

number Done by Corrected by Doctor Nafeth Abu Tarboush number 8 Done by Ali Yaghi Corrected by Mamoon Mohamad Alqtamin Doctor Nafeth Abu Tarboush 0 P a g e Oxidative phosphorylation Oxidative phosphorylation has 3 major aspects: 1. It involves flow of electrons

More information

TCA CYCLE (Citric Acid Cycle)

TCA CYCLE (Citric Acid Cycle) TCA CYCLE (Citric Acid Cycle) TCA CYCLE The Citric Acid Cycle is also known as: Kreb s cycle Sir Hans Krebs Nobel prize, 1953 TCA (tricarboxylic acid) cycle The citric acid cycle requires aerobic conditions!!!!

More information

Coupled, interconnecting reactions

Coupled, interconnecting reactions Metabolism: Basic concepts Hand-out for the CBT version November 2011 This module is based on 'Biochemistry' by Berg, Tymoczko and Stryer, seventh edition (2011), Chapter 15: Metabolism: Basic Concepts

More information

Section B: The Process of Cellular Respiration

Section B: The Process of Cellular Respiration CHAPTER 9 CELLULAR RESPIRATION: HARVESTING CHEMICAL ENERGY Section B: The Process of Cellular Respiration 1. Respiration involves glycolysis, the Krebs cycle, and electron transport: an overview 2. Glycolysis

More information

Chapter 10. Cellular Respiration Pearson Education Ltd

Chapter 10. Cellular Respiration Pearson Education Ltd Chapter 10 Cellular Respiration Life Is Work a) Living cells require energy from outside sources b) Some animals, such as the giraffe, obtain energy by eating plants, and some animals feed on other organisms

More information

BIOCHEMISTRY - CLUTCH REVIEW 6.

BIOCHEMISTRY - CLUTCH REVIEW 6. !! www.clutchprep.com CONCEPT: AMINO ACID OXIDATION Urea cycle occurs in liver, removes amino groups from amino acids so they may enter the citric acid cycle 2 nitrogen enter the cycle to ultimately leave

More information

Cellular Respiration Harvesting Chemical Energy ATP

Cellular Respiration Harvesting Chemical Energy ATP Cellular Respiration Harvesting Chemical Energy ATP 2006-2007 What s the point? The point is to make ATP! ATP 2006-2007 Harvesting stored energy Energy is stored in organic molecules carbohydrates, fats,

More information

PHM142 Energy Production + The Mitochondria

PHM142 Energy Production + The Mitochondria PHM142 Energy Production + The Mitochondria 1 The Endosymbiont Theory of Mitochondiral Evolution 1970: Lynn Margulis Origin of Eukaryotic Cells Endosymbiant Theory: the mitochondria evolved from free-living

More information

Ch. 9 Cellular Respiration Stage 2 & 3: Oxidation of Pyruvate Krebs Cycle

Ch. 9 Cellular Respiration Stage 2 & 3: Oxidation of Pyruvate Krebs Cycle Ch. 9 Cellular Respiration Stage 2 & 3: Oxidation of Pyruvate Krebs Cycle 2006-2007 Glycolysis is only the start Glycolysis glucose pyruvate 6C Pyruvate has more energy to yield 3 more C to strip off (to

More information

NAME KEY ID # EXAM 3a BIOC 460. Wednesday April 10, Please include your name and ID# on each page. Limit your answers to the space provided!

NAME KEY ID # EXAM 3a BIOC 460. Wednesday April 10, Please include your name and ID# on each page. Limit your answers to the space provided! EXAM 3a BIOC 460 Wednesday April 10, 2002 Please include your name and ID# on each page. Limit your answers to the space provided! 1 1. (5 pts.) Define the term energy charge: Energy charge refers to the

More information

Chapter 9. Cellular Respiration: Harvesting Chemical Energy

Chapter 9. Cellular Respiration: Harvesting Chemical Energy Chapter 9 Cellular Respiration: Harvesting Chemical Energy Living cells require energy from outside sources Energy flows into an ecosystem as sunlight and leaves as heat Photosynthesis generates O 2 and

More information

CITRIC ACID CYCLE ERT106 BIOCHEMISTRY SEM /19 BY: MOHAMAD FAHRURRAZI TOMPANG

CITRIC ACID CYCLE ERT106 BIOCHEMISTRY SEM /19 BY: MOHAMAD FAHRURRAZI TOMPANG CITRIC ACID CYCLE ERT106 BIOCHEMISTRY SEM 1 2018/19 BY: MOHAMAD FAHRURRAZI TOMPANG Chapter Outline (19-1) The central role of the citric acid cycle in metabolism (19-2) The overall pathway of the citric

More information

CH 7: Cell Respiration and Fermentation Overview. Concept 7.1: Catabolic pathways yield energy by oxidizing organic fuels

CH 7: Cell Respiration and Fermentation Overview. Concept 7.1: Catabolic pathways yield energy by oxidizing organic fuels CH 7: Cell Respiration and Fermentation Overview Living cells require energy from outside sources Some animals obtain energy by eating plants, and some animals feed on other organisms Energy flows into

More information

Citric Acid Cycle and Oxidative Phosphorylation

Citric Acid Cycle and Oxidative Phosphorylation Citric Acid Cycle and Oxidative Phosphorylation Bởi: OpenStaxCollege The Citric Acid Cycle In eukaryotic cells, the pyruvate molecules produced at the end of glycolysis are transported into mitochondria,

More information

Chapter 27 Bioenergetics; How the Body Converts Food to Energy

Chapter 27 Bioenergetics; How the Body Converts Food to Energy Chapter 27 Bioenergetics; How the Body Converts Food to Energy 1 Metabolism Metabolism: The sum of all chemical reactions involved in maintaining the dynamic state of a cell or organism. Pathway: A series

More information

BY: RASAQ NURUDEEN OLAJIDE

BY: RASAQ NURUDEEN OLAJIDE BY: RASAQ NURUDEEN OLAJIDE LECTURE CONTENT INTRODUCTION CITRIC ACID CYCLE (T.C.A) PRODUCTION OF ACETYL CoA REACTIONS OF THE CITIRC ACID CYCLE THE AMPHIBOLIC NATURE OF THE T.C.A CYCLE THE GLYOXYLATE CYCLE

More information

Physiological Chemistry II Exam IV Dr. Melissa Kelley April 13, 2004

Physiological Chemistry II Exam IV Dr. Melissa Kelley April 13, 2004 Name Write your name on the back of the exam Physiological Chemistry II Exam IV Dr. Melissa Kelley April 13, 2004 This examination consists of forty-four questions, each having 2 points. The remaining

More information

Vocabulary. Chapter 19: The Citric Acid Cycle

Vocabulary. Chapter 19: The Citric Acid Cycle Vocabulary Amphibolic: able to be a part of both anabolism and catabolism Anaplerotic: referring to a reaction that ensures an adequate supply of an important metabolite Citrate Synthase: the enzyme that

More information

Energy Production In A Cell (Chapter 25 Metabolism)

Energy Production In A Cell (Chapter 25 Metabolism) Energy Production In A Cell (Chapter 25 Metabolism) Large food molecules contain a lot of potential energy in the form of chemical bonds but it requires a lot of work to liberate the energy. Cells need

More information

BIOLOGY. Cellular Respiration and Fermentation CAMPBELL. Photosynthesis in chloroplasts. Light energy ECOSYSTEM. Organic molecules CO 2 + H 2 O

BIOLOGY. Cellular Respiration and Fermentation CAMPBELL. Photosynthesis in chloroplasts. Light energy ECOSYSTEM. Organic molecules CO 2 + H 2 O 9 Cellular Respiration and Fermentation CAMPBELL BIOLOGY TENTH EDITION Reece Urry Cain Wasserman Minorsky Jackson Lecture Presentation by Nicole Tunbridge and Kathleen Fitzpatrick Figure 9.1 Figure 9.2

More information

ATP. Principles of Energy Harvest. Chapter 9~ The point is to make ATP! Cellular Respiration: Harvesting Chemical Energy. What s the point?

ATP. Principles of Energy Harvest. Chapter 9~ The point is to make ATP! Cellular Respiration: Harvesting Chemical Energy. What s the point? Chapter 9~ Cellular Respiration: Harvesting Chemical Energy What s the point? The point is to make! 2006-2007 Principles of Energy Harvest Catabolic pathway Fermentation Cellular Respiration C6H126 + 62

More information

Marah Bitar. Faisal Nimri ... Nafeth Abu Tarboosh

Marah Bitar. Faisal Nimri ... Nafeth Abu Tarboosh 8 Marah Bitar Faisal Nimri... Nafeth Abu Tarboosh Summary of the 8 steps of citric acid cycle Step 1. Acetyl CoA joins with a four-carbon molecule, oxaloacetate, releasing the CoA group and forming a six-carbon

More information

BIOLOGY. Cellular Respiration and Fermentation CAMPBELL. Reece Urry Cain Wasserman Minorsky Jackson

BIOLOGY. Cellular Respiration and Fermentation CAMPBELL. Reece Urry Cain Wasserman Minorsky Jackson CAMPBELL BIOLOGY TENTH EDITION Reece Urry Cain Wasserman Minorsky Jackson 9 Cellular Respiration and Fermentation Lecture Presentation by Nicole Tunbridge and Kathleen Fitzpatrick Figure 9.2 Light energy

More information

How Cells Harvest Chemical Energy

How Cells Harvest Chemical Energy How Cells Harvest Chemical Energy Global Athlete Outreach Program US CytoThesis Systems Medicine Center www.cytothesis.us US OncoTherapy Systems BioMedicine Group CytoThesis Bioengineering Research Group

More information

7/5/2014. Microbial. Metabolism. Basic Chemical Reactions Underlying. Metabolism. Metabolism: Overview

7/5/2014. Microbial. Metabolism. Basic Chemical Reactions Underlying. Metabolism. Metabolism: Overview PowerPoint Lecture Presentations prepared by Mindy Miller-Kittrell, North Carolina State University Basic Chemical Reactions Underlying Metabolism Metabolism C H A P T E R 5 Microbial Metabolism Collection

More information

Chapter 9 Cellular Respiration Overview: Life Is Work Living cells require energy from outside sources

Chapter 9 Cellular Respiration Overview: Life Is Work Living cells require energy from outside sources Chapter 9 Cellular Respiration Overview: Life Is Work Living cells require energy from outside sources Some animals, such as the giant panda, obtain energy by eating plants, and some animals feed on other

More information

Part III => METABOLISM and ENERGY. 3.6 Oxidative Phosphorylation 3.6a Electron Transport 3.6b ATP Synthesis

Part III => METABOLISM and ENERGY. 3.6 Oxidative Phosphorylation 3.6a Electron Transport 3.6b ATP Synthesis Part III => METABOLISM and ENERGY 3.6 Oxidative Phosphorylation 3.6a Electron Transport 3.6b ATP Synthesis Section 3.6a: Electron Transport Synopsis 3.6a - During processes such as glycolysis and Krebs

More information

Cellular Respiration Harvesting Chemical Energy ATP

Cellular Respiration Harvesting Chemical Energy ATP Cellular Respiration Harvesting Chemical Energy ATP 2006-2007 What s the point? The point is to make ATP! ATP 2006-2007 Harvesting stored energy Energy is stored in organic molecules carbohydrates, fats,

More information

Chapter 9: Cellular Respiration Overview: Life Is Work. Living cells. Require transfusions of energy from outside sources to perform their many tasks

Chapter 9: Cellular Respiration Overview: Life Is Work. Living cells. Require transfusions of energy from outside sources to perform their many tasks Chapter 9: Cellular Respiration Overview: Life Is Work Living cells Require transfusions of energy from outside sources to perform their many tasks Biology, 7 th Edition Neil Campbell and Jane Reece The

More information

Reading Assignments. A. Energy and Energy Conversions. Lecture Series 9 Cellular Pathways That Harvest Chemical Energy. gasoline) or elevated mass.

Reading Assignments. A. Energy and Energy Conversions. Lecture Series 9 Cellular Pathways That Harvest Chemical Energy. gasoline) or elevated mass. Lecture Series 9 Cellular Pathways That Harvest Chemical Energy Reading Assignments Review Chapter 3 Energy, Catalysis, & Biosynthesis Read Chapter 13 How Cells obtain Energy from Food Read Chapter 14

More information

9/10/2012. The electron transfer system in the inner membrane of mitochondria in plants

9/10/2012. The electron transfer system in the inner membrane of mitochondria in plants LECT 6. RESPIRATION COMPETENCIES Students, after mastering the materials of Plant Physiology course, should be able to: 1. To explain the process of respiration (the oxidation of substrates particularly

More information

Chapter 8. An Introduction to Microbial Metabolism

Chapter 8. An Introduction to Microbial Metabolism Chapter 8 An Introduction to Microbial Metabolism The metabolism of microbes Metabolism sum of all chemical reactions that help cells function Two types of chemical reactions: Catabolism -degradative;

More information

Electron Transfer Chain

Electron Transfer Chain Molecular Biochemistry I Electron Transfer Chain Contents of this page: Electron transfer reactions Electron carriers Respiratory chain Electron Transfer is discussed on p. 555-556, 571-574 and 802-820

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) What is the term for metabolic pathways that release stored energy by breaking down complex

More information