Lyme Disease: A Mathematical Approach

Size: px
Start display at page:

Download "Lyme Disease: A Mathematical Approach"

Transcription

1 July 21, 2015

2 Overview Biology of Lyme Disease 1 Biology of Lyme Disease Borrelia burgdoferi Ixodes scapularis Hosts 2 3 Age-Structured Tick Class Model 4 Age-Structured Tick Class & Seasonality Model

3 Borrelia burgdoferi Ixodes scapularis Hosts Why is Lyme Disease Important to Study? The shortening of Winter in the North led to the following: Warmer temperatures have been predicted to both enhance transmission intensity and extend the distribution of diseases such a malaria and dengue as well. Climate change may open up previously uninhabitable territory for arthropod vectors as well as increase reproductive and biting rates, and shorten the pathogen incubation period.

4 Borrelia burgdoferi Ixodes scapularis Hosts Borrelia Burgdoferi

5 Borrelia burgdoferi Ixodes scapularis Hosts Ixodes scapularis Ixodes scapularis, the black-legged tick Can be found throughout the country including Texas Take a blood meal every time they molt Once infected, they are infected for life Must attach for 36 hours to transmit the bacteria No vertical transmission Questing season is changing due to climate change

6 Borrelia burgdoferi Ixodes scapularis Hosts Figure of Life cycle:

7 Borrelia burgdoferi Ixodes scapularis Hosts White footed Mouse, Peromyscus leucopus

8 Biology of Lyme Disease Borrelia burgdoferi Ixodes scapularis Hosts Unidentified Alternate Host

9 Borrelia burgdoferi Ixodes scapularis Hosts 1 Recent data shows that ticks quest at two distinct heights 2 This will help narrow down the search for the other hosts

10 for

11 di M = α β M (1 i M )i T µ M i M dt ) di T dt = β T (1 i T ) ((αi M ) + (1 α)i A µ T i T di A dt = (1 α) β A (1 i A )i T δ 1 µ A i A

12 with Seasonality di M = α β M (1 i M )i T µ M i M dt ) di T dt = β T (1 i T ) ((αi M ) + (1 α)i A µ T i T di A dt = δ 1(1 α) β A (1 i A )i T δ 1 µ A i A

13 middle 2 3 : δ 1 = { 1 if 61 t Otherwise

14 Parameters Parameter Definition ρ M Birth rate of the mice into the susceptible class ρ T Birth rate of the ticks into the susceptible class ρ A Birth rate of the alternate host into the susceptible class β M Contact Transmission Rate for the mice β T Contact Transmission Rate for the Tick β A Contact Transmission Rate for the alternate host α Proportion of the the ticks that have a preference for questing at lower heights µ M Death rate for the Mouse class µ T Death rate for the Tick class µ A Death rate for the Alternate Host class Table: Table of Variables & Parameters for

15 Basic Reproduction Number of a Infection The nondimensionalized system was reduced and rearranged into an equation for R 0, which determines whether or not there will be an epidemic. If R 0 < 1 then the disease will eventually die out of the population. If R 0 = 1 the disease remains at a constant level in the population. If R 0 > 1 the level of disease in the population will increase until there is an epidemic.

16 R 0 := α 2 β M β T µ A + (1 α) 2 β A β T µ M µ M µ T µ A

17 Scenarios in which the overall R 0 > 1 and an epidemic will occur in the community. for 10 years for 10 years 0.6 Infected Mouse 0.5 Infected Mouse Infected Tick Infected Tick 0.5 Infected Alternate 0.45 Infected Alternate Proportion of Total Population Proportion of Total Population Time (Days) Time (Days)

18 Overall R 0 > 1 and an epidemic occurs for 10 years for 10 years Infected Mouse Infected Tick Infected Mouse Infected Tick 0.3 Infected Alternate 0.25 Infected Alternate Proportion of Total Population Proportion of Total Population Time (Days) Time (Days)

19 Scenarios in which the overall R 0 > 1 and an epidemic will occur in the community Cont. for 10 years for 10 years Proportion of Total Population Infected Mouse Infected Tick Infected Alternate Proportion of Total Population Infected Mouse Infected Tick Infected Alternate Time (Days) Time (Days)

20 Overall R 0 < 1 and the disease dies out 0.1 for 10 years 0.1 for 10 years Infected Mouse 0.09 Infected Tick Infected Alternate 0.09 Proportion of Total Population Proportion of Total Population Infected Mouse Infected Tick Infected Alternate Time (Days) Time (Days)

21 Adding an invading species with R 0 > 1 can increase the level of infection for the initial host

22 Three Tick Stages

23 Modeling the Spread of Lyme Disease Diagram that incorporates Criss-Cross Infection

24 Modeling the Spread of Lyme Disease di M dt di TL dt di TN E dt = αβ M (1 i M )i TN µ M i M (1a) = β TL (1 i TL )i M η TL i TL µ TL i TL (1b) ) = β TN (1 i TN E i TN ) (αi M + (1 α)i A η TN i TN E µ TN i TN E (1c) di TN dt di TA = η TL i TL η TN i TN µ TN i TN (1d) = η TN (i TN + i TN E ) µ TA i TA (1e) dt ) di A dt = β A(1 i A ) (i TA + (1 α)i TN µ A i A (1f)

25 Parameters Parameter Definition ρ M Birth rate of the mice into the susceptible class ρ T Birth rate of the ticks into the susceptible class ρ A Birth rate of the alternate host into the susceptible Larvae class β M Contact Transmission Rate for the mice β TL Contact Transmission Rate for the larval tick β TN Contact Transmission Rate for the nymphal tick β A Contact Transmission Rate for the alternate host η TL Rate that the larvae molt into nymphs η TN Rate that the larvae nymphs into adults α Proportion of the the ticks that have a preference for questing at lower heights µ M Death rate for the Mouse class µ T Death rate for the Tick class µ A Death rate for the Alternate Host class Table: Table of Variables & Parameters for Model with 3 Tick Classes

26 Basic Reproduction Number of a Infection R 0 := { αβ M β L η TL max µ M (η TL + µ TL )(η TN + µ TN ), } β TN (1 α)β A η TN (η TN + µ TN )µ TA µ A

27 To illustrate that the disease will be endemic in the alternate host. We chose variables in the following manner in the following manner: higher β M lower β TL, β TN, and β A

28 Model with 3 Tick Classes α = 1, β M =.21, β TL =.00041, β TN =.00041, β A =.00041, R 0 = Model with 3 Tick Classes for 10 years 0.8 Proportion of Total Population Infected Mouse Infected larvae Exposed Nymph Infected Nypmh Infected Adult Infected Alternate Time (Days)

29 Model with 3 Tick Classes α = 1, β M =.01, β TL =.0041, β TN =.0041, β A =.0041, R 0 = Model with 3 Tick Classes for 10 years Proportion of Total Population Infected Mouse Infected larvae Exposed Nymph Infected Nypmh Infected Adult Infected Alternate Time (Days)

30 It s very beneficial for the mice to be able to sustain the disease, but not necessary. If the the disease is endemic to the mice population, then it s very likely that the disease will be endemic for the alternate host population.

31 Modeling the Spread of Lyme Disease di M dt di TL dt di TN E dt = δ 3 αβ M (1 i M )i TN µ M i M (2a) = δ 1 β TL (1 i TL )i M η TL i TL µ TL i TL (2b) ) = δ 3 β TN (1 i TN E i TN ) (αi M + (1 α)i A η TN i TN E µ TN i TN E (2c) di TN dt di TA = η TL i TL η TN i TN µ TN i TN (2d) = η TN (i TN + i TN E ) µ TA i TA (2e) dt ) di A dt = β A(1 i A ) (δ 5 i TA + δ 3 (1 α)i TN µ A i A (2f)

32 { 1 if active>182 active<283 δ 1 = 0 not active { 1 : active>119 and active<283 δ 3 = 0 not active { 1 active>274 active<346 oractive>41 active<161 δ 5 = 0 not active

33

34 Basic Reproduction Number of a Infection R 0 := 0 0 t 121 αβ M β TL η TL 121 t 274 (η TL + µ TL )(η TN + η TN )µ M { } αβ M β L η TL max µ M (η TL + µ TL )(η TN + µ TN ), β TN (1 α)β A η TN 274 t 283 (η TN + µ TN )µ TA µ A t t 365

35 Model with Seasonality: α = 1, β M =.0011, β TL =.0011, β TN =.0011, β A =.0011, R 0 =.8693 Proportion of Total Population Model with 3 Tick Classes and Seasonality for 10 years Infected Mouse Infected larvae Exposed Nymph Infected Nypmh Infected Adult Infected Alternate Time (Days)

36 Model with Seasonality: α =.5, β M =.011, β TL =.011, β TN =.011, β A =.011, R 0 =.7561 Proportion of Total Population Model with 3 Tick Classes and Seasonality for 10 years Infected Mouse Infected larvae Exposed Nymph Infected Nypmh Infected Adult Infected Alternate Time (Days)

37 Model with Seasonality: α = 0, β M =.0011, β TL =.0011, β TN =.0011, β A =.0011, R 0 =.7036 Proportion of Total Population Model with 3 Tick Classes and Seasonality for 10 years Infected Mouse Infected larvae Exposed Nymph Infected Nypmh Infected Adult Infected Alternate Time (Days)

38 Lyme disease is found in mice in Texas at low levels. The model indicates that it s very likely that there is a larger host that is also an effective carrier.

39 References Branda JA, Rosenberg ES Borrelia miyamotoi: A Lesson in Disease Discovery. Ann Intern Med. 159: Fukunaga M Genetic and Phenotypic Analysis of Borrelia miyamotoi sp. nov., Isolated from the Ixodid Tick Ixodes persulcatus, the Vector for Lyme Disease in Japan. Int. J. Syst. Bacteriol. 45: Rollend, L Transovarial transmission of Borrelia spirochetes by Ixodes scapularis: a summary of the literature and recent observations. Ticks Tick-borne Dis. 4(12):46-51.

40 References Cont. Anderson, J., L. Magnarelli Vertebrate host relationships and distribution of ixodid ticks (Acari: Ixodidae) in Connecticut, USA. Journal of Medical Entomology, 17: Bertrand, M., M. Wilson Microclimate-dependent survival of unfed adult Ixodes scapularis (Acari: Ixodidae) in nature: life cycle and study design implications. Journal of Medical Entomology. 33:

Lyme disease Overview

Lyme disease Overview Infectious Disease Epidemiology BMTRY 713 (A. Selassie, Dr.PH) Lecture 22 Lyme Disease Learning Objectives 1. Describe the agent and vector of Lyme Disease 2. Identify the geographic and temporal patterns

More information

Lyme disease Overview

Lyme disease Overview Infectious Disease Epidemiology BMTRY 713 (A. Selassie, DrPH) Lecture 21 Lyme Disease Learning Objectives 1. Describe the agent and vector of Lyme Disease 2. Identify the geographic and temporal patterns

More information

Effects of Climate on Variability in Lyme Disease Incidence in the Northeastern United States

Effects of Climate on Variability in Lyme Disease Incidence in the Northeastern United States American Journal of Epidemiology Copyright 2003 by the Johns Hopkins Bloomberg School of Public Health All rights reserved Vol. 157, No. 6 Printed in U.S.A. DOI: 10.1093/aje/kwg014 Effects of Climate on

More information

The Mathematical Epidemiology of Human Babesiosis in the North-Eastern United States

The Mathematical Epidemiology of Human Babesiosis in the North-Eastern United States The Mathematical Epidemiology of Human Babesiosis in the North-Eastern United States Jessica Dunn 2014 The Mathematical Epidemiology of Human Babesiosis in the North-Eastern United States Jessica Dunn

More information

Tickborne Disease Case Investigations

Tickborne Disease Case Investigations Massachusetts Department of Public Health Bureau of Infectious Disease and Laboratory Sciences Tickborne Disease Case Investigations Anthony Osinski, MPH May 31, 2018 Factors Associated with Increasing

More information

Ticks. Tick identification SEASONAL OCCURRENCE / LIFE CYCLE. Seasonal occurrence. Life cycle. Ticks: Tick identification

Ticks. Tick identification SEASONAL OCCURRENCE / LIFE CYCLE. Seasonal occurrence. Life cycle. Ticks: Tick identification Ticks Tick identification Authors: Prof Maxime Madder, Prof Ivan Horak, Dr Hein Stoltsz Licensed under a Creative Commons Attribution license. SEASONAL OCCURRENCE / LIFE CYCLE Seasonal occurrence Long

More information

LYME DISEASE SPIROCHETE TRANSMISSION BETWEEN CO-FEEDING LARVAL AND NYMPHAL TICKS UNDER NATURAL CONDITIONS

LYME DISEASE SPIROCHETE TRANSMISSION BETWEEN CO-FEEDING LARVAL AND NYMPHAL TICKS UNDER NATURAL CONDITIONS LYME DISEASE SPIROCHETE TRANSMISSION BETWEEN CO-FEEDING LARVAL AND NYMPHAL TICKS UNDER NATURAL CONDITIONS ERICA DOLVEN-KOLLE University of Minnesota Morris, Morris, MN 56267 USA MENTOR SCIENTISTS: DRS.

More information

Lyme disease in Canada: modelling,, GIS and public health action

Lyme disease in Canada: modelling,, GIS and public health action 1 Lyme disease in Canada: modelling,, GIS and public health action Nick Ogden Centre for Foodborne,, Environmental & Zoonotic Infectious Diseases 2 Talk Outline 1. Lyme disease in Canada: the issue 2.

More information

Ecological and Evolutionary Trends of Lyme disease in the Northeastern United States

Ecological and Evolutionary Trends of Lyme disease in the Northeastern United States Verge 12 Collin Hayes Ecological and Evolutionary Trends of Lyme disease in the Northeastern United States Verge 12 Hayes 2 Introduction Since the first reported outbreak in 1975 in Old Lyme Connecticut,

More information

LESSON 3.2 WORKBOOK. Lesson 3.2: Reservoirs and vectors - Lyme disease and Malaria

LESSON 3.2 WORKBOOK. Lesson 3.2: Reservoirs and vectors - Lyme disease and Malaria Borrelia Burgdorferi DEFINITIONS OF TERMS Asymptomatic carrier: is a person or other organism that has contracted an infectious disease, but has no symptoms. Vector: an organism that transmits a pathogen

More information

Lyme Disease and Tick Surveillance in British Columbia

Lyme Disease and Tick Surveillance in British Columbia Lyme Disease and Tick Surveillance in British Columbia Muhammad Morshed, PhD, SCCM Program Head, Zoonotic Diseases & Emerging Pathogens BCCDC Public Health Microbiology and Reference Laboratory Provincial

More information

EMERGING INFECTIOUS DISEASES DISCLOSURES EMERGING NONE

EMERGING INFECTIOUS DISEASES DISCLOSURES EMERGING NONE EMERGING INFECTIOUS DISEASES DISCLOSURES NONE EMERGING INFECTIOUS DISEASES New, re-emerging, or drug-resistant infections whose incidence: threatens to increase in humans has increased within the past

More information

MATHEMATICAL STUDY OF BITING RATES OF MOSQUITOES IN TRANSMISSION OF DENGUE DISEASE

MATHEMATICAL STUDY OF BITING RATES OF MOSQUITOES IN TRANSMISSION OF DENGUE DISEASE ORIGINAL RESEARCH ARTICLE OPEN ACCESS MATHEMATICAL STUDY OF BITING RATES OF MOSQUITOES IN TRANSMISSION OF DENGUE DISEASE *G. R. Phaijoo, D. B. Gurung Department of Natural Sciences (Mathematics), School

More information

Andrew J. MacDonald 1,2*, David W. Hyon 1, John B. Brewington III 1, Kerry E. O Connor 3, Andrea Swei 3 and Cheryl J. Briggs 1

Andrew J. MacDonald 1,2*, David W. Hyon 1, John B. Brewington III 1, Kerry E. O Connor 3, Andrea Swei 3 and Cheryl J. Briggs 1 MacDonald et al. Parasites & Vectors (2017) 10:7 DOI 10.1186/s13071-016-1938-y RESEARCH Lyme disease risk in southern California: abiotic and environmental drivers of Ixodes pacificus (Acari: Ixodidae)

More information

Climate Change as a Driver for Vector-Borne Disease Emergence

Climate Change as a Driver for Vector-Borne Disease Emergence Climate Change as a Driver for Vector-Borne Disease Emergence C. Ben Beard, Ph.D. Associate Director for Climate Change CDC- National Center for Emerging and Zoonotic Infectious Diseases Chief, Bacterial

More information

2/5/19. Lyme Disease: It s Complicated! Lyme Disease is Worldwide. Lyme Disease: An Immune Response initiated by Borrelia burgdoferi

2/5/19. Lyme Disease: It s Complicated! Lyme Disease is Worldwide. Lyme Disease: An Immune Response initiated by Borrelia burgdoferi Lyme Disease: It s Complicated! Mark J. Soloski, Ph.D. Professor of Medicine Department of Medicine, Division of Rheumatology Co-Director for Basic Research, Lyme Disease Research Center Johns Hopkins

More information

Emerging vector-borne diseases in the United States: What s next and are we prepared?

Emerging vector-borne diseases in the United States: What s next and are we prepared? Emerging vector-borne diseases in the United States: What s next and are we prepared? Lyle R. Petersen, MD, MPH Director Division of Vector-Borne Diseases Centers for Disease Control and Prevention IOM

More information

WHAT WE KNOW ABOUT ANAPLASMOSIS AND BORRELIOSIS AND WHAT WE DO NOT A. Rick Alleman, DVM, PhD, DACVP, DABVP

WHAT WE KNOW ABOUT ANAPLASMOSIS AND BORRELIOSIS AND WHAT WE DO NOT A. Rick Alleman, DVM, PhD, DACVP, DABVP WHAT WE KNOW ABOUT ANAPLASMOSIS AND BORRELIOSIS AND WHAT WE DO NOT A. Rick Alleman, DVM, PhD, DACVP, DABVP Anaplasma phagocytophilum Anaplasma phagocytophilum is an intracellular, gram-negative bacterium

More information

LESSON 3.2 WORKBOOK. Reservoirs and vectors Lyme diseases and Malaria

LESSON 3.2 WORKBOOK. Reservoirs and vectors Lyme diseases and Malaria Reservoir a reservoir typically harbors the infectious agent without injury to itself, and serves as a source from which others can be infecte Asymptomatic carrier is a person or other organism that has

More information

Not currently the time of year, but spring is around the corner. Seems to be in the news every other week. Task forces being formed.

Not currently the time of year, but spring is around the corner. Seems to be in the news every other week. Task forces being formed. 1 2 3 Not currently the time of year, but spring is around the corner. Seems to be in the news every other week. Task forces being formed. Elizabeth May has been a big proponent. Avril Lavigne has come

More information

Tick-borne Disease Surveillance

Tick-borne Disease Surveillance Tick-borne Disease Surveillance Catherine M. Brown, DVM, MSc, MPH Deputy State Epidemiologist and State Public Health Veterinarian Department of Public Health Bureau of Infectious Disease William A. Hinton

More information

How Relevant is the Asymptomatic Population in Dengue Transmission?

How Relevant is the Asymptomatic Population in Dengue Transmission? Applied Mathematical Sciences, Vol. 12, 2018, no. 32, 1699-1708 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/ams.2018.810150 How Relevant is the Asymptomatic Population in Dengue Transmission?

More information

Malaria. Population at Risk. Infectious Disease epidemiology BMTRY 713 (Lecture 23) Epidemiology of Malaria. April 6, Selassie AW (DPHS) 1

Malaria. Population at Risk. Infectious Disease epidemiology BMTRY 713 (Lecture 23) Epidemiology of Malaria. April 6, Selassie AW (DPHS) 1 Infectious Disease Epidemiology BMTRY 713 (A. Selassie, DrPH) Lecture 23 Vector-Borne Disease (Part II) Epidemiology of Malaria Learning Objectives 1. Overview of malaria Global perspectives 2. Identify

More information

The roadmap. Why do we need mathematical models in infectious diseases. Impact of vaccination: direct and indirect effects

The roadmap. Why do we need mathematical models in infectious diseases. Impact of vaccination: direct and indirect effects Mathematical Models in Infectious Diseases Epidemiology and Semi-Algebraic Methods Why do we need mathematical models in infectious diseases Why do we need mathematical models in infectious diseases Why

More information

JOURNAL OF CLINICAL MICROBIOLOGY, Jan. 2000, p Vol. 38, No. 1

JOURNAL OF CLINICAL MICROBIOLOGY, Jan. 2000, p Vol. 38, No. 1 JOURNAL OF CLINICAL MICROBIOLOGY, Jan. 2000, p. 382 388 Vol. 38, No. 1 0095-1137/00/$04.00 0 Temporal Changes in Outer Surface Proteins A and C of the Lyme Disease-Associated Spirochete, Borrelia burgdorferi,

More information

No Time for Lyme: Public Health Approaches to Lyme Disease in Vermont

No Time for Lyme: Public Health Approaches to Lyme Disease in Vermont University of Vermont ScholarWorks @ UVM UVM Honors College Senior Theses Undergraduate Theses 2015 No Time for Lyme: Public Health Approaches to Lyme Disease in Vermont Jessie Gay Follow this and additional

More information

Annual Epidemiological Report

Annual Epidemiological Report August 2018 Annual Epidemiological Report 1 Vectorborne disease in Ireland, 2017 Key Facts 2017: 10 cases of dengue were notified, corresponding to a crude incidence rate (CIR) of 0.2 per 100,000 population

More information

Structured models for dengue epidemiology

Structured models for dengue epidemiology Structured models for dengue epidemiology submitted by Hannah Woodall for the degree of Doctor of Philosophy of the University of Bath Department of Mathematical Sciences September 24 COPYRIGHT Attention

More information

Lec. 5 Virus Transmission Dr. Ahmed K. Ali

Lec. 5 Virus Transmission Dr. Ahmed K. Ali Lec. 5 Virus Transmission Dr. Ahmed K. Ali In order not to die out, viruses must be propagated and transmitted to new hosts in which more virions can be produced. The only other way for the survival of

More information

Reductions in Human Lyme Disease Risk Due to the Effects of Oral Vaccination on Tick-to-Mouse and Mouse-to-Tick Transmission

Reductions in Human Lyme Disease Risk Due to the Effects of Oral Vaccination on Tick-to-Mouse and Mouse-to-Tick Transmission VECTOR-BORNE AND ZOONOTIC DISEASES Volume 13, Number X, 2013 ª Mary Ann Liebert, Inc. DOI: 10.1089/vbz.2012.1003 ORIGINAL ARTICLE Reductions in Human Lyme Disease Risk Due to the Effects of Oral Vaccination

More information

teacher WHAT s ALL ThE BUZZ ABOUT?

teacher WHAT s ALL ThE BUZZ ABOUT? WHAT s ALL ThE BUZZ ABOUT? Vector-Borne Diseases and Climate Change Notes and Helpful Hints: This addendum to the lesson plan What s All the Buzz About: Vector-Borne Diseases and Climate Change is geared

More information

Spatial Analysis of Lyme Disease in Howard County, Maryland

Spatial Analysis of Lyme Disease in Howard County, Maryland Spatial Analysis of Lyme Disease in Howard County, Maryland Methods and Public Health Significance Presented by Stacy Woods PHASE intern, Howard County Health Department May 14, 2010 Lyme Disease Bacteria

More information

INTERVENTION MODEL OF MALARIA

INTERVENTION MODEL OF MALARIA INTERVENTION MODEL OF MALARIA TAYLOR MCCLANAHAN Abstract. Every year up to about 300 million people are infected by malaria, an infectious disease caused by Plasmodium species parasites. Consequently,

More information

Modeling environmental impacts of plankton reservoirs on cholera population dynamics p.1/27

Modeling environmental impacts of plankton reservoirs on cholera population dynamics p.1/27 Modeling environmental impacts of plankton reservoirs on cholera population dynamics Guillaume Constantin de Magny, Jean-François Guégan Génétique et Évolution des Maladies Infectieuses, IRD Montpellier

More information

Vector-Borne Diseases Summary Report

Vector-Borne Diseases Summary Report Vector-Borne Diseases 2016 Summary Report June 2017 Public Health Ontario Public Health Ontario is a Crown corporation dedicated to protecting and promoting the health of all Ontarians and reducing inequities

More information

Disease Transmission Methods

Disease Transmission Methods Disease Transmission Methods In epidemiology, transmission simply means any method by which an infectious agent is spread from one host to another. Knowing the type of pathogen often, but not always, identifies

More information

Manitoba Annual Tick-Borne Disease Report

Manitoba Annual Tick-Borne Disease Report Manitoba Annual Tick-Borne Disease Report 2015 January 1, 2008 to December 31, 2015 Communicable Disease Control Public Health Branch Public Health and Primary Health Care Division Manitoba Health, Seniors

More information

A framework for incorporating the prevention of Lyme disease transmission into the landscape planning and design process

A framework for incorporating the prevention of Lyme disease transmission into the landscape planning and design process A framework for incorporating the prevention of Lyme disease transmission into the landscape planning and design process Sarah E. Ward, Robert D. Brown NOTICE: This is the authors' version of a work that

More information

History of Lyme Disease

History of Lyme Disease History of Lyme Disease ORIGINS OF THE DISEASE Lyme disease was first recognized in the United States in 1975, following a mysterious outbreak of juvenile rheumatoid arthritis near the community of Lyme,

More information

Parasitism. Key concepts. Tasmanian devil facial tumor disease. Immunizing and non-immunizing pathogens. SI, SIS, and SIR epidemics

Parasitism. Key concepts. Tasmanian devil facial tumor disease. Immunizing and non-immunizing pathogens. SI, SIS, and SIR epidemics Parasitism Key concepts Immunizing and non-immunizing pathogens SI, SIS, and SIR epidemics Basic reproduction number, R 0 Tasmanian devil facial tumor disease The Tasmanian devil Sarcophilus harrisii is

More information

It's tick time again! Recognizing black-legged (deer ticks) and measuring the spread of Lyme disease

It's tick time again! Recognizing black-legged (deer ticks) and measuring the spread of Lyme disease It's tick time again! Recognizing black-legged (deer ticks) and measuring the spread of Lyme disease Actual sizes: These guys below (Ixodes scapularis) spread Lyme and other tick born diseases. Ixodes

More information

Strain-specific antibodies reduce co-feeding transmission of the Lyme disease pathogen, Borrelia afzelii

Strain-specific antibodies reduce co-feeding transmission of the Lyme disease pathogen, Borrelia afzelii bs_bs_banner Environmental Microbiology (2015) doi:10.1111/1462-2920.13065 Strain-specific antibodies reduce co-feeding transmission of the Lyme disease pathogen, Borrelia afzelii Maxime Jacquet,* Jonas

More information

Environmental Health and Climate Change: The Case of Lyme Disease

Environmental Health and Climate Change: The Case of Lyme Disease Fordham University DigitalResearch@Fordham Student Theses 2001-2013 Environmental Studies 2009 Environmental Health and Climate Change: The Case of Lyme Disease Matthew Abad Fordham University, envstudies2@fordham.edu

More information

2011 Peabody Museum of Natural History, Yale University. All rights reserved.

2011 Peabody Museum of Natural History, Yale University. All rights reserved. 2011 Peabody Museum of Natural History, Yale University. All rights reserved. Traveling Viruses Part I Purpose To generate a discussion of how diseases can be transmitted. Materials For each student: Disposable

More information

Of Mice, Men and Mosquitoes

Of Mice, Men and Mosquitoes Climate and Health Summit September 20, 2015 Of Mice, Men and Mosquitoes Vector-Borne Infections in a Changing Climate Samantha Ahdoot, MD, FAAP Assistant Professor of Pediatrics Virginia Commonwealth

More information

Epidemiology of Vector-Borne Diseases Laura C. Harrington, PhD

Epidemiology of Vector-Borne Diseases Laura C. Harrington, PhD Epidemiology of Vector- Borne Diseases Associate Professor Department of Entomology Cornell University 1 Before we begin Review lectures on transmission, arboviruses and malaria Focus on biologically transmitted

More information

Ticks and Tick Borne Diseases

Ticks and Tick Borne Diseases Ticks & Lyme Disease Ticks and Tick Borne Diseases Bureau of Workers Compensation PA Training for Health & Safety (PATHS) 1 Topics Introduction to Problem Types Life Cycle Behavior Lyme Disease Signs &

More information

Reservoir Targeted Vaccine for Lyme Borreliosis Induces a Yearlong, Neutralizing Antibody Response to OspA in White-Footed Mice

Reservoir Targeted Vaccine for Lyme Borreliosis Induces a Yearlong, Neutralizing Antibody Response to OspA in White-Footed Mice CLINICAL AND VACCINE IMMUNOLOGY, Nov. 2011, p. 1809 1816 Vol. 18, No. 11 1556-6811/11/$12.00 doi:10.1128/cvi.05226-11 Copyright 2011, American Society for Microbiology. All Rights Reserved. Reservoir Targeted

More information

Climate change and vector-borne diseases of livestock in the tropics. Peter Van den Bossche

Climate change and vector-borne diseases of livestock in the tropics. Peter Van den Bossche Climate change and vector-borne diseases of livestock in the tropics Peter Van den Bossche Climate change & animal health Climate change in Africa: Temperature Rainfall Variability Climate change & animal

More information

ESTIMATION OF THE REPRODUCTION NUMBER OF THE NOVEL INFLUENZA A, H1N1 IN MALAYSIA

ESTIMATION OF THE REPRODUCTION NUMBER OF THE NOVEL INFLUENZA A, H1N1 IN MALAYSIA ESTIMATION OF THE REPRODUCTION NUMBER OF THE NOVEL INFLUENZA A, H1N1 IN MALAYSIA Radzuan Razali * and SamsulAriffin Abdul Karim Fundamental and Applied Sciences Department, UniversitiTeknologiPetronas,

More information

UNDERSTANDING ZIKA AND MOSQUITO BORNE ILLNESSES

UNDERSTANDING ZIKA AND MOSQUITO BORNE ILLNESSES UNDERSTANDING ZIKA AND MOSQUITO BORNE ILLNESSES Dr. Roxanne Connelly, Professor Medical Entomology State Specialist University of Florida, IFAS, Florida Medical Entomology Laboratory http://fmel.ifas.ufl.edu/

More information

LIMITING LYME DISEASE: USING SYSTEM DYNAMICS SIMULATION TO TARGET HEALTH INTERVENTIONS. Shilo Helen McBurney

LIMITING LYME DISEASE: USING SYSTEM DYNAMICS SIMULATION TO TARGET HEALTH INTERVENTIONS. Shilo Helen McBurney LIMITING LYME DISEASE: USING SYSTEM DYNAMICS SIMULATION TO TARGET HEALTH INTERVENTIONS by Shilo Helen McBurney Submitted in partial fulfilment of the requirements for the degree of Master of Science at

More information

UvA-DARE (Digital Academic Repository) Tick-host-pathogen interactions in Lyme borreliosis Hovius, J.W.R. Link to publication

UvA-DARE (Digital Academic Repository) Tick-host-pathogen interactions in Lyme borreliosis Hovius, J.W.R. Link to publication UvA-DARE (Digital Academic Repository) Tick-host-pathogen interactions in Lyme borreliosis Hovius, J.W.R. Link to publication Citation for published version (APA): Hovius, J. W. R. (2009). Tick-host-pathogen

More information

Technical Note 1 The Epidemiology of Mosquito-borne Diseases Prepared by Dr L. Molineaux

Technical Note 1 The Epidemiology of Mosquito-borne Diseases Prepared by Dr L. Molineaux Technical Note 1 The Epidemiology of Mosquito-borne Diseases Prepared by Dr L. Molineaux 1 Introduction Epidemiology is the science that describes and explains the distribution of disease in human populations:

More information

Highlights of Medical Entomology

Highlights of Medical Entomology Highlights of Medical Entomology 16 November 2015 3:15 pm Donald A. Yee University of Southern Mississippi Hattiesburg, MS Copy of this talk? email: donald.yee@usm.edu Twitter: @_dayee_ Criteria for selection

More information

Review Article Human Coinfection with Borrelia burgdorferi and Babesia microti in the United States

Review Article Human Coinfection with Borrelia burgdorferi and Babesia microti in the United States Journal of Parasitology Research Volume 2015, Article ID 587131, 11 pages http://dx.doi.org/10.1155/2015/587131 Review Article Human Coinfection with Borrelia burgdorferi and Babesia microti in the United

More information

Lyme Disease: Prevention, Recognition & Treatment

Lyme Disease: Prevention, Recognition & Treatment University of Vermont ScholarWorks @ UVM Family Medicine Block Clerkship, Student Projects College of Medicine 2017 Lyme Disease: Prevention, Recognition & Treatment Kristen J. Bartlett University of Vermont

More information

Dengue Virus-Danger from Deadly Little Dragon

Dengue Virus-Danger from Deadly Little Dragon Molecular Medicine Dengue Virus-Danger from Deadly Little Dragon Dr.G.MATHAN Assistant Professor Department of Biomedical Science Bharathidasan University Tiruchirappalli, Tamil Nadu Vector (A carrier)

More information

Evaluating the promise of a transmissible vaccine. Scott L. Nuismer

Evaluating the promise of a transmissible vaccine. Scott L. Nuismer Evaluating the promise of a transmissible vaccine Scott L. Nuismer Effective vaccines exist for 24 infectious diseases of humans Vaccines have had amazing successes Eradicated smallpox Driven polio to

More information

Holarctic distribution of Lyme disease

Holarctic distribution of Lyme disease Babesia and Ehrlichia epidemiology: key points Holarctic distribution of Lyme disease 1. Always test for babesia and ehrlichia if Lyme disease is suspected 2. Endemic areas perhaps too broad a term; vector-borne

More information

Using climate models to project the future distributions of climate-sensitive infectious diseases

Using climate models to project the future distributions of climate-sensitive infectious diseases Liverpool Marine Symposium, 17 Jan 2011 Using climate models to project the future distributions of climate-sensitive infectious diseases Prof. Matthew Baylis Liverpool University Climate and Infectious

More information

Seroprevalence of Babesia microti in Individuals with Lyme Disease. Sabino R. Curcio, M.S, MLS(ASCP)

Seroprevalence of Babesia microti in Individuals with Lyme Disease. Sabino R. Curcio, M.S, MLS(ASCP) Seroprevalence of Babesia microti in Individuals with Lyme Disease Sabino R. Curcio, M.S, MLS(ASCP) Lyme Disease Most common vectorborne illness in the United States Caused by the tick-transmitted spirochete

More information

Reading: Chapter 13 (Epidemiology and Disease) in Microbiology Demystified

Reading: Chapter 13 (Epidemiology and Disease) in Microbiology Demystified Biology 100 Winter 2013 Reading Guide 02 Reading: Chapter 13 (Epidemiology and Disease) in Microbiology Demystified Directions: Fill out the reading guide as you read. Again, the reading guide is designed

More information

L. GILBERT*, R. NORMAN, K. M. LAURENSON, H. W. REID and P. J. HUDSON*

L. GILBERT*, R. NORMAN, K. M. LAURENSON, H. W. REID and P. J. HUDSON* Ecology 21 7, Disease persistence and apparent competition in a Blackwell Science Ltd three-host community: an empirical and analytical study of large-scale, wild populations L. GILBERT*, R. NORMAN, K.

More information

Parasites transmitted by vectors

Parasites transmitted by vectors Parasites transmitted by vectors Often very specific vector-parasite relationships Biomphalaria sp. - Schistosoma mansoni Anopheles sp. Plasmodium falciparum Simulium sp. Onchocerca volvulis Some more

More information

Lyme Disease. By Farrah Jangda

Lyme Disease. By Farrah Jangda Lyme Disease By Farrah Jangda Disease Name: Lyme Disease Lyme disease is a common tick-borne bacterial infection transmitted from the bite of a tick in United States and Europe (2). It is caused by the

More information

Is Climate Change Affecting Vector-borne Disease Transmission?

Is Climate Change Affecting Vector-borne Disease Transmission? Is Climate Change Affecting Vector-borne Disease Transmission? Donald E. Champagne Department of Entomology and Center for Tropical and Emerging Global Diseases University of Georgia Why focus on vector-borne

More information

Some Mathematical Models in Epidemiology

Some Mathematical Models in Epidemiology by Department of Mathematics and Statistics Indian Institute of Technology Kanpur, 208016 Email: peeyush@iitk.ac.in Definition (Epidemiology) It is a discipline, which deals with the study of infectious

More information

Using administrative medical claims data to estimate underreporting of infectious zoonotic diseases

Using administrative medical claims data to estimate underreporting of infectious zoonotic diseases 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 40% Percentage of Yearly Cases 30% 25% 20% 15% 10% 5% 0% January Februar March April May June July August Septem October Novem Decem January Februar March

More information

Competence of American Robins as Reservoir Hosts for Lyme Disease Spirochetes

Competence of American Robins as Reservoir Hosts for Lyme Disease Spirochetes Competence of American Robins as Reservoir Hosts for Lyme Disease Spirochetes Dania Richter,* Andrew Spielman,* Nicholas Komar,* and Franz-Rainer Matuschka* *Harvard School of Public Health, Boston, Massachusetts,

More information

Burton's Microbiology for the Health Sciences

Burton's Microbiology for the Health Sciences Burton's Microbiology for the Health Sciences Chapter 11. Epidemiology and Public Health Chapter 11 Outline Epidemiology Interactions Among Pathogens, Hosts and the Environment Chain of Infection Reservoirs

More information

Concepts of Disease. Dr.P.Selvaraj. Associate Professor of Clinical Medicine. TANUVAS Clinical Medicine Promoting Clinical Excellence Since 1903

Concepts of Disease. Dr.P.Selvaraj. Associate Professor of Clinical Medicine. TANUVAS Clinical Medicine Promoting Clinical Excellence Since 1903 Since 1903 Concepts of Disease Associate Professor of Several theories are being proposed on the disease concept and got evolved over various time periods. Majority of the theories are overlapping one

More information

Manitoba Annual Tick-Borne Disease Report

Manitoba Annual Tick-Borne Disease Report Manitoba Annual Tick-Borne Disease Report 2016 January 1, 2016 to December 31, 2016 Communicable Disease Control Active Living, Population and Public Health Branch Active Living, Indigenous Relations,

More information

Epidemiological Model of HIV/AIDS with Demographic Consequences

Epidemiological Model of HIV/AIDS with Demographic Consequences Advances in Applied Mathematical Biosciences. ISSN 2248-9983 Volume 5, Number 1 (2014), pp. 65-74 International Research Publication House http://www.irphouse.com Epidemiological Model of HIV/AIDS with

More information

Lyme Disease. 1. DISEASE REPORTING A. Purpose of Reporting and Surveillance

Lyme Disease. 1. DISEASE REPORTING A. Purpose of Reporting and Surveillance 1. DISEASE REPORTING A. Purpose of Reporting and Surveillance Lyme Disease 1. To determine the incidence of Lyme disease, the degree of endemicity, and potential risk of contracting Lyme disease in Washington

More information

World Health Day Vector-borne Disease Fact Files

World Health Day Vector-borne Disease Fact Files World Health Day Vector-borne Disease Fact Files Contents Malaria Junior 1 Senior...2 Dengue Fever Junior 3 Senior.. 4 Chikungunya Junior....5 Senior. 6 Lyme disease Junior 7 Senior 8 Junior Disease Fact

More information

Biostatistics and Computational Sciences. Introduction to mathematical epidemiology. 1. Biomedical context Thomas Smith September 2011

Biostatistics and Computational Sciences. Introduction to mathematical epidemiology. 1. Biomedical context Thomas Smith September 2011 Biostatistics and Computational Sciences Introduction to mathematical epidemiology 1. Biomedical context Thomas Smith September 2011 Epidemiology The study of the distribution and determinants of healthrelated

More information

Global Climate Change and Mosquito-Borne Diseases

Global Climate Change and Mosquito-Borne Diseases Global Climate Change and Mosquito-Borne Diseases Theodore G. Andreadis Center for Vector Biology & Zoonotic Diseases The Connecticut Agricultural Experiment Station New Haven, CT Evidence for Global Climate

More information

The abundance of the Lyme disease pathogen Borrelia afzelii declines over time in the tick vector Ixodes ricinus

The abundance of the Lyme disease pathogen Borrelia afzelii declines over time in the tick vector Ixodes ricinus Jacquet et al. Parasites & Vectors (2017) 10:257 DOI 10.1186/s13071-017-2187-4 RESEARCH The abundance of the Lyme disease pathogen Borrelia afzelii declines over time in the tick vector Ixodes ricinus

More information

Chapter 2. Disease and disease transmission

Chapter 2. Disease and disease transmission Chapter 2 Disease and disease transmission An enormous variety of organisms exist, including some which can survive and even develop in the body of people or animals. If the organism can cause infection,

More information

Involvement of roe deer as source of Anaplasma phagocytophilum infection for Ixodes ricinus in a heterogeneous landscape

Involvement of roe deer as source of Anaplasma phagocytophilum infection for Ixodes ricinus in a heterogeneous landscape Involvement of roe deer as source of Anaplasma phagocytophilum infection for Ixodes ricinus in a heterogeneous landscape Extract of the PhD thesis of Amélie Chastagner A m é l i e C h a s tagner 1*, A

More information

The ecology of infectious disease: Effects of host diversity and community composition on Lyme disease risk

The ecology of infectious disease: Effects of host diversity and community composition on Lyme disease risk The ecology of infectious disease: Effects of host diversity and community composition on Lyme disease risk Kathleen LoGiudice*, Richard S. Ostfeld*, Kenneth A. Schmidt*, and Felicia Keesing* *Institute

More information

arxiv: v1 [q-bio.pe] 18 Jan 2017

arxiv: v1 [q-bio.pe] 18 Jan 2017 Intermittent Preventive Treatment (IPT: Its role in averting disease-induced mortalities in children and in promoting the spread of antimalarial drug resistance arxiv:1701.05210v1 [q-bio.pe] 18 Jan 2017

More information

L2, Important properties of epidemics and endemic situations

L2, Important properties of epidemics and endemic situations L2, Important properties of epidemics and endemic situations July, 2016 The basic reproduction number Recall: R 0 = expected number individuals a typical infected person infects when everyone is susceptible

More information

Dynamics and Control of Infectious Diseases

Dynamics and Control of Infectious Diseases Dynamics and Control of Infectious Diseases Alexander Glaser WWS556d Princeton University April 9, 2007 Revision 3 1 Definitions Infectious Disease Disease caused by invasion of the body by an agent About

More information

Exercises on SIR Epidemic Modelling

Exercises on SIR Epidemic Modelling Exercises on SIR Epidemic Modelling 1 Epidemic model (from Wikipedia) An epidemic model is a simplified means of describing the transmission of communicable disease through individuals. The modeling of

More information

Example-exam Basics of Infectious Diseases (NEM-20806) 2015/16: [ANSWER (2 points): environment, infectious agent, and host]

Example-exam Basics of Infectious Diseases (NEM-20806) 2015/16: [ANSWER (2 points): environment, infectious agent, and host] Example-exam Basics of Infectious Diseases (NEM-20806) 2015/16: Question 1: The disease triangle is a conceptual model used to better understand the epidemiological dynamics of infectious diseases. A.

More information

Mathematical Model for Pneumonia Dynamics among Children

Mathematical Model for Pneumonia Dynamics among Children Mathematical Model for Pneumonia Dynamics among Children by Jacob Otieno Ong ala Strathmore University, Nairobi (Kenya) at SAMSA 2010, Lilongwe (Malawi) Outline 1. Background information of pneumonia 2.

More information

Analysis of the basic reproduction number from the initial growth phase of the outbreak in diseases caused by vectors

Analysis of the basic reproduction number from the initial growth phase of the outbreak in diseases caused by vectors Analysis of the basic reproduction number from the initial growth phase of the outbreak in diseases caused by vectors University of São Paulo Medicine School rosangelasanches@usp.br November,2013 Introduction

More information

Case Studies in Ecology and Evolution. 10 The population biology of infectious disease

Case Studies in Ecology and Evolution. 10 The population biology of infectious disease 10 The population biology of infectious disease In 1918 and 1919 a pandemic strain of influenza swept around the globe. It is estimated that 500 million people became infected with this strain of the flu

More information

Infection, Detection, Prevention...

Infection, Detection, Prevention... Infection, Detection, Prevention... A disease is any change that disrupts the normal function of one or more body systems. Non infectious diseases are typically caused by exposure to chemicals or are inherited.

More information

Immune System. Before You Read. Read to Learn

Immune System. Before You Read. Read to Learn Immune System 37 section 1 Infectious Diseases Biology/Life Sciences 10.d Students know there are important differences between bacteria and viruses with respect to their requirements for growth and replication,

More information

Inapparent and Vertically Transmitted Infections in Two Host-Virus. Systems

Inapparent and Vertically Transmitted Infections in Two Host-Virus. Systems Inapparent and Vertically Transmitted Infections in Two Host-Virus Systems Submitted by Martin David Grunnill to the University of Exeter as a thesis for the degree of Doctor of Philosophy in Biological

More information

Jacquelyn A. Hakim 1 and Adenike Bitto 2. Abstract

Jacquelyn A. Hakim 1 and Adenike Bitto 2. Abstract Public Education and Lyme Disease Prevention in Monroe County: A Multi- Faceted Program of Personal Protection Strategies, Tick Identification/Risk Assessment, Bi-Directional Referrals, and Vector Control

More information

to change size? Abstract Introduction

to change size? Abstract Introduction December JANuary 017 019 Can What medicine causes lizards stop malaria? brains to change size? v Authors: Susan Crow, Meghan Pawlowski, Manyowa Meki, Lara Authors: LaDage, Timothy Roth II, Cynthia Downs,

More information

Technical Bulletin No. 121

Technical Bulletin No. 121 CPAL Central Pennsylvania Alliance Laboratory Technical Bulletin No. 121 January 31, 2014 Lyme Blot, IgG and IgM - Now Performed at CPAL Contact: J. Matthew Groeller, 717.851.1416 Operations Manager, Clinical

More information

A Stochastic Spatial Model of the Spread of Dengue Hemorrhagic Fever

A Stochastic Spatial Model of the Spread of Dengue Hemorrhagic Fever Volume-7, Issue-5, September-October 2017 International Journal of Engineering and Management Research Page Number: 98-104 A Stochastic Spatial Model of the Spread of Dengue Hemorrhagic Fever A. R. Nuha

More information

Report Documentation Page

Report Documentation Page Report Documentation Page Form Approved OMB No. 0704-0188 Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions,

More information

Climate Change as a Driver for Vector-Borne Disease Emergence

Climate Change as a Driver for Vector-Borne Disease Emergence National Center for Emerging and Zoonotic Infectious Diseases Climate Change as a Driver for Vector-Borne Disease Emergence C. Ben Beard, MS, Ph.D. Associate Director for Climate Change National Center

More information

Communicable Diseases

Communicable Diseases Lesson 5.1 Communicable Diseases By Carone Fitness You have probably been in a situation similar to Corry's. The common cold is a communicable disease. 1 Defined Communicable diseases are illnesses that

More information