Active and Passive Immunization for Avian Influenza Virus Infections

Size: px
Start display at page:

Download "Active and Passive Immunization for Avian Influenza Virus Infections"

Transcription

1 NIAID Active and Passive Immunization for Avian Influenza Virus Infections Kanta Subbarao, MD, MPH Laboratory of Infectious Diseases NIAID, NIH

2 Immortalizing H5 HA-Specific Memory B Cells Collection of PBMC from 4 Vietnamese adults who recovered from H5N1 influenza infection >14 months after onset of illness Memory B cells were seeded cells/well in a 96 U-bottom plate in the presence of CpG (polyclonal activator of memory B cells), EBV, and irradiated mononuclear cells IgG+ memory B cells were isolated by binding to CD22 microbeads, followed by depletion of IgM+, IgD+ and IgA+ cells by FACS Screening of culture supernatants for H5 HA-specific antibodies Cloning of positive cultures by limiting dilution Antibody purification by affinity chromatography

3 Cross-neutralizing activity of H5 hmabs against H5N1 viruses NEUTRALIZING AB TITER AGAINST ANTIBODIES H3N2 HK97 HK03 VN04 JPH05 INA05 A146 mab <10 <10 <10 <10 <10 <10 Sheep anti-sera < FLA5.10 < <10 FLA3.14 < FLD20.19 < FLD21.14 <10 32 > <10 An undetectable titer is assigned a value of <10 Simmons PLoS Medicine 2007

4 Efficacy of Immunoprophylaxis: Survival

5 Immunoprophylaxis: Virus titers Mean virus titer (log 10 TCID 50 /g) *p<0.01 vs D2.2 ** p<0.001 vs D2.2 Lower limit of detection D2.2 FLA3.14 FLA5.10 D2.2 FLA3.14 FLA5.10 D 2 post-infection D 4 post-infection

6 Histopathology in mice challenged with H5N1 virus following immunoprophylaxis Irrelevant MAb D2.2 H5 MAb FLA5.10 MAb D2.2 H5 MAb FLA5.10 MAb D2.2 X100 H5 Mab FLA5.10 X100

7 Histopathological analysis of the lung Ab received Mouse # Normal bronchioles Bronchioles with Lesions Bronchiolar Necrosis D /11 (36%) 7/11 (64%) 7/11 (64%) 2 3/12 (25%) 9/12 (75%) 9/12 (75%) FLA /10 (60%) 4/10 (40%) 4/10 (40%) 2 13/13 (100%) 0/13 (0%) 0/13 (0%) FLA /10 (90%) 1/10 (10%) 0/10 (0%) 2 8/12 (67%) 4/12 (33%) 4/12 (33%)

8 Efficacy of H5 Mabs administered 24, 48 and 72 h after infection with 5LD 50 VN/04

9 Summary of Studies on H5 HA MAbs The technology can be used to generate human MAbs against emerging pathogens In addition to the 4 MAbs described in detail, 7 additional MAbs have been selected The MAbs against the H5 HA had neutralizing activity in vitro and in vivo The MAbs were efficacious in prophylaxis in mice The MAbs were efficacious in therapy in mice against homologous and heterologous viruses, even when administered 72 h after virus infection

10 Implications and Future Studies A cocktail of MAbs could be used for post-exposure prophylaxis or as an adjunct to antiviral therapy Mapping the epitopes to which the MAbs bind Extend preclinical data Proceed with clinical development

11 Options for Vaccines for Pandemic Influenza Principle: Induction of a protective immune response against the hemagglutinin protein. Inactivated vaccine: a reassortant virus containing HA and NA from avian virus (or an antigenically similar Surrogate virus) and internal genes from A/PR/8/34 Live attenuated cold-adapted (ca) vaccine: a reassortant prepared with master ca strain A/Ann Arbor/6/60 used in FluMist Purified expressed HA protein HA expressed in a vectored vaccine e.g. adenovirus DNA vaccine encoding the HA and?other genes from the avian virus

12 Development of Vaccines against Avian Influenza Viruses with Pandemic Potential Correlates of protection are known Antibodies directed against the HA and?na are critical for protection Systemic immune response is strain specific Mucosal immune response provides broader cross protection Cellular immunity for viral clearance Human influenza vaccine experience suggests that the vaccine strain must closely match the circulating strain However, it is not possible to predict which avian influenza strain will cross the species barrier The significance of antigenic drift among avian influenza viruses is not known Avian HAs are poorly immunogenic in humans H5 and H7 HAs may bear a multibasic cleavage site that makes them lethal for poultry and chicken embryos

13 Challenges in the Development of Pandemic Influenza Vaccines Diversity of avian influenza viruses Different subtypes: H1-H16, N1-N9 HPAI vs LPAI Eurasian vs North American lineages among many HA subtypes Antigenic drift caused by natural infection or vaccine use Animal models: mice, ferrets, others? Evaluation of candidate vaccines (safety and immunogenicity are evaluated but efficacy is not) Assays for immunogenicity are not sensitive and not standardized and correlates of protection are not known Avian HAs appear to be poorly immunogenic; high doses or multiple doses of HA or adjuvant are needed Others Biosafety restrictions Lack of reagents for quality control Use of reverse genetics Subbarao & Joseph Nature Rev Imm 2007

14 Goal of a Pandemic Influenza Vaccine To prevent severe illness and death from pandemic influenza and it s complications. An ideal influenza vaccine will induce a rapid systemic and mucosal immune response directed at the HA, NA and conserved internal proteins of the virus protect against a broad range of influenza viruses, within a subtype and across subtypes In practical terms, our goal is to generate a vaccine that rapidly induces a cross-reactive neutralizing antibody response

15 Pandemic Influenza Vaccines Generated by Genetic Reassortment Vaccine donor virus with phenotype of attenuation or high growth in eggs PB2 PB1 PA HA NP NA M NS PB2 PB1 PA HA NP NA M NS Avian influenza virus PB2 PB1 PA HA NP NA M NS Reassortant vaccine virus with phenotype of attenuation or high growth in eggs

16 Live Attenuated Pandemic Influenza Vaccines ts Subtype (# evaluated) ca att Immunogenicity Efficacy Mice Ferrets Mice Ferrets H5 (3) H6 (3) H7 (1) H9 (1)

17 Attenuation In chickens: if HA derived from HPAI In mice: lethality (if relevant) virus replication in respiratory tract In ferrets: virus replication in the respiratory tract

18 The H5N1 ca Reassortant Viruses are not Highly Pathogenic for Chickens Virus # inoculated # died Mean time to death 1997, 2003 and 2004 H5N1 wt days 1997 H5N1 ca H5N1 ca H5N1 ca week-old SPF White Plymouth Rock chickens were inoculated intravenously with a 1:10 dilution of stock virus ( /ml) and observed for 10 days.

19 The 2004 H5N1 ca vaccine candidate is attenuated for mice and does not spread to the brain Lungs Nasal turbinates Brain Mean virus titer in log 10 TCID 50 /g A/VN/2004 (H5N1) wt A/VN/2004 (H5N1) ca H1N1 Beijing/95 ca H3N2 Panama/99 ca Days following virus administration Suguitan PLoS Medicine 2006

20 Immunogenicity In mice and in ferrets Following one dose or two doses Tested against homologous and heterologous viruses

21 Two doses of H5N1 ca vaccines are required to elicit serum neutralizing Ab titers in mice Immunizing virus Doses Geometric mean serum neutralizing Ab titers against indicated virus 1997 wt 2003 wt 2004 wt A/VN/2004 ca A/HK/2003 ca Sera were collected before (prebleed) and 28 days following each dose of vaccine; an undetectable titer is assigned a value of 10

22 ELISA and Nt Ab response to 1 or 2 doses of the 2004 H5N1 ca vaccine # of doses of vaccine s Nt Ab titer vs homologous wt H5N1 virus ELISA Ab titer vs recombinant H5 HA , ,100 Two doses of 10 6 TCID 50 of H5N ca virus was administered i.n. 4 weeks apart Sera were collected before (prebleed) and 28 days following each dose of vaccine; an undetectable titer was assigned a value of 10; prevaccination titers were 10

23 Efficacy In mice and in ferrets Following one dose or two doses Tested against homologous and heterologous viruses Efficacy against lethal challenge Protection from pulmonary replication or systemic spread of challenge virus

24 A Single Dose of H5N1 ca Vaccine Protects Mice from Lethal Challenge with 50, 500 or 5000 LD 50 of Homologous and Heterologous Wild-type H5N1 Viruses H5N wt challenge H5N wt challenge ca 2003 ca 2004 ca ca 2003 ca 2004 ca Percent survival Mock immunized Mock immunized Days following administration of challenge virus Suguitan PLoS Medicine 2006

25 Complete Protection from Pulmonary Replication of wt H5N1 Challenge Viruses is Conferred by 2 doses of the 2004 H5N1 ca Vaccine Single dose Immunization: Two doses Mean virus titer (log 10 TCID 50 /g) Mock H5N1 VN 2004/AA ca H5N wt wt 2003 wt Challenge Virus 2004 wt Vaccine dose: 10 6 TCID 50 per dose 2004 H5N1 ca; Challenge virus dose: 10 5 TCID 50 of wt virus

26 2 Doses of H5N1 ca Vaccines Provide Complete Protection from Pulmonary Replication of Homologous and Heterologous wt H5N1 Viruses 8 Mean virus titer in lungs (log10 TCID50/g) Mock H5N1 97 ca H5N ca H5N ca HK/491/97 HK/213/2003 VN/1203/2004 Indo/5/2005 H5N1 wt Challenge: Homologous Virus Heterologous Virus Suguitan PLoS Medicine 2006

27 Goals of the Pandemic Influenza Vaccine Program Generate and evaluate a library of vaccines against viruses of each subtype (H2, H4-16) to protect humans against pandemic influenza Proceed to clinical trials to evaluate safety, infectivity and immunogenicity in healthy adults Bank sera from vaccinated volunteers to test against avian viruses that emerge in humans Determine the significance of antigenic differences among avian influenza viruses in humans Program: CRADA with MedImmune Vaccines, collaboration with CIR, Johns Hopkins Univ. Approach: Live attenuated vaccines Evaluation: In inpatients

28 Acknowledgements Laura, Amorsolo, Josie, Tomy, Catherine, Celia, and Kim (and Mike) Jack Vaccines: LID: Brian Murphy SEPRL, USDA: David Swayne and Joan Beck MedImmune: George Kemble, Hong Jin, Bin Lu CIR, JHU: Ruth Karron Comparative Medicine Branch, NIAID, NIH MAbs: Antonio Lanzavecchia and Nadia Bernasconi, IRB, Switzerland Cameron Simmons, Oxford Unit, Ho Chi Minh City, VietNam Jerrold Ward, Comparative Medicine Branch, NIAID, NIH Hana Golding and Surender Khurana, CBER, FDA

H5N1 and H7 LAIV-IAV Prime-Boost Studies

H5N1 and H7 LAIV-IAV Prime-Boost Studies NIAID H5N1 and H7 LAIV-IAV Prime-Boost Studies Kanta Subbarao, MD, MPH NIAID, NIH The LID Pandemic Influenza Vaccine Program Program: CRADA with MedImmune Clinical Trials: Center for Immunization Research,

More information

Application of Reverse Genetics to Influenza Vaccine Development

Application of Reverse Genetics to Influenza Vaccine Development NIAID Application of Reverse Genetics to Influenza Vaccine Development Kanta Subbarao Laboratory of Infectious Diseases NIAID, NIH Licensed Vaccines for Influenza Principle: Induction of a protective

More information

Studying Repeated Immunization in an Animal Model. Kanta Subbarao Laboratory of Infectious Diseases, NIAID

Studying Repeated Immunization in an Animal Model. Kanta Subbarao Laboratory of Infectious Diseases, NIAID Studying Repeated Immunization in an Animal Model Kanta Subbarao Laboratory of Infectious Diseases, NIAID Animal models in Influenza Research Commonly used Mice Ferrets Guinea pigs Non human primates Less

More information

A Live Attenuated H7N7 Candidate Vaccine Virus Induces Neutralizing Antibody That Confers Protection from Challenge in Mice, Ferrets, and Monkeys

A Live Attenuated H7N7 Candidate Vaccine Virus Induces Neutralizing Antibody That Confers Protection from Challenge in Mice, Ferrets, and Monkeys JOURNAL OF VIROLOGY, Nov. 2010, p. 11950 11960 Vol. 84, No. 22 0022-538X/10/$12.00 doi:10.1128/jvi.01305-10 Copyright 2010, American Society for Microbiology. All Rights Reserved. A Live Attenuated H7N7

More information

Live Attenuated Influenza Vaccine. I. Background and Seasonal Vaccine

Live Attenuated Influenza Vaccine. I. Background and Seasonal Vaccine Live Attenuated Influenza Vaccine I. Background and Seasonal Vaccine Influenza infection stimulates multiple arms of the immune system Systemic antibody to HA and NA, and multiple internal proteins Mucosal

More information

Min Levine, Ph. D. Influenza Division US Centers for Disease Control and Prevention. June 18, 2015 NIBSC

Min Levine, Ph. D. Influenza Division US Centers for Disease Control and Prevention. June 18, 2015 NIBSC Workshop on Immunoassay Standardization for Universal Flu Vaccines Min Levine, Ph. D. Influenza Division US Centers for Disease Control and Prevention June 18, 2015 NIBSC 1 Multiple Immune Mechanisms Contribute

More information

Clinical Trials of Pandemic Vaccines: Key Issues. John Treanor University of Rochester Rochester, NY

Clinical Trials of Pandemic Vaccines: Key Issues. John Treanor University of Rochester Rochester, NY Clinical Trials of Pandemic Vaccines: Key Issues John Treanor University of Rochester Rochester, NY Inactivated vaccine approach Proven technology Used successfully in 1957 and 1968 Abundant efficacy data

More information

7/14/2014 VACCINE-INDUCED ANTI-HA2 ANTIBODIES PROMOTE VIRUS FUSION AND ENHANCE INFLUENZA VIRUS RESPIRATORY DISEASE (VAERD)

7/14/2014 VACCINE-INDUCED ANTI-HA2 ANTIBODIES PROMOTE VIRUS FUSION AND ENHANCE INFLUENZA VIRUS RESPIRATORY DISEASE (VAERD) 7/14/214 VACCINATION & ENHANCED DISEASE VACCINE-INDUCED ANTI-HA2 ANTIBODIES PROMOTE VIRUS FUSION AND ENHANCE INFLUENZA VIRUS RESPIRATORY DISEASE (VAERD) HANA GOLDING & SURENDER KHURANA DIVISION OF VIRAL

More information

Development of live attenuated pediatric RSV vaccines

Development of live attenuated pediatric RSV vaccines Development of live attenuated pediatric RSV vaccines Laboratory of Infectious Diseases, NIAID, NIH (Ursula Buchholz, Peter Collins) Center for Immunization Research, JHU (Ruth Karron) Infant with RSV

More information

Cristina Cassetti, Ph.D.

Cristina Cassetti, Ph.D. NIAID Extramural Research Update: Recombinant Influenza Viruses and Biosafety Cristina Cassetti, Ph.D. Influenza Program Officer Division of Microbiology and Infectious Diseases NIAID Influenza virus DMID

More information

Strategies for control of influenza by targeting broadly conserved viral features

Strategies for control of influenza by targeting broadly conserved viral features Strategies for control of influenza by targeting broadly conserved viral features Forum on Microbial Threats Institute of Medicine June 16, 2004 Suzanne Epstein, Ph.D. Laboratory of Immunology and Developmental

More information

(the change introduced is to add a risk assessment, missing from the previous version, for small-scale laboratory work with characterized CVV)

(the change introduced is to add a risk assessment, missing from the previous version, for small-scale laboratory work with characterized CVV) Update of WHO biosafety risk assessment and guidelines for the production and quality control of human influenza vaccines against avian influenza A(H7N9) virus As of 23 May 2013 (replaces version of 10

More information

WHO biosafety risk assessment and guidelines for the production and quality control of human influenza pandemic vaccines: Update

WHO biosafety risk assessment and guidelines for the production and quality control of human influenza pandemic vaccines: Update WHO biosafety risk assessment and guidelines for the production and quality control of human influenza pandemic vaccines: Update 23 July 2009 Introduction This document updates guidance 1 from the World

More information

Immunogenicity of Avian Influenza H7N9 Virus in Birds

Immunogenicity of Avian Influenza H7N9 Virus in Birds Immunogenicity of Avian Influenza H7N9 Virus in Birds Identification of Viral Epitopes Recognized by the Immune System Following Vaccination and Challenge Darrell R. Kapczynski US DEPARTMENT OF AGRICULTURE,

More information

24 26 January 2013, Hong Kong SAR, CHINA. TITLE from VIEW and SLIDE MASTER February 27, 2013

24 26 January 2013, Hong Kong SAR, CHINA. TITLE from VIEW and SLIDE MASTER February 27, 2013 The first WHO integrated meeting on development and clinical trials of influenza vaccines that induce broadly protective and long-lasting immune responses 24 26 January 2013, Hong Kong SAR, CHINA 1 TITLE

More information

GSK s Adjuvanted Influenza Vaccines The Taming of the Flu

GSK s Adjuvanted Influenza Vaccines The Taming of the Flu GSK s Adjuvanted Influenza Vaccines The Taming of the Flu JITMM, Bangkok, October 2008 Bruce L. Innis, MD Global Clinical Research and Development GlaxoSmithKline Biologicals 1 Annual Burden of Influenza

More information

Influenza or flu is a

Influenza or flu is a Clinical and Research Area Infectious Diseases Influenza Virus Types A and B Influenza or flu is a respiratory illness that is caused by influenza viruses. Influenza viruses type A and type B cause seasonal

More information

Broadly protective influenza vaccines for pandemic preparedness. Suresh Mittal Department of Comparative Pathobiology Purdue University

Broadly protective influenza vaccines for pandemic preparedness. Suresh Mittal Department of Comparative Pathobiology Purdue University Broadly protective influenza vaccines for pandemic preparedness Suresh Mittal Department of Comparative Pathobiology Purdue University Influenza A Virus Orthomyxovirus Consist of s/s (-) sense RNA 8 segments

More information

Avian influenza and pandemic threats

Avian influenza and pandemic threats Avian influenza and pandemic threats Philippe BUCHY MD, PhD Head of Virology Unit Director NIC Cambodia Vaccinology 2013 Bangkok, 11-13 November 2013 Influenza viruses Influenza viruses (Orthomyxoviridae)

More information

Nanoparticulate Vaccine Design: The VesiVax System

Nanoparticulate Vaccine Design: The VesiVax System Nanoparticulate Vaccine Design: The VesiVax System Gary Fujii, Ph.D. President and CEO Molecular Express, Inc. May 16, 2006 Orlando, Florida Influenza Each year up to 20% of the world's population contracts

More information

100 years of Influenza Pandemic and the prospects for new influenza vaccines

100 years of Influenza Pandemic and the prospects for new influenza vaccines 100 years of Influenza Pandemic and the prospects for new influenza vaccines Dr John McCauley Director, WHO Collaborating Centre for Reference and Research on influenza The Francis Crick Institute London

More information

Public health relevant virological features of Influenza A(H7N9) causing human infection in China

Public health relevant virological features of Influenza A(H7N9) causing human infection in China Public health relevant virological features of Influenza A(H7N9) causing human infection in China Address requests about publications of the WHO Regional Office for Europe to: Publications WHO Regional

More information

Hemagglutinin-stalk specific antibodies: How to induce them and how to measure them

Hemagglutinin-stalk specific antibodies: How to induce them and how to measure them Immunodominant head domain Stalk domain Hemagglutinin-stalk specific antibodies: How to induce them and how to measure them Florian Krammer Icahn School of Medicine at Mount Sinai May 5 th 2014 2 nd WHO

More information

Update of WHO biosafety risk assessment and guidelines for the production and quality control of human influenza pandemic vaccines

Update of WHO biosafety risk assessment and guidelines for the production and quality control of human influenza pandemic vaccines Update of WHO biosafety risk assessment and guidelines for the production and quality control of human influenza pandemic vaccines 28 May 2009 Introduction This document updates WHO guidance 1 to national

More information

Update on influenza monitoring and vaccine development

Update on influenza monitoring and vaccine development Update on influenza monitoring and vaccine development Annette Fox WHO Collaborating Centre for Reference and Research on Influenza at The Peter Doherty Institute for Infection and Immunity 1 Outline Why

More information

Gene Vaccine Dr. Sina Soleimani

Gene Vaccine Dr. Sina Soleimani Gene Vaccine Dr. Sina Soleimani Human Viral Vaccines Quality Control Laboratory (HVVQC) Titles 1. A short Introduction of Vaccine History 2. First Lineage of Vaccines 3. Second Lineage of Vaccines 3. New

More information

Cover Page. The handle holds various files of this Leiden University dissertation

Cover Page. The handle   holds various files of this Leiden University dissertation Cover Page The handle http://hdl.handle.net/1887/35908 holds various files of this Leiden University dissertation Author: Soema, Peter Title: Formulation of influenza T cell peptides : in search of a universal

More information

Supporting Information

Supporting Information Supporting Information Valkenburg et al. 10.1073/pnas.1403684111 SI Materials and Methods ELISA and Microneutralization. Sera were treated with Receptor Destroying Enzyme II (RDE II, Accurate) before ELISA

More information

Development of safe and immunogenic reassortant viruses with 5:3 genotype for live attenuated influenza vaccine

Development of safe and immunogenic reassortant viruses with 5:3 genotype for live attenuated influenza vaccine Development of safe and immunogenic reassortant viruses with 5:3 genotype for live attenuated influenza vaccine Irina Isakova-Sivak, PhD Institute of Experimental Medicine, Saint Petersburg, Russia The

More information

Biotechnology-Based Vaccines. Dr. Aws Alshamsan Department of Pharmaceutics Office: AA87 Tel:

Biotechnology-Based Vaccines. Dr. Aws Alshamsan Department of Pharmaceutics Office: AA87 Tel: Biotechnology-Based Vaccines Dr. Aws Alshamsan Department of Pharmaceutics Office: AA87 Tel: 4677363 aalshamsan@ksu.edu.sa Objectives of this lecture By the end of this lecture you will be able to: 1.

More information

PATH Influenza Vaccine Projects

PATH Influenza Vaccine Projects PATH Influenza Vaccine Projects Overview John W. Boslego, MD John Boslego Director, Vaccine Development Global Program March 25 th, 2014 Influenza Vaccine Project (IVP) at PATH IVP Goal: Advance the development

More information

VIROLOGY OF INFLUENZA. Subtypes: A - Causes outbreak B - Causes outbreaks C - Does not cause outbreaks

VIROLOGY OF INFLUENZA. Subtypes: A - Causes outbreak B - Causes outbreaks C - Does not cause outbreaks INFLUENZA VIROLOGY OF INFLUENZA Subtypes: A - Causes outbreak B - Causes outbreaks C - Does not cause outbreaks PATHOGENICITY High pathogenicity avian influenza (HPAI) Causes severe disease in poultry

More information

Innate-adaptive immunity duo as a regimen for conferring rapid-sustained-broad protection against pathogens

Innate-adaptive immunity duo as a regimen for conferring rapid-sustained-broad protection against pathogens Innate-adaptive immunity duo as a regimen for conferring rapid-sustained-broad protection against pathogens De-chu Christopher Tang, PhD VaxDome LLC Dallas, Texas September 29, 15 A litany of demands for

More information

Heat-killed Lactobacillus casei

Heat-killed Lactobacillus casei Heat-killed Lactobacillus casei confers broad protection against influenza A virus primary infection and develops heterosubtypic immunity against future secondary infection Yu-Jin Jung, Young-Tae Lee,

More information

Heterosubtypic neutralizing antibodies are produced by individuals immunized with a seasonal influenza vaccine

Heterosubtypic neutralizing antibodies are produced by individuals immunized with a seasonal influenza vaccine Heterosubtypic neutralizing antibodies are produced by individuals immunized with a seasonal influenza vaccine Davide Corti,, Kanta Subbarao, Antonio Lanzavecchia J Clin Invest. 2010;120(5):1663-1673.

More information

Pandemic Influenza influenza epidemic: realization of a worst-case scenario

Pandemic Influenza influenza epidemic: realization of a worst-case scenario Pandemic Influenza October 9, 2006 1918 influenza epidemic: realization of a worst-case scenario First case: Albert Mitchell, Camp Funston, KS, March 11, 1918 Up to 20% of all humans infected 20-50 million

More information

Prophylactic and Therapeutic Efficacy of Human Monoclonal Antibodies against H5N1 Influenza

Prophylactic and Therapeutic Efficacy of Human Monoclonal Antibodies against H5N1 Influenza PLoS MEDICINE Prophylactic and Therapeutic Efficacy of Human Monoclonal Antibodies against H5N1 Influenza Cameron P. Simmons 1[, Nadia L. Bernasconi 2[, Amorsolo L. Suguitan Jr. 3[, Kimberly Mills 3[,

More information

REVIEW Cell-mediated Immunity to Influenza Virus Infections: From the Perspective to the Vaccine Development against Highly Pathogenic Avian Influenza

REVIEW Cell-mediated Immunity to Influenza Virus Infections: From the Perspective to the Vaccine Development against Highly Pathogenic Avian Influenza JARQ 42 (4), 245 249 (2008) http://www.jircas.affrc.go.jp REVIEW : From the Perspective to the Vaccine Development against Highly Pathogenic Avian Influenza Hirokazu HIKONO 1 *, Masaji MASE 2, Satoko WATANABE

More information

Influenza: Ecology and Continuing Evolution

Influenza: Ecology and Continuing Evolution Influenza: Ecology and Continuing Evolution Robert G. Webster, PhD Division of Virology Department of Infectious Diseases St. Jude Children s s Research Hospital Influenza Virus Negative sense RNA virus

More information

C E E Z A D. Rational Development of Influenza Vaccines: NDV-based influenza vaccines for poultry and livestock

C E E Z A D. Rational Development of Influenza Vaccines: NDV-based influenza vaccines for poultry and livestock C E E Z A D Center of Excellence for Emerging and Zoonotic Animal Diseases A Department of Homeland Security Center of Excellence Rational Development of Influenza Vaccines: NDV-based influenza vaccines

More information

Acute respiratory illness This is a disease that typically affects the airways in the nose and throat (the upper respiratory tract).

Acute respiratory illness This is a disease that typically affects the airways in the nose and throat (the upper respiratory tract). Influenza glossary Adapted from the Centers for Disease Control and Prevention, US https://www.cdc.gov/flu/glossary/index.htm and the World Health Organization http://www.wpro.who.int/emerging_diseases/glossary_rev_sept28.pdf?ua=1

More information

UNIVERSAL INFLUENZA VIRUS VACCINES Adolfo García Sastre. Icahn School of Medicine at Mount Sinai, New York

UNIVERSAL INFLUENZA VIRUS VACCINES Adolfo García Sastre. Icahn School of Medicine at Mount Sinai, New York UNIVERSAL INFLUENZA VIRUS VACCINES Adolfo García Sastre Icahn School of Medicine at Mount Sinai, New York INFLUENZA VIRUSES PAx B EPIDEMIOLOGY OF HUMAN INFLUENZA VIRUSES A H1N1 H3N2 1968 H2N2 1957 H1N1

More information

Influenza: Seasonal, Avian, and Otherwise

Influenza: Seasonal, Avian, and Otherwise Influenza: Seasonal, Avian, and Otherwise Lisa Winston, MD University of California, San Francisco San Francisco General Hospital Influenza biology Antiviral medications Seasonal influenza Vaccination

More information

Patricia Fitzgerald-Bocarsly

Patricia Fitzgerald-Bocarsly FLU Patricia Fitzgerald-Bocarsly October 23, 2008 Orthomyxoviruses Orthomyxo virus (ortho = true or correct ) Negative-sense RNA virus (complementary to mrna) Five different genera Influenza A, B, C Thogotovirus

More information

The humoral immune responses to IBV proteins.

The humoral immune responses to IBV proteins. The humoral immune responses to IBV proteins. E. Dan Heller and Rosa Meir The Hebrew University of Jerusalem, Israel COST FA1207 meeting WG2 + WG3, Budapest, Jan. 2015 1 IBV encodes four major structural

More information

Vaccine 30 (2012) Contents lists available at SciVerse ScienceDirect. Vaccine. jou rn al h om epa ge:

Vaccine 30 (2012) Contents lists available at SciVerse ScienceDirect. Vaccine. jou rn al h om epa ge: Vaccine 30 (2012) 7395 7399 Contents lists available at SciVerse ScienceDirect Vaccine jou rn al h om epa ge: www.elsevier.com/locate/vaccine Possible outcomes of reassortment in vivo between wild type

More information

Influenza: The past, the present, the (future) pandemic

Influenza: The past, the present, the (future) pandemic Influenza: The past, the present, the (future) pandemic Kristin Butler, MLS (ASCP) cm Department of Clinical Laboratory Sciences Louisiana Health Sciences Center - Shreveport Fall 2017 Objectives 1) Detail

More information

Incorporating virologic data into seasonal and pandemic influenza vaccines

Incorporating virologic data into seasonal and pandemic influenza vaccines Incorporating virologic data into seasonal and pandemic influenza vaccines Kanta Subbarao WHO Collaborating Centre for Reference and Research on Influenza & Department of Microbiology and Immunology, University

More information

Current Strategies in HIV-1 Vaccine Development Using Replication-Defective Adenovirus as a Case Study

Current Strategies in HIV-1 Vaccine Development Using Replication-Defective Adenovirus as a Case Study Note: I have added some clarifying comments to the slides -- please click on Comments under View to see them. Current Strategies in HIV-1 Vaccine Development Using Replication-Defective Adenovirus as a

More information

7/14/2014. Multiple immune effector mechanisms contribute to protection influenza. What is a correlate of protection?

7/14/2014. Multiple immune effector mechanisms contribute to protection influenza. What is a correlate of protection? What is a correlate of protection? Immunological Assessment of Influenza Vaccines and Correlates of Protection Jacqueline Katz Influenza Division Centers for Disease Control and Prevention Defined immune

More information

1918 Influenza; Influenza A, H1N1. Basic agent information. Section I- Infectious Agent. Section II- Dissemination

1918 Influenza; Influenza A, H1N1. Basic agent information. Section I- Infectious Agent. Section II- Dissemination 1918 Influenza; Influenza A, H1N1 Basic agent information Section I- Infectious Agent Risk Group: - RG3 Synonym or Cross reference: - Spanish Flu - 1918 Flu - El Grippe Characteristics: - SELECT AGENT

More information

Introduction to Avian Influenza

Introduction to Avian Influenza Introduction to Avian Influenza David L. Suarez D.V.M., Ph.D. Research Leader Exotic and Emerging Avian Viral Disease Research Unit Agricultural Research Service United States Department of Agriculture

More information

An Exploration to Determine if Fab Molecules are Efficacious in Neutralizing Influenza H1 and H3 Subtypes. Nick Poulton June September 2012

An Exploration to Determine if Fab Molecules are Efficacious in Neutralizing Influenza H1 and H3 Subtypes. Nick Poulton June September 2012 An Exploration to Determine if Fab Molecules are Efficacious in Neutralizing Influenza H1 and H3 Subtypes Nick Poulton June 2012- September 2012 Epidemiology of Influenza Infection Causes between 250,000

More information

Nature Immunology: doi: /ni Supplementary Figure 1. Infection strategy.

Nature Immunology: doi: /ni Supplementary Figure 1. Infection strategy. Supplementary Figure 1 Infection strategy. To test the antibody responses against influenza viruses, animals were sequentially infected with two divergent strains of the same subtype. For H1N1 infections,

More information

Hemagglutinin (HA) and neuraminidase (NA), the major envelope

Hemagglutinin (HA) and neuraminidase (NA), the major envelope RESEARCH ARTICLE Antibody Pressure by a Human Monoclonal Antibody Targeting the 2009 Pandemic H1N1 Virus Hemagglutinin Drives the Emergence of a Virus with Increased Virulence in Mice Christopher D. O

More information

Quality, safety and standards for poliomyelitis vaccines

Quality, safety and standards for poliomyelitis vaccines Quality, safety and standards for poliomyelitis vaccines 7 th WHO/UNICEF consultation Geneva, 30 October 2008 Jackie Fournier-Caruana, WHO/QSS 1 Expert Committee on Biological Standardization The ECBS

More information

Meta Analysis: Blood Products for Spanish Influenza Pneumonia: A Future H5N1 Treatment?

Meta Analysis: Blood Products for Spanish Influenza Pneumonia: A Future H5N1 Treatment? Meta Analysis: Blood Products for Spanish Influenza Pneumonia: A Future H5N1 Treatment? Luke TC, Kilbane EM, Jackson JE, Hoffman SL. Annals of Internal Medicine. 2006 Oct 17;145(8):599-609. Annual Death

More information

The Impact of Pandemic Influenza on Public Health

The Impact of Pandemic Influenza on Public Health This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike License. Your use of this material constitutes acceptance of that license and the conditions of use of materials on this

More information

Evaluation of Three Live Attenuated H2 Pandemic Influenza Vaccine Candidates in Mice and Ferrets

Evaluation of Three Live Attenuated H2 Pandemic Influenza Vaccine Candidates in Mice and Ferrets Evaluation of Three Live Attenuated H2 Pandemic Influenza Vaccine Candidates in Mice and Ferrets Grace L. Chen, a Elaine W. Lamirande, a Xing Cheng, b Fernando Torres-Velez, c Marlene Orandle, c Hong Jin,

More information

Risk Assessment of H3N2 Avian Origin Canine Influenza Viruses

Risk Assessment of H3N2 Avian Origin Canine Influenza Viruses Risk Assessment of H3N2 Avian Origin Canine Influenza Viruses Henry Wan, Ph.D. Department of Basic Sciences College of Veterinary Medicine Mississippi State University E-mail: wan@cvm.msstate.edu Phone:

More information

Reverse genetic platform for inactivated and live-attenuated influenza vaccine

Reverse genetic platform for inactivated and live-attenuated influenza vaccine EXPERIMENTAL and MOLECULAR MEDICINE, Vol. 42, No. 2, 116-121, February 2010 Reverse genetic platform for inactivated and live-attenuated influenza vaccine Eun-Ju Jung, Kwang-Hee Lee and Baik Lin Seong

More information

Combinatorial Vaccines for AIDS and other Infectious Diseases

Combinatorial Vaccines for AIDS and other Infectious Diseases Dale and Betty Bumpers Vaccine Research Center National Institute of Allergy and Infectious Diseases National Institutes of Health Department of Health and Human Services Combinatorial Vaccines for AIDS

More information

The influenza A viruses of swine in Japan, Thailand, and Vietnam

The influenza A viruses of swine in Japan, Thailand, and Vietnam The influenza A viruses of swine in Japan, Thailand, and Vietnam Nobuhiro Takemae and Takehiko Saito Influenza and Prion diseases research center, National Institute of Animal Health, National Agriculture

More information

Introduction. In the past 15 years, several technological advancements have open new perspectives and applications in the field of vaccinology.

Introduction. In the past 15 years, several technological advancements have open new perspectives and applications in the field of vaccinology. Introduction In the past 15 years, several technological advancements have open new perspectives and applications in the field of vaccinology. - Genomics: fasten antigen discovery for complex pathogens

More information

Zheng, BJ; Du, LY; Zhao, GY; Lin, YP; Sui, HY; Chan, C; Ma, S; Guan, Y; Yuen, KY. Citation Hong Kong Medical Journal, 2008, v. 14 suppl. 4, p.

Zheng, BJ; Du, LY; Zhao, GY; Lin, YP; Sui, HY; Chan, C; Ma, S; Guan, Y; Yuen, KY. Citation Hong Kong Medical Journal, 2008, v. 14 suppl. 4, p. Title Studies of SARS virus vaccines Author(s) Zheng, BJ; Du, LY; Zhao, GY; Lin, YP; Sui, HY; Chan, C; Ma, S; Guan, Y; Yuen, KY Citation Hong Kong Medical Journal, 2008, v. 14 suppl. 4, p. 39-43 Issued

More information

Supplemental Information Dose Response Parameters for Gain of Function Pathogens

Supplemental Information Dose Response Parameters for Gain of Function Pathogens Supplemental Information Dose Response Parameters for Gain of Function Pathogens Infection Dose-Response To quantify the likelihood of an individual or animal becoming infected from exposure to virus,

More information

Possible Modes of Transmission of Avian Viruses to People: Studies in Experimental Models

Possible Modes of Transmission of Avian Viruses to People: Studies in Experimental Models Possible Modes of Transmission of Avian Viruses to People: Studies in Experimental Models Jackie Katz and Terry Tumpey Influenza Division CDC, Atlanta, Georgia David E. Swayne USDA/Agricultural Research

More information

Potential Role of Exposure to Poultry Products and By-products for Human H5N1 infections

Potential Role of Exposure to Poultry Products and By-products for Human H5N1 infections Potential Role of Exposure to Poultry Products and By-products for Human HN infections David E. Swayne, A. Lipatov, Y.K. Kwon, M. Jackwood & J. Beck USDA/Agricultural Research Service Southeast Poultry

More information

NASDAQ:NVAX Novavax, Inc. All rights reserved.

NASDAQ:NVAX Novavax, Inc. All rights reserved. Novavax vaccine induced improved immune responses against homologous and drifted A(H3N2) viruses in older adults compared to egg-based, high-dose, influenza vaccine World Vaccine Congress April 4, 2018

More information

Global Pandemic Preparedness Research Efforts. Klaus Stöhr. WHO Global Influenza Programme. Today

Global Pandemic Preparedness Research Efforts. Klaus Stöhr. WHO Global Influenza Programme. Today Global Pandemic Preparedness Research Efforts Klaus Stöhr 3 Today Medium-term applied research linked to medical and public health interventions addressing the current pandemic situation in Asia Natural

More information

Technology Overview. Summary

Technology Overview. Summary Live Attenuated Influenza Vaccines with Altered NS1 Technology Overview Summary Transformative Technology: Live attenuated influenza vaccines (LAIVs) with precise, genetically stable truncations of the

More information

Original Article Development and Sequence Analysis of a Cold-Adapted Strain of Influenza A/New Caledonia/20/1999(H1N1) Virus

Original Article Development and Sequence Analysis of a Cold-Adapted Strain of Influenza A/New Caledonia/20/1999(H1N1) Virus Iranian Journal of Virology 2011;5(4): 6-10 2011, Iranian Society for Virology Original Article Development and Sequence Analysis of a Cold-Adapted Strain of Influenza A/New Caledonia/20/1999(H1N1) Virus

More information

H5N1 Vaccine-Specific B Cell Responses in Ferrets Primed with Live Attenuated Seasonal Influenza Vaccines

H5N1 Vaccine-Specific B Cell Responses in Ferrets Primed with Live Attenuated Seasonal Influenza Vaccines -Specific B Cell Responses in Ferrets Primed with Live Attenuated Seasonal Influenza Vaccines Xing Cheng 1., Michael Eisenbraun 1.,QiXu 1, Helen Zhou 1, Deepali Kulkarni 1, Kanta Subbarao 2, George Kemble

More information

Russian-backbone LAIV history and clinical development. L.Rudenko Institute of Experimental Medicine, St. Petersburg, Russia

Russian-backbone LAIV history and clinical development. L.Rudenko Institute of Experimental Medicine, St. Petersburg, Russia Russian-backbone LAIV history and clinical development L.Rudenko Institute of Experimental Medicine, St. Petersburg, Russia EFFECTIVENESS OF LIVE COLD-ADAPTED INFLUENZA VACCINE FOR ADULTS. SUMMARY FROM

More information

ORTHOMYXOVIRUSES INFLUENZA VIRUSES. (A,B and C)

ORTHOMYXOVIRUSES INFLUENZA VIRUSES. (A,B and C) ORTHOMYXOVIRUSES INFLUENZA VIRUSES (A,B and C) Orthomyxoviridae Influenza Viruses Epidemiology: Influenza A virus is so subjected to major antigenic changes that cause occasional world wide pandemics when

More information

TOWARDS A UNIVERSAL INFLUENZA VIRUS VACCINE

TOWARDS A UNIVERSAL INFLUENZA VIRUS VACCINE TOWARDS A UNIVERSAL INFLUENZA VIRUS VACCINE Peter Palese Icahn School of Medicine at Mount Sinai New York OPTIONS IX 8-26-16 ISIRV - Options IX for the Control of Influenza Peter Palese, PhD Professor

More information

Evaluation of Live Attenuated Influenza A Virus H6 Vaccines in Mice and Ferrets

Evaluation of Live Attenuated Influenza A Virus H6 Vaccines in Mice and Ferrets JOURNAL OF VIROLOGY, Jan. 2009, p. 65 72 Vol. 83, No. 1 0022-538X/09/$08.00 0 doi:10.1128/jvi.01775-08 Copyright 2009, American Society for Microbiology. All Rights Reserved. Evaluation of Live Attenuated

More information

Synthetic Genomics and Its Application to Viral Infectious Diseases. Timothy Stockwell (JCVI) David Wentworth (JCVI)

Synthetic Genomics and Its Application to Viral Infectious Diseases. Timothy Stockwell (JCVI) David Wentworth (JCVI) Synthetic Genomics and Its Application to Viral Infectious Diseases Timothy Stockwell (JCVI) David Wentworth (JCVI) Outline Using informatics to predict drift (strain selection) Synthetic Genomics: Preparedness

More information

An avian live attenuated master backbone for potential use in epidemic and pandemic influenza vaccines

An avian live attenuated master backbone for potential use in epidemic and pandemic influenza vaccines Journal of General Virology (2008), 89, 2682 2690 DOI 10.1099/vir.0.2008/004143-0 An avian live attenuated master backbone for potential use in epidemic and pandemic influenza vaccines Danielle Hickman,3

More information

Viral vaccines. Lec. 3 أ.د.فائزة عبد هللا مخلص

Viral vaccines. Lec. 3 أ.د.فائزة عبد هللا مخلص Lec. 3 أ.د.فائزة عبد هللا مخلص Viral vaccines 0bjectives 1-Define active immunity. 2-Describe the methods used for the preparation of attenuated live & killed virus vaccines. 3- Comparison of Characteristics

More information

SCIENTIFIC DISCUSSION

SCIENTIFIC DISCUSSION SCIENTIFIC DISCUSSION 1. SUMMARY OF THE DOSSIER Nobilis Influenza H5N2 emulsion for injection, is an adjuvanted, inactivated vaccine against avian influenza type A, subtype H5 in chickens. Avian influenza

More information

Pandemic Influenza Preparedness

Pandemic Influenza Preparedness Pandemic Influenza Preparedness Of the many health threats that we are preparing for, this is the one that we know will happen. Bruce G. Gellin, MD, MPH Director, National Vaccine Program Office Department

More information

COMMITTEE FOR PROPRIETARY MEDICINAL PRODUCTS (CPMP) POINTS TO CONSIDER ON THE DEVELOPMENT OF LIVE ATTENUATED INFLUENZA VACCINES

COMMITTEE FOR PROPRIETARY MEDICINAL PRODUCTS (CPMP) POINTS TO CONSIDER ON THE DEVELOPMENT OF LIVE ATTENUATED INFLUENZA VACCINES The European Agency for the Evaluation of Medicinal Products Evaluation of Medicines for Human Use London, 20 February 2003 COMMITTEE FOR PROPRIETARY MEDICINAL PRODUCTS (CPMP) POINTS TO CONSIDER ON THE

More information

Review on vectored influenza vaccines. Sarah Gilbert Jenner Institute Oxford

Review on vectored influenza vaccines. Sarah Gilbert Jenner Institute Oxford Review on vectored influenza vaccines Sarah Gilbert Jenner Institute Oxford Viral Vectored Influenza Vaccines Can be used to induce antibodies against HA Will also boost CD4 + T cell responses against

More information

INFLUENZA-2 Avian Influenza

INFLUENZA-2 Avian Influenza INFLUENZA-2 Avian Influenza VL 7 Dec. 9 th 2013 Mohammed El-Khateeb Overview 1. Background Information 2. Origin/History 3. Brief overview of genome structure 4. Geographical Distribution 5. Pandemic Nature

More information

Agricultural Outlook Forum Presented: February 16, 2006 THE CURRENT STATE OF SCIENCE ON AVIAN INFLUENZA

Agricultural Outlook Forum Presented: February 16, 2006 THE CURRENT STATE OF SCIENCE ON AVIAN INFLUENZA Agricultural Outlook Forum Presented: February 16, 2006 THE CURRENT STATE OF SCIENCE ON AVIAN INFLUENZA David L. Suarez Southeast Poultry Research Laboratory, Exotic and Emerging Avian Viral Diseases Research

More information

Ralf Wagner Paul-Ehrlich-Institut

Ralf Wagner Paul-Ehrlich-Institut www.pei.de Other Assays for the Detection of Neuraminidase (NA)-Specific Antibodies Ralf Wagner Paul-Ehrlich-Institut Overview to presented assays Assay principle based on: Chemical substrates: Protein

More information

For the control of avian influenza

For the control of avian influenza OIE Regional Expert Group Meeting for the Control of Avian influenza in Asia Sapporo, 3-5 October 2017 For the control of avian influenza Hiroshi Kida Hokkaido University Research Center for Zoonosis Control

More information

Zoonotic potential of non-avian influenza A viruses

Zoonotic potential of non-avian influenza A viruses Laboratory of Virology Faculty of Veterinary Medicine Ghent University, Belgium Zoonotic potential of non-avian influenza A viruses Prof. Kristien Van Reeth (1) Several documented cases of influenza virus

More information

A Mouse Model for the Evaluation of Pathogenesis and Immunity to Influenza A (H5N1) Viruses Isolated from Humans

A Mouse Model for the Evaluation of Pathogenesis and Immunity to Influenza A (H5N1) Viruses Isolated from Humans JOURNAL OF VIROLOGY, July 1999, p. 5903 5911 Vol. 73, No. 7 0022-538X/99/$04.00 0 Copyright 1999, American Society for Microbiology. All Rights Reserved. A Mouse Model for the Evaluation of Pathogenesis

More information

Universal Influenza Vaccine Development

Universal Influenza Vaccine Development Dale and Betty Bumpers Vaccine Research Center National Institute of Allergy and Infectious Diseases National Institutes of Health Universal Influenza Vaccine Development 2016 Global Vaccine and Immunization

More information

OFFLU swine influenza virus meeting March 2017 FAO Headquarters, Rome, Italy. Amy Vincent USDA-ARS National Animal Disease Center

OFFLU swine influenza virus meeting March 2017 FAO Headquarters, Rome, Italy. Amy Vincent USDA-ARS National Animal Disease Center OFFLU swine influenza virus meeting 27 28 arch 217 FAO Headquarters, Rome, Italy Amy Vincent USDA-ARS National Animal Disease Center 1 USDA IAV-S Surveillance DC Quarterly Summary Q1FY17 H1 H3 Delta-1

More information

The A(H7N9) influenza outbreak in China

The A(H7N9) influenza outbreak in China Viruses in May, Katoomba, 9 11 May 2013 The A(H7N9) influenza outbreak in China Anne Kelso Director WHO Collaborating Centre for Reference and Research on Influenza Melbourne Influenza in the 21 st century:

More information

Regulatory Challenges to Production of Veterinary Influenza Vaccines in Human Facilities

Regulatory Challenges to Production of Veterinary Influenza Vaccines in Human Facilities Regulatory Challenges to Production of Veterinary Influenza Vaccines in Human Facilities Dr Laszlo Palkonyay World Health Organization Quality, Safety and Standards Team 5th Meeting with International

More information

Vaccine. Design and Manufacturing. Liting Bi. https://en.wikipedia.org/wiki/vaccine

Vaccine. Design and Manufacturing. Liting Bi. https://en.wikipedia.org/wiki/vaccine Vaccine Design and Manufacturing Liting Bi https://en.wikipedia.org/wiki/vaccine 1 Outline Vaccine Intro. 4 Vaccine Types 2 Manufacturing Methods 2 Tests & Applications Take-home messages 2 https://www.youtube.com/watch?v=t_me5ef0ne4

More information

Challenges and Solutions for the Next Generation of Vaccines: Jonathan Liu Luis Maranga Sachin Mani Richard Schwartz

Challenges and Solutions for the Next Generation of Vaccines: Jonathan Liu Luis Maranga Sachin Mani Richard Schwartz Challenges and Solutions for the Next Generation of Vaccines: Development of fcell llculture-based dlive Attenuated t Influenza Vaccine VACCINE TECHNOLOGY II June 1, 2008 Albufeira (near Faro), Algarve,

More information

Laboratory Diagnosis of Avian Influenza and Newcastle Disease

Laboratory Diagnosis of Avian Influenza and Newcastle Disease Laboratory Diagnosis of Avian Influenza and Newcastle Disease Dennis A. Senne dennis.a.senne@aphis.usda.gov (515) 239-7551 U. S. Department of Agriculture, Animal and Plant Health Inspection Service, Veterinary

More information

Experiences with Live Attenuated Avian Influenza Vaccine Trials in Thailand

Experiences with Live Attenuated Avian Influenza Vaccine Trials in Thailand Experiences with Live Attenuated Avian Influenza Vaccine Trials in Thailand Punnee Pitisuttithum, MBBS,DTM&H,FRCPT Vaccine Trial Center,Faculty of Tropical Medicine, Mahidol University For MOPH,CDC,MU,Geneva

More information

Evolution of influenza

Evolution of influenza Evolution of influenza Today: 1. Global health impact of flu - why should we care? 2. - what are the components of the virus and how do they change? 3. Where does influenza come from? - are there animal

More information

What is the role of animal models in studying protective titres and the need for establishing surrogates/correlates of protection?

What is the role of animal models in studying protective titres and the need for establishing surrogates/correlates of protection? What is the role of animal models in studying protective titres and the need for establishing surrogates/correlates of protection? Alan D.T. Barrett Department of Pathology and Sealy Center for Vaccine

More information