SEPTEMBER, 2006 ROAD DESIGN MANUAL 7-0(1) CHAPTER 7 PAVEMENT DESIGN

Size: px
Start display at page:

Download "SEPTEMBER, 2006 ROAD DESIGN MANUAL 7-0(1) CHAPTER 7 PAVEMENT DESIGN"

Transcription

1 SEPTEMBER, 2006 ROAD DESIGN MANUAL 7-0(1) CHAPTER 7 PAVEMENT DESIGN INTRODUCTION RIGID PAVEMENT DESIGN Cross Sections Ramps and Loops with Storage Area Major Forks, Branch Connections, and Escape Lanes Bridge Approach Treatments and Panels FLEXIBLE PAVEMENT DESIGN General High and Low Abutments on Footing Integral Abutments Bridge Approach Panels Cross Sections SHOULDER STRUCTURAL DESIGN Standard Shoulders Widened Pavement Shoulders

2 THIS PAGE LEFT INTENTIONALLY BLANK

3 SEPTEMBER, 2006 ROAD DESIGN MANUAL 7-2(1) CHAPTER 7 PAVEMENT DESIGN INTRODUCTION Pavement design procedures are discussed in the MnDOT Geotechnical and Pavement Manual. This chapter covers items related to pavement design not covered in that manual RIGID PAVEMENT DESIGN Cross Sections Typical rigid pavement cross sections are shown in Figures A and B. Figure A is for two-lane and multi-lane undivided roadways. Figure B is for interstate and other multi-lane divided roadways. The required roadway pavement widths are shown in Table A. Table A (Dual Units) Pavement Widths Outstate Metro 2-Lane Multi-lane Undivided 4-Lane Divided 6-Lane (or more) Divided 4.1 m (13.5 ft) both lanes 4.2 m (14 ft) outside lanes 3.6 m (12 ft) interior lanes 4.2 m (14 ft) outside lane 4.0 m (13 ft) inside lane 4.2 m (14 ft) outside lane 3.6 m (12 ft) interior lanes 4.0 m (13 ft) inside lane All lanes are 3.6 m (12 ft) wide Design for the thickness of the pavement, base, and subbase materials are located in the MnDOT Geotechnical and Pavement Manual Ramps and Loops with Storage Area Standard Plans and M provide details for concrete pavement sections of ramps with a storage area. The normal rural ramps and loop width of 4.8 m (16 ft) jointed longitudinally at midpanel, is tapered out to two 3.6 m (12 ft) lanes at the intersection of the crossroad. For urban loops, the normal width is 5.4 m (18 ft) jointed longitudinally at mid-panel. The center joint will be a L1TH for both rural and urban design. The curb design will be carried through the tapered section.

4 7-2(2) ROAD DESIGN MANUAL SEPTEMBER, 2006 RIGID PAVEMENT DESIGN TWO-LANE AND MULTI-LANE UNDIVIDED Figure A (Dual Units)

5 SEPTEMBER, 2006 ROAD DESIGN MANUAL 7-2(3) RIGID PAVEMENT DESIGN MULTI-LANE DIVIDED AND FREEWAY Figure B (Dual Units)

6 7-2(4) ROAD DESIGN MANUAL SEPTEMBER, Major Forks, Branch Connections, and Escape Lanes Major forks, branch connections, and escape lanes require special consideration, especially with relation to longitudinal joint layouts. The following items should be included in the development of the design in Figure A: 1. Gore areas shall be paved with non-reinforced concrete pavement of the same thickness and panel lengths as the mainlines. For transverse construction joints use Design C2B. 2. The merging of branch connections into one roadway may result in the concrete pavement joints not being exactly parallel even if the joints merge at the center of the roadway. Therefore, place E1-1 joints until the joints are at right angles to the merged roadway. 3. The longitudinal joints in the major fork shall be labeled as E1-1, L1TH or L2KTH. The location of the E1-1, L1TH or L2KTH joint may be interchanged where required. Up to 4 lanes may be tied together with E1-1, L1TH or L2KTH joints. 4. An E1-1 or L2KTH joint may be used at the Contractor's option for the longitudinal joint in the taper area. Construct the taper as shown in Figure A Bridge Approach Treatments and Panels General The design of bridge approach treatments and approach panels are the responsibility of the Road Design personnel. Approaches are broken down into two groups depending upon whether or not the structure has an abutment footing. The abutments on footing are either low abutments or high abutments. An abutment without a footing is generally considered an integral abutment. Normally, bridge approach treatments are specified at every bridge that has bridge approach panels unless recommendations to the contrary are provided by the District Soils and/or Materials Engineer in conjunction with the Office of Materials Geotechnical Engineering Section. Discussion of the use and design of bridge approach panels is found in Section High and Low Abutments on Footing A low abutment is defined as an abutment whose height is less than 4.5 m (15 ft) measured from the top of the deck to the bottom of the footing. A high abutment is defined as an abutment whose height is 4.5 m (15 ft) and greater measured from the top of the deck to the bottom of the footing. Details for these designs are shown in Standard Plans and M. Additional notes of explanation are as follows: 1. The sequence of construction is shown on the Standard Plan sheets for Bridge Approach Treatment. Note in the Rough Grading Section, fill is placed to the full height and width of the roadway and then later partially removed to facilitate the construction of the abutment. Placing the fill in this manner helps insure adequate soil compaction beneath the abutment. Note in the Final Grading Section that the removed material is replaced by various types of grading materials. It is important that the quantities of these backfill materials be accurately computed and shown on the plans. 2. A perforated drainage pipe is always placed directly behind a high abutment. This drainage pipe is sometimes required for low abutments (see bridge plan). Additional drain pipes may also be required if stated in the Materials Design Recommendation Report. The designer shall provide plan details for installing and locating ALL drains and drain outlets. 3. On replacement bridges where new abutments are located at the old abutments, the full treatment per Standard Plan for Bridge Approach Treatment shall be provided unless settlements of existing approach fills and subsoils have already sufficiently occurred. The designer shall refer to the Materials Design Recommendation Report for this information. 4. Temporary drainage is required during construction of the abutment. 5. For high abutments, special erosion protection treatments shall be required for end slopes at river bridges. See Chapter 8 for recommendations Integral Abutments An integral abutment is defined as an abutment supported on a single line of piles with the bridge superstructure being integrally attached to the abutment. There is no footing for integral abutments. Details for this design will be shown in Standard Plans. The notes of explanation for high and low abutments listed in shall apply to integral abutments as well.

7 SEPTEMBER, 2006 ROAD DESIGN MANUAL 7-2(5) LONGITUDINAL JOINT LAYOUT MAJOR FORKS AND BRANCH CONNECTIONS Figure A (Dual Units)

8 7-2(6) ROAD DESIGN MANUAL SEPTEMBER, Bridge Approach Panels Bridge approach panels are used to connect the pavement structure with the bridge. They are provided for both concrete and bituminous pavement conditions. Bridge approach panels are to be constructed under the paving contract. Bridge approach panels are detailed on Standard Plans through for concrete and bituminous pavements. For concrete pavement the panel is designed with a 100 mm (4 in.) pressure relief joint between the approach panel and the roadway surfacing. The other end of the panel abuts the bridge abutment. The type of joint or connection should be coordinated with the bridge designer. A special design is required for approach panels skewed 45 degrees or greater. Panels are normally 6.0 m (20 ft) in length, with the width equal to the clear width of the bridge (mainline plus shoulder). The minimum thickness of the bridge approach slab shall be 300 mm (12 in.) for both rigid and flexible pavement design. The criteria for the use of bridge approach panels is as follows: 1. Bridge approach panels shall be constructed at all bridges on trunk highways. 2. Approach panels shall be constructed at bridges, which carry secondary road traffic over a trunk highway where any of the following conditions exist: a. The approach roadway on the secondary road has concrete surfacing. b. The traffic volume on the secondary road is in excess of 750 ADT (projected). c. There is an interchange located at the crossing. 3. Bridge approach panels shall be added to existing bridges on new construction and reconstruction projects. 4. Plans for bridges, which will not incorporate approach panels, shall specify either an appropriate length of bituminous curb at each corner of the bridge to reduce erosion at the wingwalls, or a catch basin drainage system with temporary surface drainage provisions. The roadway plans shall provide information for all adjusting rings and castings for the catch basins. If catch basins are required at bridge approaches (see Figure A for use of catch basins on rural sections), provide the following information: 1. Elevations of the flow line of pipe at the juncture with each catch basin. Provide minimum cover to the flow line and provide 1 percent minimum cross slope for drainage. Set elevation to incorporate the use of 50 mm (2 in.) adjusting rings with standard cones and catch basins. 2. Specify the type of erosion control at the end of the flume. The flume should extend the entire length of embankment slope, i.e. do not outlet flume at midpoint of slope. For usual grade separations, specify sod. For unusual cases (larger than normal drainage areas, flow concentrations due to superelevation, etc.), check with the Hydraulics Section. 3. Locations of drainage outlets. On bridges with divided roadways and a common median ditch, drainage should normally flow both ways from the crown. In addition, the following should be considered in the design of bridge approach panels: 1. Surfacing on approach panels should be determined by consulting with the District Materials Engineer and the Office of Materials. 2. Where city streets intersect at the end of a bridge, significant modifications of the panel are required (including possible deletion of the panel). Consult with the bridge designer. 3. All transverse and longitudinal joint sealant materials shall be hot-poured joint sealant conforming to Specification All transverse and longitudinal jointsshall be designed in accordance with MnDOT Standard Plans.

9 SEPTEMBER, 2006 ROAD DESIGN MANUAL 7-2(7) FOR SPECIFIC LOCATIONS CONTACT HYDRAULICS. NOTE: USE CATCH BASINS ONLY ON LOW SIDE OF SUPERELEVATED ROADWAYS. FOR CASE A, THE MINIMUM RECOMMENDED GRADE IS 0.05%. FLAT GRADES ARE UNDESIRABLE AND ARE NOT RECOMMENDED. USE CATCH BASINS AT BOTH ENDS OF BRIDGE WHEN ROADWAY HAS MINIMUM GRADE. CASE C IS UNDESIRABLE. WHERE POSSIBLE ADJUST ROADWAY GRADES TO KEEP THE SAG POINT OFF THE BRIDGE. GENERAL GUIDE FOR USE OF CATCH BASIN AT ENDS OF BRIDGE Figure A

10 THIS PAGE LEFT INTENTIONALLY BLANK

11 SEPTEMBER, 2006 ROAD DESIGN MANUAL 7-3(1) FLEXIBLE PAVEMENT DESIGN Cross Sections Figure A shows the cross sections for flexible pavements. The thickness design procedures, the widths of the respective pavement layers (bituminous and aggregate base materials) and subsurface drainage details, if needed, are provided in the MnDOT Geotechnical and Pavement Design Manual. BITUMINOUS PAVEMENT DESIGN Figure A (Dual Units)

12 THIS PAGE LEFT INTENTIONALLY BLANK

13 SEPTEMBER, 2006 ROAD DESIGN MANUAL 7-4(1) SHOULDER STRUCTURAL DESIGN Standard Shoulders Standard shoulder designs for new construction and reconstructed rigid and flexible pavements are shown in Figures A through G Widened Pavement Shoulders Figure A shows typical designs for rehabilitating narrow concrete pavement structures. The figure show the respective placement of the required widening and overlay, and shoulder design. The designer should consult with the District Materials/Soils Engineer for recommendations concerning the various pavement materials, thickness, and drainage details to be used in construction of the various pavement structural components. AGGREGATE SURFACED SHOULDERS FOR RIGID PAVEMENT Figure A (Dual Units)

14 7-4(2) ROAD DESIGN MANUAL SEPTEMBER, 2006 BITUMINOUS SURFACED SHOULDERS FOR RIGID PAVEMENT Figure B (Dual Units)

15 SEPTEMBER, 2006 ROAD DESIGN MANUAL 7-4(3) CONCRETE SURFACED SHOULDERS FOR RIGID PAVEMENT Figure C (Dual Units)

16 7-4(4) ROAD DESIGN MANUAL SEPTEMBER, 2006 AGGREGATE SURFACED SHOULDERS BITUMINOUS PAVEMENT WITH AGGREGATE BASE Figure D (Dual Units)

17 SEPTEMBER, 2006 ROAD DESIGN MANUAL 7-4(5) BITUMINOUS SURFACED SHOULDERS BITUMINOUS PAVEMENT WITH AGGREGATE BASE Figure E (Dual Units)

18 7-4(6) ROAD DESIGN MANUAL SEPTEMBER, 2006 CONCRETE SURFACED SHOULDERS RIGID PAVEMENT WITH CURB AND GUTTER Figure F (Dual Units)

19 SEPTEMBER, 2006 ROAD DESIGN MANUAL 7-4(7) BITUMINOUS SURFACED SHOULDERS FLEXIBLE PAVEMENT WITH CURB AND GUTTER Figure G (Dual Units)

20 7-4(8) ROAD DESIGN MANUAL SEPTEMBER, 2006 WIDENED PAVEMENT SHOULDERS Figure A (Dual Units)

Appendix B. Shallow Foundations Report

Appendix B. Shallow Foundations Report 12/10/2013 GEOTECHNICAL MANUAL Appendix B. Shallow Foundations Report PLEASE NOTE A sample foundations report is included here for reference. It is provided as an example of content, format, and organization

More information

Three Bridges at I-64/Mercury Boulevard Interchange in Hampton, VA

Three Bridges at I-64/Mercury Boulevard Interchange in Hampton, VA Three Bridges at I-64/Mercury Boulevard Interchange in Hampton, VA IRFAN A. ALVI, P.E., Alvi Associates, Inc., Baltimore, MD IBC-02-25 KEYWORDS: box girder, counterweight abutment, curved girder, high-performance

More information

ACCELERATED BRIDGE CONSTRUCTION PROJECT: THE REPLACEMENT OF MD 362 OVER MONIE CREEK

ACCELERATED BRIDGE CONSTRUCTION PROJECT: THE REPLACEMENT OF MD 362 OVER MONIE CREEK ACCELERATED BRIDGE CONSTRUCTION PROJECT: THE REPLACEMENT OF MD 362 OVER MONIE CREEK Joseph Navarra, P.E, Maryland State Highway Administration, 410-545-8315, jnavarra@sha.state.md.us ABSTRACT The MDSHA

More information

Shifting the Canning Bus Bridge Sideways

Shifting the Canning Bus Bridge Sideways Shifting the Canning Bus Bridge Sideways Ros MacKinlay Design Engineer, Wyche Consulting SYNOPSIS The Perth Mandurah railway proposed in 2002 required the replacement of an existing Kwinana Freeway bus

More information

Grade separated interchange at the intersection of U.S. Hwy 17 Bypass and Farrow Parkway

Grade separated interchange at the intersection of U.S. Hwy 17 Bypass and Farrow Parkway Grade separated interchange at the intersection of U.S. Hwy 17 Bypass and Farrow Parkway Jeff Sizemore, P.E. Geotechnical Design Support Engineer SCDOT Ed Tavera, P.E. Principal Geotechnical Engineer Geoengineers

More information

Ahmed Mongi, M.S., P.E. Engineering Division

Ahmed Mongi, M.S., P.E. Engineering Division 1 Ahmed Mongi, M.S., P.E. Engineering Division 2 Honey Creek Bridge Completed in 2006 at a cost of $2.6 Million Precast pier caps and abutments. 3 Honey Creek Bridge Bridge closed for 60 days Simple span

More information

Semi-Integral Abutment Bridges

Semi-Integral Abutment Bridges Ministry of Transportation Report BO-99-03 Bridge Office Leslie Street Over Hwy 407 Semi-Integral Abutment Bridges Ministry of Transportation Report BO-99-03 Bridge Office Semi-Integral Abutment Bridges

More information

ABC OF BRIDGE NO. 465 I-195 Ramp (Dr-2) Over Warren Avenue

ABC OF BRIDGE NO. 465 I-195 Ramp (Dr-2) Over Warren Avenue ABC OF BRIDGE NO. 465 I-195 Ramp (Dr-2) Over Warren Avenue FHWA Rhode Island Showcase October 30, 2014 Accent image here Primary Image here Presentation Outline Overview of the Project Scope ABC Project

More information

Executive Summary RPT-GEN November 28. Bridge No Quartz Creek Bridge Inspection Report

Executive Summary RPT-GEN November 28. Bridge No Quartz Creek Bridge Inspection Report Executive Summary The No. 01607 carries the Trans-Canada Highway over Quartz Creek, approximately 45 km northwest of Golden, BC. As part of an Enhanced Bridge Inspection Program, the BC Ministry of Transportation

More information

Appendix C Guidelines for Design of Integral Abutments March 3, 2003

Appendix C Guidelines for Design of Integral Abutments March 3, 2003 These guidelines draw on the experiences and practices from Ontario, the FHWA, various DOT s and the UK Highways Agency. They provide guidance and outline the issues that need to be considered and should

More information

research report Field Measurements on Skewed Semi-Integral Bridge With Elastic Inclusion: Instrumentation Report

research report Field Measurements on Skewed Semi-Integral Bridge With Elastic Inclusion: Instrumentation Report Final Report VTRC 06-R35 Virginia Transportation Research Council research report Field Measurements on Skewed Semi-Integral Bridge With Elastic Inclusion: Instrumentation Report http:/www.virginiadot.org/vtrc/main/online_reports/pdf/06-r35.pdf

More information

PENNDOT e-notification

PENNDOT e-notification PENNDOT e-notification Bureau of Design Engineering Computing Management Division BRADD No. 027 August 30, 2010 Release of Version 3.1.5.0 PennDOT's Bridge Automated Design and Drafting Software (BRADD)

More information

APPENDIX A INTEGRAL ABUTMENTS

APPENDIX A INTEGRAL ABUTMENTS APPENDIX A INTEGRAL ABUTMENTS Appendix A Guidelines for Design of Integral Abutments Rev. 1 - September, 2007 These guidelines draw on the experiences and practices from Ontario, the FHWA, various DOT

More information

Technology. Reinforced Earth Wall Typical Section. Traffic Barrier. Roadway. Select Granular Material. Facing Panel Random Backfill.

Technology. Reinforced Earth Wall Typical Section. Traffic Barrier. Roadway. Select Granular Material. Facing Panel Random Backfill. Bridge Applications Technology The Reinforced Earth Company (RECo) offers a variety of bridge abutment and bridge crossing solutions, each are based on project specific requirements. Bridge abutments are

More information

American Society of Highway. Beardsley Connector Project. Jacob Dean

American Society of Highway. Beardsley Connector Project. Jacob Dean American Society of Highway Engineers (ASHE) Beardsley Connector Project Gary Fromm, PE Design Manager Jacobs Jacob Dean Project Manager Haydon Building Corp. Thinking Outside the Box: Why Go In Circles?

More information

Rebuilding and widening the 54- year-old Jane Addams Memorial Tollway into a state-of-the-art corridor linking Rockford to Elgin (three lanes) and

Rebuilding and widening the 54- year-old Jane Addams Memorial Tollway into a state-of-the-art corridor linking Rockford to Elgin (three lanes) and Overview Design criteria for I-90 over Kishwaukee Integral Abutment Bridges (IAB) Design Criteria Design analysis, details and construction Lessons Learned during construction Instrumentation by Illinois

More information

Geosynthetic Reinforced Soil (GRS) Integrated Bridge Systems (IBS) John Bowders University of Missouri

Geosynthetic Reinforced Soil (GRS) Integrated Bridge Systems (IBS) John Bowders University of Missouri Geosynthetic Reinforced Soil (GRS) Integrated Bridge Systems (IBS) John Bowders University of Missouri Adams et al. (2012), FHWA Geosynthetic Reinforced Soil Integrated Bridge System Interim Implementation

More information

SUMMARY OF NOVEMBER 2013 REVISIONS - VERSION

SUMMARY OF NOVEMBER 2013 REVISIONS - VERSION SUMMARY OF NOVEMBER 2013 REVISIONS - VERSION 3.2.0.0 Since the release of BRADD Version 3.1.6.2, several major enhancements have been made to the software and many reported operational issues have been

More information

PRELIMINARY GEOTECHNICAL DESIGN

PRELIMINARY GEOTECHNICAL DESIGN PNCC Manawatu River Pedestrian/ Cycle Bridge PRELIMINARY GEOTECHNICAL DESIGN 1 Introduction Opus has been commissioned by the Palmerston North City Council (PNCC) to prepare a Detailed Business Case (DBC)

More information

OVER US 6 LATERAL BRIDGE SLIDE: I-75

OVER US 6 LATERAL BRIDGE SLIDE: I-75 LATERAL BRIDGE SLIDE: I-75 OVER US 6 Bob Beasley, PE, Ohio Bridge Manager, Arcadis U.S., Inc. Todd Lezon, Regional Manager, Kokosing Construction Company, Inc. November 4, 2016 1 Agenda Design Bob Beasley,

More information

Integral bridges and environmental conditions

Integral bridges and environmental conditions Integral bridges and environmental conditions COMISU CLAUDIU-CRISTIAN, BOACĂ GHEORGHITĂ Department of Roads and Foundations Faculty of Civil Engineering and Building Services The "Gheorghe Asachi" Technical

More information

UNDERWATER BRIDGE INSPECTION REPORT STRUCTURE NO CRANE LAKE ROAD OVER HAWKINSON CREEK ST. LOUIS COUNTY

UNDERWATER BRIDGE INSPECTION REPORT STRUCTURE NO CRANE LAKE ROAD OVER HAWKINSON CREEK ST. LOUIS COUNTY UNDERWATER BRIDGE INSPECTION REPORT STRUCTURE NO. 7883 CRANE LAKE ROAD OVER HAWKINSON CREEK ST. LOUIS COUNTY JUNE 21, 2012 PREPARED FOR THE MINNESOTA DEPARTMENT OF TRANSPORTATION BY COLLINS ENGINEERS,

More information

Aerial of Conceptual Path and Bridge Tysons-Old Meadow Road Bike/Ped Improvements

Aerial of Conceptual Path and Bridge Tysons-Old Meadow Road Bike/Ped Improvements Aerial of Conceptual Path and Bridge Barnes & Noble at One Place Project Location Corner Center Proposed Bridge Encore Condominiums Regency Club Condominiums Path continues to Dolley Madison Boulevard

More information

Field Reconnaissance on the Damage of Transportation Facilities in the 2007 Niigata Chuetsu-oki Earthquake

Field Reconnaissance on the Damage of Transportation Facilities in the 2007 Niigata Chuetsu-oki Earthquake Field Reconnaissance on the Damage of Transportation Facilities in the 2007 Niigata Chuetsu-oki Earthquake G. Watanabe, K. Iiyama, N. Kawano Tokyo Institute of Technology July 20-21, 2007 Route 116 National

More information

Conditional assessment of Kiri Bridge in Shkoder, Albania

Conditional assessment of Kiri Bridge in Shkoder, Albania Conditional assessment of Kiri Bridge in Shkoder, Albania Gentian Rexhaj 1, Enea Mustafaraj 2 1 2 Department of Civil Engineering, Epoka University, Albania 2 Department of Civil Engineering, Epoka University,

More information

STATE ROUTE 30 OVER BESSEMER AVE. SUPERSTRUCTURE REPLACEMENT IN 57 HOURS

STATE ROUTE 30 OVER BESSEMER AVE. SUPERSTRUCTURE REPLACEMENT IN 57 HOURS STATE ROUTE 30 OVER BESSEMER AVE. SUPERSTRUCTURE REPLACEMENT IN 57 HOURS Louis J. Ruzzi P.E., PennDOT District 11-0 Bridge Engineer John Myler, PennDOT Assistant Construction Engineer, District 11-0 Bala

More information

Design of Dingley Bypass Integral Bridges

Design of Dingley Bypass Integral Bridges Design of Dingley Bypass Integral Bridges Dr. Kabir Patoary Principal Engineer Bridges GHD Elder St South Underpass Tekla Model Presentation Outline 1. Overview of Dingley Bypass 2. Design of Integral

More information

2011 BRIDGE INSPECTION REPORT

2011 BRIDGE INSPECTION REPORT 2011 BRIDGE INSPECTION REPORT BYRD PARK PUMP STATION BRIDGE OVER KANAWHA CANAL April 2011 FINAL December 2011 Looking - from Abutment B to Abutment A Prepared by: WHITMAN, REQUARDT, & ASSOCIATES, LLP 9030

More information

Figure 3: Analytic procedure

Figure 3: Analytic procedure International Journal of Scientific and Research ublications, Volume 7, Issue 5, May 2017 567 Investigation of Integral Bridge Effect under Dynamic Loading Haymanmyintmaung *,kyawlinnhtat ** * Department

More information

Novel treatment technique

Novel treatment technique Final conference Zagreb, 27 th April 2018 TREAT How to choose the optimal rehabilitation technique Novel treatment technique Stanislav Lenart Slovenian National Building and Civil Engineering Institute

More information

Reducing Bridge Damage Caused by Pavement Forces Part 1: Some Examples

Reducing Bridge Damage Caused by Pavement Forces Part 1: Some Examples Reducing Bridge Damage Caused by Pavement Forces Part 1: Some Examples BY MARTIN P. BURKE, JR. Innumerable bridges both in the U.S. and abroad have been, and continue to be, damaged by the restrained growth

More information

Keywords: integral abutment bridge, pile head abutment connection, finite element method.

Keywords: integral abutment bridge, pile head abutment connection, finite element method. Global Journal of Researches in Engineering: e Civil And Structural Engineering Volume 15 Issue 1 Version 1.0 Year 2015 Type: Double Blind Peer Reviewed International Research Journal Publisher: Global

More information

Modified Sheet Pile Abutment for Low-Volume Road Bridge

Modified Sheet Pile Abutment for Low-Volume Road Bridge Modified Sheet Pile Abutment for Low-Volume Road Bridge Ryan R. Evans Department of Civil, Construction, and Environmental Engineering Iowa State University 176 Town Engineering Ames, IA 50011 ryevans@iastate.edu

More information

Emergency Bridge Stabilization at Mile Watrous Subdivision

Emergency Bridge Stabilization at Mile Watrous Subdivision Emergency Bridge Stabilization at Mile 189.70 Watrous Subdivision Christophe Deniaud, Ph.D., P.Eng. Bridge Engineer, CN 10004-104 Avenue Edmonton, Alberta, Canada T5J 0K2 Tel: (780) 421-6021 Fax: (780)

More information

Geosynthetic-reinforced soil bridge abutments

Geosynthetic-reinforced soil bridge abutments Geosynthetic-reinforced soil bridge abutments Measuring the performance of geosynthetic reinforcement in a Colorado bridge structure. By Jorge G. Zornberg, Naser Abu-Hejleh, and Trever Wang The technology

More information

DATA GATHERING AND DESIGN DETAILS OF AN INTEGRAL ABUTMENT BRIDGE

DATA GATHERING AND DESIGN DETAILS OF AN INTEGRAL ABUTMENT BRIDGE DATA GATHERING AND DESIGN DETAILS OF AN INTEGRAL ABUTMENT BRIDGE Abstract S. Hassiotis M. ASCE Stevens Institute of Technology, Hoboken, N.J. 07030 sophia.hassiotis@stevens.edu An integral-abutment bridge

More information

Bridge Office Trunk Highway Bridge Flood Response Plan

Bridge Office Trunk Highway Bridge Flood Response Plan Bridge Office Trunk Highway Bridge Flood Response Plan Updated 7/18/2012 Purpose Bridges are vulnerable to damage and failure during flooding. Scour may undermine the bridge foundations or remove the protection

More information

Effect of Pile Orientation in Skewed Integral Abutment Bridges

Effect of Pile Orientation in Skewed Integral Abutment Bridges Effect of Pile Orientation in Skewed Integral Abutment Bridges RABIH NAJIB, Ph.D., PE, Alpha Corporation, Baltimore, Maryland and AMDE M. AMDE, Ph.D., PE, University of Maryland, College Park, Maryland

More information

SUMMARY OF NOVEMBER 2018 REVISIONS - VERSION

SUMMARY OF NOVEMBER 2018 REVISIONS - VERSION SUMMARY OF NOVEMBER 2018 REVISIONS - VERSION 3.2.5.0 Since the release of BRADD Version 3.2.4.3, several operational issues have been addressed. This release of BRADD Version 3.2.5.0 contains the following

More information

Four simply supported steel plate girders (appear to be an old railcar).

Four simply supported steel plate girders (appear to be an old railcar). BRIDGE INSPECTION BRIDGE NO./NAME N4-005: Akolkolex Crawford FSR (19.0 km) Inspection Date: September 22 nd, 2012 Inspected By: M. Hanson, R. Veitch Year Built: 1982 Number of Spans: 1 Span Lengths: Superstructure

More information

Winona Bridge Visual Quality Review Committee

Winona Bridge Visual Quality Review Committee Winona Bridge Visual Quality Review Committee Summary of Preferred Features October 7, 2014 Creating Bridges As Art 1 Summary of Preferred Features Based on Visual Quality Review Committee Final Design

More information

\\H\15\ PH9 Inspection Photos

\\H\15\ PH9 Inspection Photos SHOP SLIDE Photo 1. at cracking across the footpath at the end of the Hwy 2 EB to Hwy 684 SB off ramp at the 99 Ave. intersection. Drop in asphalt trail (background) has worsened since 2013 and is now

More information

5 DAMAGE TO TRANSPORTATION FACILITIES

5 DAMAGE TO TRANSPORTATION FACILITIES 5 DAMAGE TO TRANSPORTATION FACILITIES In the Kocaeli, Turkey earthquake of August 17, 1999, extensive damage of transportation facilities occurred in the Kocaeli and Sakarya region, Turkey as shown in

More information

Questions and Answers on VDOT's Supplement to the AASHTO Manual for Bridge Element Inspection

Questions and Answers on VDOT's Supplement to the AASHTO Manual for Bridge Element Inspection Questions and Answers on VDOT's Supplement to the AASHTO Manual for Bridge Element Inspection No. 1 2/26/2016 830 MSE Wall V 26 Is ADE 830 MSE Wall to be used in conjunction with NBE 218 Other Abutment

More information

FEASIBILITY REPORT UNITY AVENUE STREET IMPROVEMENTS

FEASIBILITY REPORT UNITY AVENUE STREET IMPROVEMENTS Public Works Dept Engineering Division Phone: 763-569-3340 FAX: 763-569-3440 FEASIBILITY REPORT FOR UNITY AVENUE STREET IMPROVEMENTS IMPROVEMENT PROJECT NO. 2011-05 CITY OF BROOKLYN CENTER, MINNESOTA January

More information

Evaluation of the Need for Longitudinal Median Joints in Bridge Decks on Dual Structures

Evaluation of the Need for Longitudinal Median Joints in Bridge Decks on Dual Structures InTrans Project Reports Institute for Transportation 9-2015 Evaluation of the Need for Longitudinal Median Joints in Bridge Decks on Dual Structures Brent Phares Institute for Transportation, bphares@iastate.edu

More information

Lesner Bridge Replacement. April 24, 2017 Update. Construction Camera. Rendering of the Completed Lesner Bridge Structure

Lesner Bridge Replacement. April 24, 2017 Update. Construction Camera. Rendering of the Completed Lesner Bridge Structure Lesner Bridge Replacement Rendering of the Completed Lesner Bridge Structure Construction Camera A construction camera has been installed to view images of the bridge construction. Images are updated on

More information

Integral Abutment Bridge Design with Soil Structure Interaction

Integral Abutment Bridge Design with Soil Structure Interaction Integral Abutment Bridge Design with Soil Structure Interaction Thursday, May 11, 2017 3:00 PM 4:00 PM EST Speaker Engineer: Suthichai Saelim Project Location WESTBOROUGH Railroad HOPKINTON Project Location

More information

Architect/Contractor/QS/Sub-Contractor/C of W/RE/File ref PiMS Documents Site Visit Report. Item Text Action on

Architect/Contractor/QS/Sub-Contractor/C of W/RE/File ref PiMS Documents Site Visit Report. Item Text Action on Site visit report Project Title Killamarsh Cycleway (TPBN559 SUSTRANS Connect2 - Halfway to Killamarsh (Phase 1)) Project No. 290390 Site Visited Killamarsh Station Road Date of Visit 25 th November 2011

More information

Instrumentation and Monitoring of Precast Bridge Approach Tied to an Integral Abutment Bridge in Bremer County

Instrumentation and Monitoring of Precast Bridge Approach Tied to an Integral Abutment Bridge in Bremer County Instrumentation and Monitoring of Precast Bridge Approach Tied to an Integral Abutment Bridge in Bremer County Final Report April 2010 Sponsored by Federal Highway Administration Iowa Department of Transportation

More information

UNDERWATER BRIDGE INSPECTION REPORT STRUCTURE NO CSAH NO. 4 OVER THE CLEARWATER RIVER (DAM) DISTRICT 2 - CLEARWATER COUNTY

UNDERWATER BRIDGE INSPECTION REPORT STRUCTURE NO CSAH NO. 4 OVER THE CLEARWATER RIVER (DAM) DISTRICT 2 - CLEARWATER COUNTY UNDERWATER BRIDGE INSPECTION REPORT STRUCTURE NO. 4992 CSAH NO. 4 OVER THE CLEARWATER RIVER (DAM) DISTRICT 2 - CLEARWATER COUNTY PREPARED FOR THE MINNESOTA DEPARTMENT OF TRANSPORTATION BY COLLINS ENGINEERS,

More information

IL 115 OVER GAR CREEK ACCELERATED BRIDGE REPLACEMENT. Chad Hodel, S.E., P.E. (WHKS) Stan Kaderbek, S.E., P.E. (Milhouse)

IL 115 OVER GAR CREEK ACCELERATED BRIDGE REPLACEMENT. Chad Hodel, S.E., P.E. (WHKS) Stan Kaderbek, S.E., P.E. (Milhouse) IL 115 OVER GAR CREEK ACCELERATED BRIDGE REPLACEMENT Chad Hodel, S.E., P.E. (WHKS) Stan Kaderbek, S.E., P.E. (Milhouse) AGENDA Project Overview and Need Design and Special Provisions Construction Engineering

More information

Monitored Displacements of a Unique Geosynthetic-Reinforced Walls Supporting Bridge and Approaching Roadway Structures

Monitored Displacements of a Unique Geosynthetic-Reinforced Walls Supporting Bridge and Approaching Roadway Structures Abu-Hejleh, N., Zornberg, J.G., and Wang, T. (). Monitored Displacements of a Unique Geosynthetic-Reinforced Walls Supporting Bridge and Approaching Roadway Structures. Proceedings of the 8th Annual Meeting,

More information

ATTACHMENT B8 Incident History

ATTACHMENT B8 Incident History Appendix B GIS/Imagery Outputs ATTACHMENT B8 Incident History Appendix B - GIS/Imagery Outputs Appendix B: Attachment B8 Incident History TABLE OF CONTENTS B.B8-1 INTRODUCTION... 1 B.B8-2 FACT SHEETS...

More information

Filed: , EB , Exhibit B, Tab 1, Schedule 1, Attachment 3, Page 1 of 8

Filed: , EB , Exhibit B, Tab 1, Schedule 1, Attachment 3, Page 1 of 8 Filed: 2018-07-04, EB-2018-0108, Exhibit B, Tab 1, Schedule 1, Attachment 3, Page 1 of 8 Stantec Consulting Ltd. 300-675 Cochrane Drive West Tower Markham ON L3R 0B8 Tel: (905) 944-7777 Fax: (905) 474-9889

More information

State-Aid Bridge News August 2, 2005

State-Aid Bridge News August 2, 2005 State-Aid Bridge News August 2, 2005 Bridge Hydraulic Information The FHWA has been inquiring about our Scour Program. In particular, there are two areas of concern; 1. Are our Scour Action Plans current

More information

2. A light fixture mounted above the sign face may be installed with its bottom opening tilted toward the sign face, provided:

2. A light fixture mounted above the sign face may be installed with its bottom opening tilted toward the sign face, provided: Section 20.132.090 Sign illumination. A. General. No temporary sign may be illuminated. No sign located in a residential zone may be illuminated, except that on parcels two (2) acres in size or greater,

More information

Bahavior and Analysis of an Integral Abutment Bridge

Bahavior and Analysis of an Integral Abutment Bridge Utah State University DigitalCommons@USU All Graduate Theses and Dissertations Graduate Studies 2013 Bahavior and Analysis of an Integral Abutment Bridge Conner D. Huffaker Follow this and additional works

More information

UNDERWATER BRIDGE INSPECTION REPORT STRUCTURE NO th STREET OVER THE ZUMBRO RIVER CITY OF ROCHESTER

UNDERWATER BRIDGE INSPECTION REPORT STRUCTURE NO th STREET OVER THE ZUMBRO RIVER CITY OF ROCHESTER UNDERWATER BRIDGE INSPECTION REPORT STRUCTURE NO. 89188 7 th STREET OVER THE ZUMBRO RIVER CITY OF ROCHESTER OCTOBER 2, 2012 PREPARED FOR THE MINNESOTA DEPARTMENT OF TRANSPORTATION BY COLLINS ENGINEERS,

More information

B. Stipulated Price (Lump Sum). If Contract is Stipulated Price Contract, payment for Work in this Section is included in total Stipulated Price.

B. Stipulated Price (Lump Sum). If Contract is Stipulated Price Contract, payment for Work in this Section is included in total Stipulated Price. Section 02222 PART 1 G E N E R A L 1.01 SECTION INCLUDES A. Abandonment in place of existing sewers, junction structures, manholes, and force mains. 1.02 MEASUREMENT AND PAYMENT A. Unit Prices. 1. Payment

More information

BEHAVIOR AND ANALYSIS OF AN INTEGRAL ABUTMENT BRIDGE

BEHAVIOR AND ANALYSIS OF AN INTEGRAL ABUTMENT BRIDGE BEHAVIOR AND ANALYSIS OF AN INTEGRAL ABUTMENT BRIDGE Paul J. Barr Marv W. Halling Conner Huffaker Hugh Boyle Utah State University Department of Civil and Environmental Engineering Logan, Utah September

More information

v Feature Stamping SMS 13.0 Tutorial Prerequisites Requirements Map Module Mesh Module Scatter Module Time minutes

v Feature Stamping SMS 13.0 Tutorial Prerequisites Requirements Map Module Mesh Module Scatter Module Time minutes v. 13.0 SMS 13.0 Tutorial Objectives Learn how to use conceptual modeling techniques to create numerical models which incorporate flow control structures into existing bathymetry. The flow control structures

More information

Meeting Minutes Markings Technical Committee National Committee on Uniform Traffic Control Devices January 9-12, 2008 Arlington, VA

Meeting Minutes Markings Technical Committee National Committee on Uniform Traffic Control Devices January 9-12, 2008 Arlington, VA Meeting Minutes Markings Technical Committee National Committee on Uniform Traffic Control Devices January 9-12, 2008 Arlington, VA I. Call to order (Gene Hawkins) A. Self introductions members and visitors

More information

1.0 Executive Summary Introduction Figure Monroe and North Street Analysis of Traffic Data... 4

1.0 Executive Summary Introduction Figure Monroe and North Street Analysis of Traffic Data... 4 TABLE OF CONTENTS 1.0 Executive Summary... 3 2.0 Introduction... 3 2.1 Figure Monroe and North Street... 3 3.0 Analysis of Traffic Data... 4 3.1 Table Summary of MUTCD Warrants... 5 4.0 Conclusions and

More information

Introduction. Substructure Inspection and Rating. Introduction. Introduction 28/03/2017

Introduction. Substructure Inspection and Rating. Introduction. Introduction 28/03/2017 Introduction Substructure Inspection and Rating That portion of the bridge located below the bearings Abutments Piers Rated separately Purpose is to: Receive the loads from the superstructure Transfer

More information

Earthquake Resistance of Bridges With Friction Slab Abutments

Earthquake Resistance of Bridges With Friction Slab Abutments Earthquake Resistance of s With Friction Slab Abutments J. H. Wood John Wood Consulting, Lower Hutt. ABSTRACT: 2010 NZSEE Conference Findings from experimental and numerical research on the force resistance

More information

ACCELERATED BRIDGE REPLACEMENT

ACCELERATED BRIDGE REPLACEMENT Christopher Beck Chief Engineer: Bridge & Structures Northern Indiana Commuter Transportation District 601 North Roeske Avenue Michigan City, IN chris.beck@nictd.com Accelerated Bridge Replacement (ABR)

More information

Potholes: Prevent Before They Present

Potholes: Prevent Before They Present : Prevent Before They Present Dave Bergner, M.A., PWLF Mike Hale, P.E., P.L.S, M.S.C.E. TRB/ AASHTO Transportation Infrastructure Maintenance and Operations Conference, July 21, 2015 Des Moines, IA c.

More information

Analyses of State Highway Bridges Damaged in the Darfield and Christchurch Earthquakes

Analyses of State Highway Bridges Damaged in the Darfield and Christchurch Earthquakes Analyses of State Highway Bridges Damaged in the Darfield and Christchurch Earthquakes J. H. Wood John Wood Consulting, Lower Hutt. ABSTRACT: 2012 NZSEE Conference Twelve State Highway (SH) bridges subjected

More information

CC032 Techniques for Pavement Rehabilitation

CC032 Techniques for Pavement Rehabilitation CC032 Techniques for Pavement Rehabilitation H.H. Sheik Sultan Tower (0) Floor Corniche Street Abu Dhabi U.A.E www.ictd.ae ictd@ictd.ae Course Introduction: Pavement rehabilitation is defined as a structural

More information

A Tale of Two Bridges: Comparison between the Seismic Performance of Flexible and Rigid Abutments

A Tale of Two Bridges: Comparison between the Seismic Performance of Flexible and Rigid Abutments A Tale of Two Bridges: Comparison between the Seismic Performance of Flexible and Rigid Abutments A.M. Morsy. Department of Civil, Architectural, and Environmental Engineering, The University of Texas

More information

UNDERWATER BRIDGE INSPECTION REPORT STRUCTURE NO CSAH NO. 6 OVER A BRANCH OF THE CALDWELL CREEK DISTRICT 1 - KOOCHICHING COUNTY

UNDERWATER BRIDGE INSPECTION REPORT STRUCTURE NO CSAH NO. 6 OVER A BRANCH OF THE CALDWELL CREEK DISTRICT 1 - KOOCHICHING COUNTY UNDERWATER BRIDGE INSPECTION REPORT STRUCTURE NO. 36508 CSAH NO. 6 OVER A BRANCH OF THE CALDWELL CREEK DISTRICT 1 - KOOCHICHING COUNTY PREPARED FOR THE MINNESOTA DEPARTMENT OF TRANSPORTATION BY COLLINS

More information

EXAMINATION OF THE RESPONSE OF SKEWED STEEL BRIDGE SUPERSTRUCTURE DURING DECK PLACEMENT

EXAMINATION OF THE RESPONSE OF SKEWED STEEL BRIDGE SUPERSTRUCTURE DURING DECK PLACEMENT Norton et al. Word Count: 8400 Tables: 5 Figures: 13 1 EXAMINATION OF THE RESPONSE OF SKEWED STEEL BRIDGE SUPERSTRUCTURE DURING DECK PLACEMENT Date submitted: 08/01/02 Date Revised and Resubmitted: 11/15/02

More information

STRUCTURAL STABILITY ASSESSMENT

STRUCTURAL STABILITY ASSESSMENT STRUCTURAL STABILITY ASSESSMENT CFR 257.73(d) Fly Ash Pond Big Sandy Plant Louisa, Kentucky October, 2016 Prepared for: Kentucky Power Big Sandy Plant Louisa, Kentucky Prepared by: American Electric Power

More information

DESIGN ASSESSMENT OF THE FOUNDERS/MEADOWS GRS ABUTMENT STRUCTURE

DESIGN ASSESSMENT OF THE FOUNDERS/MEADOWS GRS ABUTMENT STRUCTURE Abu-Hejleh, N., Zornberg, J.G., Elias, V., and Watcharamonthein, J. (23). Design Assessment of the Founders/Meadows GRS Abutment Structure. Proceedings of the 82nd Annual Meeting of the Transportation

More information

Hard Hat Services ph: hardhatinc.com 932 N. Wright St., Suite 160 Naperville, IL 60563

Hard Hat Services ph: hardhatinc.com 932 N. Wright St., Suite 160 Naperville, IL 60563 Interstate Power and Light Company Burlington Generation Station CCR Surface Impoundment Annual Inspection Report 154.018.012.001 Report issued: December 21, 2016 Hard Hat Services ph: 877-630-7428 hardhatinc.com

More information

Thermal Response of Integral Abutment Bridges With Mechanically Stabilized Earth Walls

Thermal Response of Integral Abutment Bridges With Mechanically Stabilized Earth Walls Thermal Response of Integral Abutment Bridges With Mechanically Stabilized Earth Walls http://www.virginiadot.org/vtrc/main/online_reports/pdf/13-r7.pdf ALFREDO E. ARENAS, Ph.D. Graduate Research Assistant

More information

Proposed Regulation Updates. Pa Code, Title 67, Chapter 441. Access to and Occupancy of Highways by Driveways and Local Roads

Proposed Regulation Updates. Pa Code, Title 67, Chapter 441. Access to and Occupancy of Highways by Driveways and Local Roads Proposed Regulation Updates Pa Code, Title 67, Chapter 441 Access to and Occupancy of Highways by Driveways and Local Roads Chapter 441 update History Last update occurred in 1992 2004 attempted update

More information

Low-Volume Road Abutment Design Standards

Low-Volume Road Abutment Design Standards Low-Volume Road Abutment Design Standards V.W. Robbins HNTB Corporation 7450 W. 130th St., Suite 400 Overland Park, KS 66213 vrobbins@hntb.com F. Wayne Klaiber Bridge Engineering Center 418 Town Engineering

More information

Evaluation of the Foundation and Wingwalls of Skewed Semi-Integral Bridges with Wall. Abutments. A thesis presented to.

Evaluation of the Foundation and Wingwalls of Skewed Semi-Integral Bridges with Wall. Abutments. A thesis presented to. Evaluation of the Foundation and Wingwalls of Skewed Semi-Integral Bridges with Wall Abutments A thesis presented to the faculty of the Russ College of Engineering and Technology of Ohio University In

More information

Identifying Number MPC-354. Project Title: Geotechnical Limit to Scour at Spill-through Abutments. University: The University of Wyoming

Identifying Number MPC-354. Project Title: Geotechnical Limit to Scour at Spill-through Abutments. University: The University of Wyoming Identifying Number MPC-354 Project Title: Geotechnical Limit to Scour at Spill-through Abutments University: The University of Wyoming Principal Investigators: Robert Ettema PhD, PE College of Engineering

More information

Elias Rmeili, P.E. Brownwood District Director of TP&D Darlene Goehl, P.E. Bryan District Pavement/Materials Engineer Miguel Arellano, P.E.

Elias Rmeili, P.E. Brownwood District Director of TP&D Darlene Goehl, P.E. Bryan District Pavement/Materials Engineer Miguel Arellano, P.E. Elias Rmeili, P.E. Brownwood District Director of TP&D Darlene Goehl, P.E. Bryan District Pavement/Materials Engineer Miguel Arellano, P.E. Austin District Pavement/Materials Engineer 4 year Plan Background

More information

THE TOWN OF CINCO BAYOU SIGN ORDINANCES ORDINANCE NO

THE TOWN OF CINCO BAYOU SIGN ORDINANCES ORDINANCE NO THE TOWN OF CINCO BAYOU SIGN ORDINANCES ORDINANCE NO. 200 83-7 83-7. Permitted temporary signs. Generally. The town recognizes that, by their nature, some signs are intended from their construction to

More information

An Integral Abutment Bridge with Precast Concrete Piles

An Integral Abutment Bridge with Precast Concrete Piles An Integral Abutment Bridge with Precast Concrete Piles Final Report May 2007 Sponsored by the Iowa Highway Research Board (IHRB Project TR-438) and the Iowa Department of Transportation (CTRE Project

More information

County of Orange. Presented to the Flood Division August 13, 2001 by Nadeem Majaj

County of Orange. Presented to the Flood Division August 13, 2001 by Nadeem Majaj Using HECRAS TO Evaluate Scour At Bridges County of Orange Presented to the Flood Division August 3, 200 by Nadeem Majaj Approximately 575,000 bridges are built over waterways in the US. The most common

More information

Comparative Study of Behaviour of Integral and Bearing Type Bridge under Temperature Loading

Comparative Study of Behaviour of Integral and Bearing Type Bridge under Temperature Loading IJSRD - International Journal for Scientific Research & Development Vol. 3, Issue 03, 2015 ISSN (online): 2321-0613 Comparative Study of Behaviour of Integral and Bearing Type Bridge under ing B. J. Shah

More information

Critically damaged bridges & concepts for earthquake recovery

Critically damaged bridges & concepts for earthquake recovery Critically damaged bridges & concepts for earthquake recovery J. Waldin, J. Jennings & P. Routledge Opus International Consultants Ltd, Christchurch, New Zealand 2012 NZSEE Conference ABSTRACT: This paper

More information

Ontario s Move to Hot Mix Asphalt Pavement Smoothness Acceptance Using High Speed Inertial Profilers

Ontario s Move to Hot Mix Asphalt Pavement Smoothness Acceptance Using High Speed Inertial Profilers Ontario s Move to Hot Mix Asphalt Pavement Smoothness Acceptance Using High Speed Inertial Profilers Seyed Tabib, Senior Bituminous Engineer Materials Engineering and Research Office, Ministry of Transportation

More information

Numerical Modeling of the Performance of Highway Bridge Approach Slabs. Gregory S. Rajek

Numerical Modeling of the Performance of Highway Bridge Approach Slabs. Gregory S. Rajek Numerical Modeling of the Performance of Highway Bridge Approach Slabs by Gregory S. Rajek A thesis in partial fulfillment of the requirements for the degree of Master of Science (Civil Engineering) UNIVERSITY

More information

The Role of Vetiver Grass in Erosion Control and Slope Stabilization Along the Highways of Thailand

The Role of Vetiver Grass in Erosion Control and Slope Stabilization Along the Highways of Thailand 1 The Role of Vetiver Grass in Erosion Control and Slope Stabilization Along the Highways of Thailand Surapol Sanguankaeo, Chawalit Sukhawan and Ekawit Veerapunth Department of Highways Bangkok Thailand

More information

Stantec Consulting Ltd Cochrane Drive West Tower Markham ON L3R 0B8 Tel: (905) Fax: (905)

Stantec Consulting Ltd Cochrane Drive West Tower Markham ON L3R 0B8 Tel: (905) Fax: (905) Filed: 2018-07-04, EB-2018-0108, Exhibit B, Tab 1, Schedule 1, Attachment 4, Page 1 of 10 Stantec Consulting Ltd. 300-675 Cochrane Drive West Tower Markham ON L3R 0B8 Tel: (905) 944-7777 Fax: (905) 474-9889

More information

1 Exam Prep. SMACNA Architectural Sheet Metal Questions

1 Exam Prep. SMACNA Architectural Sheet Metal Questions 1 Exam Prep SMN rchitectural Sheet Metal Questions 1. Which of the following is not an advantage of terne? Lightweight High expansion rate Low expansion rate urable 2. ownspouts should be constructed with

More information

Modular Steel Bridges. Stark County Fischer Bridge Bottineau County Oak Creek Bridge

Modular Steel Bridges. Stark County Fischer Bridge Bottineau County Oak Creek Bridge Modular Steel Bridges Stark County Fischer Bridge Bottineau County Oak Creek Bridge This John Deere grain hauler was too heavy for the bridge. OOPS! An excavator and tow truck are needed to remove the

More information

Geotechnical Issues Associated With the Design and Construction of the Middle River Bridge

Geotechnical Issues Associated With the Design and Construction of the Middle River Bridge Missouri University of Science and Technology Scholars' Mine International Conference on Case Histories in Geotechnical Engineering (2013) - Seventh International Conference on Case Histories in Geotechnical

More information

Ashton Avenue Integral Bridge

Ashton Avenue Integral Bridge Ashton Avenue Integral Bridge Behzad Golfa, Senior Bridge Engineer, GHD Pty Ltd ABSTRACT The Ashton Avenue Bridge is a replacement of the original three-span timber bridge over Perth- Fremantle Rail line

More information

Bank Erosion and Bridge Scour

Bank Erosion and Bridge Scour JULY 2017 NCHRP PRACTICE-READY SOLUTIONS FOR Bank Erosion and Bridge Scour NCHRP NATIONAL COOPERATIVE HIGHWAY RESEARCH PROGRAM RESEARCH TOPIC HIGHLIGHTS INTRODUCTION Bank Erosion and Bridge Scour: NCHRP

More information

Cold In-Place Recycling Forensic Study on U.S. Highway 34 Union County, Iowa

Cold In-Place Recycling Forensic Study on U.S. Highway 34 Union County, Iowa Cold In-Place Recycling Forensic Study on U.S. Highway 34 Union County, Iowa Michael Heitzman Office of Materials Iowa Department of Transportation 800 Lincoln Way Ames, Iowa 50010 Michael.Heitzman@dot.iowa.gov

More information