1. (1 pt) At the equilibrium potential of an ion, what two things are equal? Electrical potential (voltage) and chemical potential (concentration)

Size: px
Start display at page:

Download "1. (1 pt) At the equilibrium potential of an ion, what two things are equal? Electrical potential (voltage) and chemical potential (concentration)"

Transcription

1 MIDERM REVIEW QUESIONS: IO 3411 (hese are questions from 3 of the previous years midterms) 1. (1 pt) t the equilibrium potential of an ion, what two things are equal? Electrical potential (voltage) and chemical potential (concentration) 2. (1 pt) Name a ligand-gated channel where E rev of the channel is equal to E Cl-. G receptor 3. (1 pt) neuron embodies three elements of an electronic device. hey are: attery (provides own power for action potential) ; Computer (integrates inputs); and Wire (transmits information) 4. (3 pts) mutation of a potassium channel which causes a loss-of-function might have which effect? nswer true or false. 1. more positive cell resting potential 2. Change in action potential threshold. 3. Increase in action potential duration. 4. Decrease in refractory period 5. Increase in neurotransmitter release. 6. Increase in axon length constant. 5. (2 pts) Name two mechanisms for stopping the action of neurotransmitters. Degredation and reuptake 6. (4 pts) Name four properties of single channels which can be revealed by the single channel patch clamp technique: 1. mean open time 2. conductance 3. selectivity (ie permeable to which ions) 4. gating properties (ie voltage or ligand gating) also: inactivation properties

2 7. (10 pts) One answer per blank. I Neurotransmitter degradation. 300 vesicles G Reuptake blocker Pain H Mechanism of synaptic integration E MEPP J Metabotropic, small molecule EPSP at neuromuscular junction D pamin Sensory receptor potential C Resting potential. Energy transduction C. I Na = I K D. K + channel blocker E. 10,000 molecules. Substance P G. Prozac H. Spatial summation I. cetylcholinesterase J. Dopamine 8. (8 pts) ill in the blanks with the letter of the ES answer (one answer per blank). D Sodium channel inactivation G Length constant or D Myelin Voltage-dependent gating E Passive voltage change H Sodium potassium Pase C Voltage-dependent potassium channels I Ion selectivity filter. llows sequential release of energy in adjacent axon membrane. pumps out sodium to repolarize the action potential C. Determines the shape and duration of action potentials D. Conserves energy in propagation E. Sensory receptor activation. Increases the length constant G. Depends on passive properties H. Maintains the bulk concentrations of internal ions I. Spatial summation

3 9. (9 pts) ill in the blanks with the letter of the ES answer (one answer per blank) C Ion with the highest bulk concentration inside the cell Ion with the lowest bulk concentration inside the cell Cation with the highest bulk concentration outsides the cell wo ions where both electrical and chemical forces push inward (at rest) C D wo ions where electrical and chemical forces push in opposite directions (at rest) C D wo ions where there E equil is near the resting potential a. Na + b. Ca 2+ c. K + d. Cl (10 pts) nswer true or false (+1 pt each answer, but -1/2 pt for each incorrect answer) Sensory neurons with slowly adapting receptors project to the somatosensory cortex, while those with rapidly adapting receptors project to the motor cortex. Sensory neurons project to somatosensory cortex, motor cortex sends projections to muscles. he process of binding involves the convergence of synchronized activity from all over the brain in a central pathway to the amygdala. mygdala is not involved in the binding problem. Neurotransmitter release can be evoked either by direct injection of calcium into the presynaptic terminal, or by direct depolarization of the presynaptic terminal in the absence of calcium. Calcium is necessary for neurotransmitter release. he family of genes encoding potassium channels in the mammalian or C. elegans genome is much larger than the family of genes encoding either calcium or sodium channels. he NMD receptor conducts glutamate and calcium ions equally well. Glutamate is a ligand and is not conducted through channels, but does bind to NMD receptors. he cellular basis of learning involves use-dependent changes in synaptic efficiency. Voltage-dependent Na + channels are essential for active propagation. Calcium can substitute for Na in active propagation.

4 he sequential release of energy in an important concept in passive propagation. Sequential energy release is important in active propagation. Electrical synaptic transmission always evokes an action potential in the post synaptic cell, but is difficult to modulate. n P is not always evoked in a postsynaptic cell. Distinct channel types often differ with respect to their conductance, mean open time, inactivation properties and selectivity. 12. (10 pts) Some answers are used more than once (here are 10 correct answers; -1 for each answer over 10.) CD E D C E a. point furthest from E Cl b. point closest to E Ca c. the driving force on K + is greatest d. the electrical gradient for Ca 2+ is inward e. the potassium current is larger than the sodium current f. the sodium current is greater than the potassium current g. point furthest from the reversal potential for ch-activated channels h. point closest to the reversal potential for Glu-activated channels 0 mv E C D One point each question/ Circle one correct answer ONLY for each questions 13. During the undershoot of the action potential a. ll sodium channels are in the inactivated conformation b. he action potential threshold is unchanged from the resting membrane conditions

5 c. he potassium current is initially higher than the sodium current, then the sodium current becomes higher than the potassium current until equilibrium is reached d. he sodium/potassium Pase repolarizes the membrane e. he membrane potential approaches E Ca 14. Which of the following is unimportant in established the membrane resting potential? a. he bulk concentrations of all ions which are permeable b. he equilibrium potential of all permeable ions c. he intracellular concentration of potassium ions d. Membrane leak channels e. he sodium-potassium Pase f. he bulk concentrations of all ions which are not permeable 15. Using patch clamp technique: a. Different channels can be distinguished according to their single channel conductance b. Different channels can be distinguished according to their mean open time c. Different channels can be distinguished according to their inactivation properties d. Different channels can be distinguished according to their reversal potentials e. Different channels can be distinguished according to their gating properties f. ll of the above 16. he condition of Hyperkalemic Periodic Paralysis is a genetic disease which resembles Hyperkalemia, a condition where the bulk concentration of extra cellular potassium is too high. Genetic defects in several ion channels might cause a similar condition by mimicking the effects of hyperkalemia. Which of the following might be true: hink: an increase in extracellular potassium causes the membrane potential to become more positive. a. he membrane resting potential in affected cells is too positive b. he condition could result from a gain-of-function mutation in sodium channels which could cause some of them to open at resting potentials. Such a mutation would be dominant c. similar condition could result from a mutation that partially block leak (K + selective) channels. Such a mutation would be dominant d. ll of the above e. a & b f. a & c

6 17. Some forms of Long Q syndrome are dominant-negative because: a. Mutant potassium channel subunits form heteromultimers with wild-type subunits and these heteromultimers are non functional. b. he mutant potassium channel gene suppresses the genetic expression of the cardiac sodium channel c. he mutation in the potassium channel gene is recessive. d. he mutant potassium channel shortens the duration of the cardiac action potential e. None of the above 18. nswer true or false. (1 pt each) Every element of circuitry in the brain is its own battery Ion selectivity in a voltage-gated potassium channel is achieved by part of the channel structure which mimics part of the hydration shell of the potassium ion Sodium and chloride ions have a very stable relationship in the salt shaker (because of the strength of their mutual electrical attraction), but when dropped in water, their stable relationship is ruined because the attention of so many polar suitors (water molecules). Voltage-gating of the sodium channel is essential for the sequential release of energy in the propagation of the action potential. Voltage-gating involves a positively charged membrane segment (the S4 region), which is similar in all voltage-gated channels (both sodium, calcium and potassium channels). In general, ligand gated channels tend to more highly ion selective than voltage-gated channels. Ligand gated channels are less selective (glu: K & Na, ch: K & Na) Saltatory conduction refers to the fact that in a myelinated axon the signal jumps passively between nodes. Short term learning and memory seem to require protein synthesis. facilitation is a form of learning that does not require protein synthesis Processing in the brain is mostly serial. Mostly parallel Most sensory receptors cause passive depolarizations. requency coding is common in sensory neurons. ctive propagation requires passive propagation. Passive propagation requires active propagation.

7 19. ill in each blank with,, or C. Synaptic transmission:. ionotropic,. metabotropic, C. electrical C C 1. ligand binds to channel 2. more difficult to control 3. slowest 4. amplifying system 5. seven transmembrane receptor protein 6. G 7. gap junctions 8. direct neurotransmitter binding to channel 9. substance P 10. neurotransmitter encoded by gene 20. wo factors important in transferring short-term memory into long term memory are : protein synthesis and synaptogenesis. 21. he term reversal potential refers to a channel. (single word answer). 22. he term equilibrium potential refers to a ion. (single word answer) 23. a) Which four answers are applicable to the diagram? C ; H ; D ; I. acilitation. Presynaptic facilitation C. ction potential D. Spatial summation C E. Electrical synaptic transmission. Long term potentiation G. IPSP H. EPSP I. Passive potential b) If the potential recorded at were inhibitory, which four answers would be applicable? G ; D ; H ; I

8 24. (8 pts) ill in the table with the letter of the correct concentration of bulk solution for mammalian neurons. Some answers are used more than once. nswers are best approximations; units are mm. a. 143 b. 5 c d. 110 e. 2 INSIDE OUSIDE Na + b a Cl - b d, a Ca 2+ c e K + a b 25. (10 pts) rue or alse. 1. Myelin serves two major roles: 1) lowering membrane resistance to increase the length constant and 2) raising membrane capacitance to conserve energy. Myelin increases R m and decreases C m 2. Resistors in series add so that the total resistance is equal to the additive sum of all resistors. 3. Capacitors in series add so that the total resistance is equal to the additive sum of all capacitors. C series =1/(1/C1 + 1/C2). 4. Spatial summation applies only to EPSPs, not IPSPs. 5. he brain is wired mostly in series; parallel circuits are only occasionally encountered. 6. Each element of circuitry (neuron) in the brain is its own battery. 7. Each element of circuitry in the brain is a computer. 8. Synapses connecting neurons with other neurons most commonly produce allor-none responses. n action potential in a presynaptic neuron does not guarantee an action potential in the postsynaptic neuron. In the NMJ, an P in the presynaptic neuron almost guarantees a muscle contraction (in normal physiological conditions). 9. he reversal potential for a G receptor channel is the same as the equilibrium potential for chloride. 10. he bulk concentration of calcium ion remains constant in the presynaptic terminal, even during intense synaptic activity. Ca can increase, which can lead to the release of neuropeptides. 11. he driving force on a sodium ion is zero at the potassium equilibrium potential. D on Na is high at E k. D on K is 0 at E k. 12. Myelinated neurons conduct an action potential at the speed of light. Slower than speed of light. 13. Passive propagation is conducted at the approximate velocity of a fast pitched baseball. ctive propagation is that fast, passive is slower. 14. Metabotropic receptors seldom use a second messenger system. 15. Ionotropic receptors require phosphorylation to function. Requires only ligand binding. 16. ctive propagation relies on passive propagation to bring adjacent membrane

9 to threshold. 17. Neuropeptides always bind to ionotropic receptors. lways?? Most are metabotrophic 18. t the reversal potential of the ch channel, the inward K + current is equal and opposite to the outward Na + current. (ssume the channel is open.) Look closely, outward K current = inward Na, not the reverse. 19. Even without the Na + /K + Pase, most cells would have a negative intracellular potential. 20. Saltatory conduction refers to active propagation jumping from internode to internode at the speed of light. Not that fast. 26. (1 pt per blank) ill in the blanks 1. neurotransmitter that is broadcast to more than one post-synaptic target is neuropeptide/ substance P. 2. neurotransmitter that has its action stopped by a protease is neuropeptide/ substance P. 3. drug that blocks the reuptake of a neurotransmitter is prozac (SSRIs). 4. he cellular basis of learning and memory probably involves use-dependent synaptic mechanisms such as facilitation, depression, and LP. 5. Place learning in the hippocampus probably involves what synaptic mechanism? LP 6. Short-term learning and memory may involve synaptic plasticity while longterm memory may involve protein synthesis. 27. ypes of genetic mutations. Choose the best answer. a. recessive b. dominant-negative c. dominant-gain of function C Sodium channel defect causing symptoms similar to hyperkalemia Loss of function; most common type of mutation enign familial neonatal convulsions Usually involves a multimeric protein. Long Q syndrome 28. (1 pt) Circle correct answer(s). Synaptic integration may involve which of the following: (all are correct) a. facilitation b. depression c. temporal summation d. presynaptic inhibition

Introduction to Neurobiology

Introduction to Neurobiology Biology 240 General Zoology Introduction to Neurobiology Nervous System functions: communication of information via nerve signals integration and processing of information control of physiological and

More information

Neurons, Synapses and Signaling. Chapter 48

Neurons, Synapses and Signaling. Chapter 48 Neurons, Synapses and Signaling Chapter 48 Warm Up Exercise What types of cells can receive a nerve signal? Nervous Organization Neurons- nerve cells. Brain- organized into clusters of neurons, called

More information

Communication within a Neuron

Communication within a Neuron Neuronal Communication, Ph.D. Communication within a Neuron Measuring Electrical Potentials of Axons The Membrane Potential The Action Potential Conduction of the Action Potential 1 The withdrawal reflex

More information

3) Most of the organelles in a neuron are located in the A) dendritic region. B) axon hillock. C) axon. D) cell body. E) axon terminals.

3) Most of the organelles in a neuron are located in the A) dendritic region. B) axon hillock. C) axon. D) cell body. E) axon terminals. Chapter 48 Neurons, Synapses, and Signaling Multiple-Choice Questions 1) A simple nervous system A) must include chemical senses, mechanoreception, and vision. B) includes a minimum of 12 ganglia. C) has

More information

STRUCTURAL ELEMENTS OF THE NERVOUS SYSTEM

STRUCTURAL ELEMENTS OF THE NERVOUS SYSTEM STRUCTURAL ELEMENTS OF THE NERVOUS SYSTEM STRUCTURE AND MAINTENANCE OF NEURONS (a) (b) Dendrites Cell body Initial segment collateral terminals (a) Diagrammatic representation of a neuron. The break in

More information

Portions from Chapter 6 CHAPTER 7. The Nervous System: Neurons and Synapses. Chapter 7 Outline. and Supporting Cells

Portions from Chapter 6 CHAPTER 7. The Nervous System: Neurons and Synapses. Chapter 7 Outline. and Supporting Cells CHAPTER 7 The Nervous System: Neurons and Synapses Chapter 7 Outline Neurons and Supporting Cells Activity in Axons The Synapse Acetylcholine as a Neurotransmitter Monoamines as Neurotransmitters Other

More information

Na + K + pump. The beauty of the Na + K + pump. Cotransport. The setup Cotransport the result. Found along the plasma membrane of all cells.

Na + K + pump. The beauty of the Na + K + pump. Cotransport. The setup Cotransport the result. Found along the plasma membrane of all cells. The beauty of the Na + K + pump Na + K + pump Found along the plasma membrane of all cells. Establishes gradients, controls osmotic effects, allows for cotransport Nerve cells have a Na + K + pump and

More information

Chapter 2: Cellular Mechanisms and Cognition

Chapter 2: Cellular Mechanisms and Cognition Chapter 2: Cellular Mechanisms and Cognition MULTIPLE CHOICE 1. Two principles about neurons were defined by Ramón y Cajal. The principle of connectional specificity states that, whereas the principle

More information

ANATOMY AND PHYSIOLOGY OF NEURONS. AP Biology Chapter 48

ANATOMY AND PHYSIOLOGY OF NEURONS. AP Biology Chapter 48 ANATOMY AND PHYSIOLOGY OF NEURONS AP Biology Chapter 48 Objectives Describe the different types of neurons Describe the structure and function of dendrites, axons, a synapse, types of ion channels, and

More information

NEURONS COMMUNICATE WITH OTHER CELLS AT SYNAPSES 34.3

NEURONS COMMUNICATE WITH OTHER CELLS AT SYNAPSES 34.3 NEURONS COMMUNICATE WITH OTHER CELLS AT SYNAPSES 34.3 NEURONS COMMUNICATE WITH OTHER CELLS AT SYNAPSES Neurons communicate with other neurons or target cells at synapses. Chemical synapse: a very narrow

More information

Ameen Alsaras. Ameen Alsaras. Mohd.Khatatbeh

Ameen Alsaras. Ameen Alsaras. Mohd.Khatatbeh 9 Ameen Alsaras Ameen Alsaras Mohd.Khatatbeh Nerve Cells (Neurons) *Remember: The neural cell consists of: 1-Cell body 2-Dendrites 3-Axon which ends as axon terminals. The conduction of impulse through

More information

9/28/2016. Neuron. Multipolar Neuron. Astrocytes Exchange Materials With Neurons. Glia or Glial Cells ( supporting cells of the nervous system)

9/28/2016. Neuron. Multipolar Neuron. Astrocytes Exchange Materials With Neurons. Glia or Glial Cells ( supporting cells of the nervous system) Neuron Multipolar Neuron https://www.youtube.com/watch?v=lw-psbnu5xago to :38 Glia or Glial Cells ( supporting cells of the nervous system) 10X more numerous than neurons but one-tenth the size make up

More information

Neurons. Pyramidal neurons in mouse cerebral cortex expressing green fluorescent protein. The red staining indicates GABAergic interneurons.

Neurons. Pyramidal neurons in mouse cerebral cortex expressing green fluorescent protein. The red staining indicates GABAergic interneurons. Neurons Pyramidal neurons in mouse cerebral cortex expressing green fluorescent protein. The red staining indicates GABAergic interneurons. MBL, Woods Hole R Cheung MSc Bioelectronics: PGEE11106 1 Neuron

More information

The action potential travels down both branches because each branch is a typical axon with voltage dependent Na + and K+ channels.

The action potential travels down both branches because each branch is a typical axon with voltage dependent Na + and K+ channels. BIO 360 - MIDTERM FALL 2018 This is an open book, open notes exam. PLEASE WRITE YOUR NAME ON EACH SHEET. Read each question carefully and answer as well as you can. Point values are shown at the beginning

More information

5-Nervous system II: Physiology of Neurons

5-Nervous system II: Physiology of Neurons 5-Nervous system II: Physiology of Neurons AXON ION GRADIENTS ACTION POTENTIAL (axon conduction) GRADED POTENTIAL (cell-cell communication at synapse) SYNAPSE STRUCTURE & FUNCTION NEURAL INTEGRATION CNS

More information

Outline. Neuron Structure. Week 4 - Nervous System. The Nervous System: Neurons and Synapses

Outline. Neuron Structure. Week 4 - Nervous System. The Nervous System: Neurons and Synapses Outline Week 4 - The Nervous System: Neurons and Synapses Neurons Neuron structures Types of neurons Electrical activity of neurons Depolarization, repolarization, hyperpolarization Synapses Release of

More information

Branches of the Nervous System

Branches of the Nervous System The Nervous System Branches of the Nervous System There are 2 main branches of the nervous system Central Nervous System Brain Spinal Cord Peripheral Nervous System All nerves leading to rest of body Anatomy

More information

Chapter 11 Introduction to the Nervous System and Nervous Tissue Chapter Outline

Chapter 11 Introduction to the Nervous System and Nervous Tissue Chapter Outline Chapter 11 Introduction to the Nervous System and Nervous Tissue Chapter Outline Module 11.1 Overview of the Nervous System (Figures 11.1-11.3) A. The nervous system controls our perception and experience

More information

Neurons, Synapses, and Signaling

Neurons, Synapses, and Signaling Neurons, Synapses, and Signaling The Neuron is the functional unit of the nervous system. Neurons are composed of a cell body, which contains the nucleus and organelles; Dendrites which are extensions

More information

What is Anatomy and Physiology?

What is Anatomy and Physiology? Introduction BI 212 BI 213 BI 211 Ecosystems Organs / organ systems Cells Organelles Communities Tissues Molecules Populations Organisms Campbell et al. Figure 1.4 Introduction What is Anatomy and Physiology?

More information

AP Biology Unit 6. The Nervous System

AP Biology Unit 6. The Nervous System AP Biology Unit 6 The Nervous System Branches of the Nervous System There are 2 main branches of the nervous system Central Nervous System Brain Spinal Cord Peripheral Nervous System All nerves leading

More information

CHAPTER 44: Neurons and Nervous Systems

CHAPTER 44: Neurons and Nervous Systems CHAPTER 44: Neurons and Nervous Systems 1. What are the three different types of neurons and what are their functions? a. b. c. 2. Label and list the function of each part of the neuron. 3. How does the

More information

Chapter 11: Nervous System and Nervous Tissue

Chapter 11: Nervous System and Nervous Tissue Chapter 11: Nervous System and Nervous Tissue I. Functions and divisions of the nervous system A. Sensory input: monitor changes in internal and external environment B. Integrations: make decisions about

More information

Chapter 5 subtitles GABAergic synaptic transmission

Chapter 5 subtitles GABAergic synaptic transmission CELLULAR NEUROPHYSIOLOGY CONSTANCE HAMMOND Chapter 5 subtitles GABAergic synaptic transmission INTRODUCTION (2:57) In this fifth chapter, you will learn how the binding of the GABA neurotransmitter to

More information

BIPN100 F15 Human Physiology 1 Lecture 3. Synaptic Transmission p. 1

BIPN100 F15 Human Physiology 1 Lecture 3. Synaptic Transmission p. 1 BIPN100 F15 Human Physiology 1 Lecture 3. Synaptic Transmission p. 1 Terms you should know: synapse, neuromuscular junction (NMJ), pre-synaptic, post-synaptic, synaptic cleft, acetylcholine (ACh), acetylcholine

More information

Neurons, Synapses, and Signaling

Neurons, Synapses, and Signaling Chapter 8 Neurons, Synapses, and Signaling PowerPoint Lectures for Biology, Eighth Edition Overview: Lines of Communication The cone snail kills prey with venom that disables neurons Neurons are nerve

More information

Biol 219 Lec 12 Fall 2016

Biol 219 Lec 12 Fall 2016 Cell-to-Cell: Neurons Communicate at Synapses Electrical synapses pass electrical signals through gap junctions Signal can be bi-directional Synchronizes the activity of a network of cells Primarily in

More information

EE 791 Lecture 2 Jan 19, 2015

EE 791 Lecture 2 Jan 19, 2015 EE 791 Lecture 2 Jan 19, 2015 Action Potential Conduction And Neural Organization EE 791-Lecture 2 1 Core-conductor model: In the core-conductor model we approximate an axon or a segment of a dendrite

More information

NEURAL TISSUE (NEUROPHYSIOLOGY) PART I (A): NEURONS & NEUROGLIA

NEURAL TISSUE (NEUROPHYSIOLOGY) PART I (A): NEURONS & NEUROGLIA PART I (A): NEURONS & NEUROGLIA Neural Tissue Contains 2 kinds of cells: neurons: cells that send and receive signals neuroglia (glial cells): cells that support and protect neurons Neuron Types Sensory

More information

Chapter 2. The Cellular and Molecular Basis of Cognition Cognitive Neuroscience: The Biology of the Mind, 2 nd Ed.,

Chapter 2. The Cellular and Molecular Basis of Cognition Cognitive Neuroscience: The Biology of the Mind, 2 nd Ed., Chapter 2. The Cellular and Molecular Basis of Cognition Cognitive Neuroscience: The Biology of the Mind, 2 nd Ed., M. S. Gazzaniga, R. B. Ivry, and G. R. Mangun, Norton, 2002. Summarized by B.-W. Ku,

More information

Chapter 7 Nerve Cells and Electrical Signaling

Chapter 7 Nerve Cells and Electrical Signaling Chapter 7 Nerve Cells and Electrical Signaling 7.1. Overview of the Nervous System (Figure 7.1) 7.2. Cells of the Nervous System o Neurons are excitable cells which can generate action potentials o 90%

More information

Lecture 22: A little Neurobiology

Lecture 22: A little Neurobiology BIO 5099: Molecular Biology for Computer Scientists (et al) Lecture 22: A little Neurobiology http://compbio.uchsc.edu/hunter/bio5099 Larry.Hunter@uchsc.edu Nervous system development Part of the ectoderm

More information

What effect would an AChE inhibitor have at the neuromuscular junction?

What effect would an AChE inhibitor have at the neuromuscular junction? CASE 4 A 32-year-old woman presents to her primary care physician s office with difficulty chewing food. She states that when she eats certain foods that require a significant amount of chewing (meat),

More information

Chapter 11: Functional Organization of Nervous Tissue

Chapter 11: Functional Organization of Nervous Tissue Chapter 11: Functional Organization of Nervous Tissue I. Functions of the Nervous System A. List and describe the five major nervous system functions: 1. 2. 3. 4. 5. II. Divisions of the Nervous System

More information

Applied Neuroscience. Conclusion of Science Honors Program Spring 2017

Applied Neuroscience. Conclusion of Science Honors Program Spring 2017 Applied Neuroscience Conclusion of Science Honors Program Spring 2017 Review Circle whichever is greater, A or B. If A = B, circle both: I. A. permeability of a neuronal membrane to Na + during the rise

More information

Elizabeth Biopsychology (PSY 302) The Synapses 08/29/2017. The Synapses

Elizabeth Biopsychology (PSY 302) The Synapses 08/29/2017. The Synapses Elizabeth Biopsychology (PSY 302) The Synapses 08/29/2017 The Synapses Conduction of a Depolarization o In dendrites: passive propagation : There is attenuation of signal transmission -Further away they

More information

Chapter 4 Neuronal Physiology

Chapter 4 Neuronal Physiology Chapter 4 Neuronal Physiology V edit. Pg. 99-131 VI edit. Pg. 85-113 VII edit. Pg. 87-113 Input Zone Dendrites and Cell body Nucleus Trigger Zone Axon hillock Conducting Zone Axon (may be from 1mm to more

More information

Synaptic Integration

Synaptic Integration Synaptic Integration 3 rd January, 2017 Touqeer Ahmed PhD Atta-ur-Rahman School of Applied Biosciences National University of Sciences and Technology Excitatory Synaptic Actions Excitatory Synaptic Action

More information

Neurons, Synapses, and Signaling

Neurons, Synapses, and Signaling Overview: Lines of Communication Chapter 8 Neurons, Synapses, and Signaling Fig. 8- The cone snail kills prey with venom that disables neurons Neurons are nerve s that transfer information within the body

More information

Action potentials propagate down their axon

Action potentials propagate down their axon Action potentials propagate down their axon Larger diameter axons have less resistance to ion flow Speed of conduction is faster in large diameter axons Saltatory conduction in myelinated axons Large myelinated

More information

Period: Date: Module 28: Nervous System, Student Learning Guide

Period: Date: Module 28: Nervous System, Student Learning Guide Name: Period: Date: Module 28: Nervous System, Student Learning Guide Instructions: Work in pairs (share a computer). Make sure that you log in for the first quiz so that you get credit. Go to www.sciencemusicvideos.com.

More information

Chapter 2. The Cellular and Molecular Basis of Cognition

Chapter 2. The Cellular and Molecular Basis of Cognition Chapter 2. The Cellular and Molecular Basis of Cognition Cognitive Neuroscience: The Biology of the Mind, 2 nd Ed., M. S. Gazzaniga,, R. B. Ivry,, and G. R. Mangun,, Norton, 2002. Summarized by B.-W. Ku,

More information

Summarized by B.-W. Ku, E. S. Lee, and B.-T. Zhang Biointelligence Laboratory, Seoul National University.

Summarized by B.-W. Ku, E. S. Lee, and B.-T. Zhang Biointelligence Laboratory, Seoul National University. Chapter 2. The Cellular l and Molecular Basis of Cognition Cognitive Neuroscience: The Biology of the Mind, 3 rd Ed., M. S. Gazzaniga, R. B. Ivry, and G. R. Mangun, Norton, 2008. Summarized by B.-W. Ku,

More information

H. An electrical signal travel down the dendrite.

H. An electrical signal travel down the dendrite. Nervous System Group Activity Objectives: To be able to describe the nervous system structure and function To understand how neurons communicate using both electrical and chemical signals To know how the

More information

Electrical Properties of Neurons. Steven McLoon Department of Neuroscience University of Minnesota

Electrical Properties of Neurons. Steven McLoon Department of Neuroscience University of Minnesota Electrical Properties of Neurons Steven McLoon Department of Neuroscience University of Minnesota 1 Neuronal Communication Neurons communicate with other cells, often over long distances. The electrical

More information

Neurons Chapter 7 2/19/2016. Learning Objectives. Cells of the Nervous System. Cells of the Nervous System. Cells of the Nervous System

Neurons Chapter 7 2/19/2016. Learning Objectives. Cells of the Nervous System. Cells of the Nervous System. Cells of the Nervous System Learning Objectives Neurons Chapter 7 Identify and describe the functions of the two main divisions of the nervous system. Differentiate between a neuron and neuroglial cells in terms of structure and

More information

Division Ave. High School AP Biology. cell body. signal direction

Division Ave. High School AP Biology. cell body. signal direction signal direction Nervous system cells Neuron a nerve cell dendrites myelin sheath axon cell body dendrite cell body axon Structure fits function many entry points for signal one path out transmits signal

More information

BIOLOGY 2050 LECTURE NOTES ANATOMY & PHYSIOLOGY I (A. IMHOLTZ) FUNDAMENTALS OF THE NERVOUS SYSTEM AND NERVOUS TISSUE P1 OF 5

BIOLOGY 2050 LECTURE NOTES ANATOMY & PHYSIOLOGY I (A. IMHOLTZ) FUNDAMENTALS OF THE NERVOUS SYSTEM AND NERVOUS TISSUE P1 OF 5 P1 OF 5 The nervous system controls/coordinates the activities of cells, tissues, & organs. The endocrine system also plays a role in control/coordination. The nervous system is more dominant. Its mechanisms

More information

Nervous System. Nervous system cells. Transmission of a signal 2/27/2015. Neuron

Nervous System. Nervous system cells. Transmission of a signal 2/27/2015. Neuron Nervous System 2007-2008 signal direction Neuron a nerve cell Nervous system cells dendrites axon cell body Structure fits function many entry points for signal one path out transmits signal signal direction

More information

Ion Channels (Part 2)

Ion Channels (Part 2) Ion Channels (Part 2) Graphics are used with permission of : adam.com (http://www.adam.com/) Benjamin/Cummings Publishing Co (http://www.awl.com/bc) -57- Quiz Question #2: Ion Channels This question asks

More information

Action potential. Definition: an all-or-none change in voltage that propagates itself down the axon

Action potential. Definition: an all-or-none change in voltage that propagates itself down the axon Action potential Definition: an all-or-none change in voltage that propagates itself down the axon Action potential Definition: an all-or-none change in voltage that propagates itself down the axon Naturally

More information

BIOLOGICAL PROCESSES

BIOLOGICAL PROCESSES BIOLOGICAL PROCESSES CHAPTER 3 1 LEARNING GOALS Discuss how the nervous system communicates internally. Describe the structure and function of neurons Describe how the neuron transmits information Describe

More information

Omar Sami. Muhammad Abid. Muhammad khatatbeh

Omar Sami. Muhammad Abid. Muhammad khatatbeh 10 Omar Sami Muhammad Abid Muhammad khatatbeh Let s shock the world In this lecture we are going to cover topics said in previous lectures and then start with the nerve cells (neurons) and the synapses

More information

MOLECULAR AND CELLULAR NEUROSCIENCE

MOLECULAR AND CELLULAR NEUROSCIENCE MOLECULAR AND CELLULAR NEUROSCIENCE BMP-218 November 4, 2014 DIVISIONS OF THE NERVOUS SYSTEM The nervous system is composed of two primary divisions: 1. CNS - Central Nervous System (Brain + Spinal Cord)

More information

Principles of Anatomy and Physiology

Principles of Anatomy and Physiology Principles of Anatomy and Physiology 14 th Edition CHAPTER 12 Nervous Tissue Introduction The purpose of the chapter is to: 1. Understand how the nervous system helps to keep controlled conditions within

More information

QUIZ/TEST REVIEW NOTES SECTION 7 NEUROPHYSIOLOGY [THE SYNAPSE AND PHARMACOLOGY]

QUIZ/TEST REVIEW NOTES SECTION 7 NEUROPHYSIOLOGY [THE SYNAPSE AND PHARMACOLOGY] QUIZ/TEST REVIEW NOTES SECTION 7 NEUROPHYSIOLOGY [THE SYNAPSE AND PHARMACOLOGY] Learning Objectives: Explain how neurons communicate stimulus intensity Explain how action potentials are conducted along

More information

The Nervous System. Nervous System Functions 1. gather sensory input 2. integration- process and interpret sensory input 3. cause motor output

The Nervous System. Nervous System Functions 1. gather sensory input 2. integration- process and interpret sensory input 3. cause motor output The Nervous System Nervous System Functions 1. gather sensory input 2. integration- process and interpret sensory input 3. cause motor output The Nervous System 2 Parts of the Nervous System 1. central

More information

10.1: Introduction. Cell types in neural tissue: Neurons Neuroglial cells (also known as neuroglia, glia, and glial cells) Dendrites.

10.1: Introduction. Cell types in neural tissue: Neurons Neuroglial cells (also known as neuroglia, glia, and glial cells) Dendrites. 10.1: Introduction Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Cell types in neural tissue: Neurons Neuroglial cells (also known as neuroglia, glia, and glial

More information

Chapter 6 subtitles postsynaptic integration

Chapter 6 subtitles postsynaptic integration CELLULAR NEUROPHYSIOLOGY CONSTANCE HAMMOND Chapter 6 subtitles postsynaptic integration INTRODUCTION (1:56) This sixth and final chapter deals with the summation of presynaptic currents. Glutamate and

More information

Human Brain and Senses

Human Brain and Senses Human Brain and Senses Outline for today Levels of analysis Basic structure of neurons How neurons communicate Basic structure of the nervous system Levels of analysis Organism Brain Cell Synapses Membrane

More information

Chapter 3 subtitles Action potentials

Chapter 3 subtitles Action potentials CELLULAR NEUROPHYSIOLOGY CONSTANCE HAMMOND Chapter 3 subtitles Action potentials Introduction (3:15) This third chapter explains the calcium current triggered by the arrival of the action potential in

More information

NEURONS Chapter Neurons: specialized cells of the nervous system 2. Nerves: bundles of neuron axons 3. Nervous systems

NEURONS Chapter Neurons: specialized cells of the nervous system 2. Nerves: bundles of neuron axons 3. Nervous systems NEURONS Chapter 12 Figure 12.1 Neuronal and hormonal signaling both convey information over long distances 1. Nervous system A. nervous tissue B. conducts electrical impulses C. rapid communication 2.

More information

PSY 215 Lecture 3 (1/19/2011) (Synapses & Neurotransmitters) Dr. Achtman PSY 215

PSY 215 Lecture 3 (1/19/2011) (Synapses & Neurotransmitters) Dr. Achtman PSY 215 Corrections: None needed. PSY 215 Lecture 3 Topic: Synapses & Neurotransmitters Chapters 2 & 3, pages 40-57 Lecture Notes: SYNAPSES & NEUROTRANSMITTERS, CHAPTER 3 Action Potential (above diagram found

More information

QUIZ YOURSELF COLOSSAL NEURON ACTIVITY

QUIZ YOURSELF COLOSSAL NEURON ACTIVITY QUIZ YOURSELF What are the factors that produce the resting potential? How is an action potential initiated and what is the subsequent flow of ions during the action potential? 1 COLOSSAL NEURON ACTIVITY

More information

Notes are online at The Neuron

Notes are online at  The Neuron Notes are online at http://cogsci.ucsd.edu/~clovett/neuronotescogs17.pdf A. What is a neuron? The Neuron 1. A neuron is a type of cell that receives and transmits information in the Central Nervous System

More information

Nervous System. Master controlling and communicating system of the body. Secrete chemicals called neurotransmitters

Nervous System. Master controlling and communicating system of the body. Secrete chemicals called neurotransmitters Nervous System Master controlling and communicating system of the body Interacts with the endocrine system to control and coordinate the body s responses to changes in its environment, as well as growth,

More information

Neurons, Synapses, and Signaling

Neurons, Synapses, and Signaling Chapter 48 Neurons, Synapses, and Signaling PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions

More information

Ch. 45 Continues (Have You Read Ch. 45 yet?) u Central Nervous System Synapses - Synaptic functions of neurons - Information transmission via nerve

Ch. 45 Continues (Have You Read Ch. 45 yet?) u Central Nervous System Synapses - Synaptic functions of neurons - Information transmission via nerve Ch. 45 Continues (Have You Read Ch. 45 yet?) u Central Nervous System Synapses - Synaptic functions of neurons - Information transmission via nerve impulses - Impulse may be blocked in its transmission

More information

Chapter 3 Neurotransmitter release

Chapter 3 Neurotransmitter release NEUROPHYSIOLOGIE CELLULAIRE CONSTANCE HAMMOND Chapter 3 Neurotransmitter release In chapter 3, we proose 3 videos: Observation Calcium Channel, Ca 2+ Unitary and Total Currents Ca 2+ and Neurotransmitter

More information

NEUROCHEMISTRY Brief Review

NEUROCHEMISTRY Brief Review NEUROCHEMISTRY Brief Review UNIVERSITY OF PNG SCHOOL OF MEDICINE AND HEALTH SCIENCES DISCIPLINE OF BIOCHEMISTRY AND MOLECULAR BIOLOGY PBL MBBS YEAR V SEMINAR VJ Temple 1 Membrane potential Membrane potential:

More information

BIPN140 Lecture 8: Synaptic Transmission II

BIPN140 Lecture 8: Synaptic Transmission II BIPN140 Lecture 8: Synaptic Transmission II 1. Postsynaptic Receptors: Metabotropic & Ionotropic 2. Postsynaptic Responses (Postsynaptic Potentials, PSPs) 3. Neurotransmitters Su (FA16) Chemical Synapse:

More information

MCB MIDTERM EXAM #1 MONDAY MARCH 3, 2008 ANSWER KEY

MCB MIDTERM EXAM #1 MONDAY MARCH 3, 2008 ANSWER KEY MCB 160 - MIDTERM EXAM #1 MONDAY MARCH 3, 2008 ANSWER KEY Name ID# Instructions: -Only tests written in pen will be regarded -Please submit a written request indicating where and why you deserve more points

More information

Overview of Neurons. Psychology 470. Introduction to Chemical Additions. Neurons2. Axons and Related Structures. Structures

Overview of Neurons. Psychology 470. Introduction to Chemical Additions. Neurons2. Axons and Related Structures. Structures Soma Collateral Overview of Neurons Psychology 470 Axon Hillock Teleodendria Introduction to Chemical Additions Steven E. Meier, Ph.D. Node of Ranvier Listen to the audio lecture while viewing these slides

More information

LESSON 3.3 WORKBOOK. Why does applying pressure relieve pain?

LESSON 3.3 WORKBOOK. Why does applying pressure relieve pain? Postsynaptic potentials small changes in voltage (membrane potential) due to the binding of neurotransmitter. Receptor-gated ion channels ion channels that open or close in response to the binding of a

More information

Neurons, Synapses, and Signaling

Neurons, Synapses, and Signaling Chapter 48 Neurons, Synapses, and Signaling Lecture Outline Overview: Lines of Communication Neurons are nerve cells that transfer information within the body. Communication by neurons is based on two

More information

Chapter 7. The Nervous System: Structure and Control of Movement

Chapter 7. The Nervous System: Structure and Control of Movement Chapter 7 The Nervous System: Structure and Control of Movement Objectives Discuss the general organization of the nervous system Describe the structure & function of a nerve Draw and label the pathways

More information

Chapter 7. Objectives

Chapter 7. Objectives Chapter 7 The Nervous System: Structure and Control of Movement Objectives Discuss the general organization of the nervous system Describe the structure & function of a nerve Draw and label the pathways

More information

Cell communication. Gated ion channels. Allow specific ions to pass only when gates are open

Cell communication. Gated ion channels. Allow specific ions to pass only when gates are open increase decrease Cell communication Gated ion channels Allow specific ions to pass only when gates are open Triggered by: potential change, chemical binding, temperature change, stretching 1 Voltage-Gated

More information

Cell communication. Gated ion channels. Voltage-Gated Na + Channel. Allow specific ions to pass only when gates are open

Cell communication. Gated ion channels. Voltage-Gated Na + Channel. Allow specific ions to pass only when gates are open increase decrease Cell communication Gated ion channels Allow specific ions to pass only when gates are open Voltage-Gated Na + Channel Activation gate ECF Triggered by: change, chemical binding, temperature

More information

Communication Between

Communication Between Communication Between Neurons Bởi: OpenStaxCollege The electrical changes taking place within a neuron, as described in the previous section, are similar to a light switch being turned on. A stimulus starts

More information

3.E.2 Continued. This is the essential knowledge statement from the curriculum framework. Detect---process--- response

3.E.2 Continued. This is the essential knowledge statement from the curriculum framework. Detect---process--- response Nervous System: Part III What Happens at a Synapse? 3.E. Continued Animals have nervous systems that detect external and internal signals, transmit and integrate information, and produce responses. This

More information

Endocrine System Nervous System

Endocrine System Nervous System Cells Endocrine System Nervous System Tissues Controls Organs Nervous System vs Endocrine System Electrical signals (graded potentials and action potentials) and chemical signals (neurotransmitters) Fast

More information

Function of the Nervous System

Function of the Nervous System Nervous System Function of the Nervous System Receive sensory information, interpret it, and send out appropriate commands to form a response Composed of neurons (functional unit of the nervous system)

More information

Thursday, January 22, Nerve impulse

Thursday, January 22, Nerve impulse Nerve impulse Transmembrane Potential caused by ions moving through cell membrane at different rates Two main ions of concern Na + - Sodium K + - potassium Cell membrane not freely permeable therefore

More information

Biology Animal Physiology Fall Midterm 1

Biology Animal Physiology Fall Midterm 1 Name: Biology 449 - Animal Physiology Fall 2010 Fill in your scantron form as follows: Midterm 1 Write and bubble in your name in the upper left (last name first). Sign your form on the upper right. By

More information

Outline. Animals: Nervous system. Neuron and connection of neurons. Key Concepts:

Outline. Animals: Nervous system. Neuron and connection of neurons. Key Concepts: Animals: Nervous system Neuron and connection of neurons Outline 1. Key concepts 2. An Overview and Evolution 3. Human Nervous System 4. The Neurons 5. The Electrical Signals 6. Communication between Neurons

More information

Synaptic transmission

Synaptic transmission Outline Synaptic transmission Sompol Tapechum M.D., Ph.D. Department of Physiology Faculty of Medicine Siriraj Hospital, Bangkok, Thailand. sisth@mahidol.ac.th 2 Structure of synapse Modes of synaptic

More information

Part 11: Mechanisms of Learning

Part 11: Mechanisms of Learning Neurophysiology and Information: Theory of Brain Function Christopher Fiorillo BiS 527, Spring 2012 042 350 4326, fiorillo@kaist.ac.kr Part 11: Mechanisms of Learning Reading: Bear, Connors, and Paradiso,

More information

Neurons: Structure and communication

Neurons: Structure and communication Neurons: Structure and communication http://faculty.washington.edu/chudler/gall1.html Common Components of a Neuron Dendrites Input, receives neurotransmitters Soma Processing, decision Axon Transmits

More information

Organization of the nervous system. [See Fig. 48.1]

Organization of the nervous system. [See Fig. 48.1] Nervous System [Note: This is the text version of this lecture file. To make the lecture notes downloadable over a slow connection (e.g. modem) the figures have been replaced with figure numbers as found

More information

Questions. Question 1!

Questions. Question 1! Questions Question 1 In a laboratory, scientists often study neurons in isolation, outside of a living creature, in a dish. In this setting, one can have a good deal of control over the local ionic environment

More information

Concept 48.1 Neuron organization and structure reflect function in information transfer

Concept 48.1 Neuron organization and structure reflect function in information transfer Name Chapter 48: Neurons, Synapses, and Signaling Period Chapter 48: Neurons, Synapses, and Signaling Concept 48.1 Neuron organization and structure reflect function in information transfer 1. What is

More information

FIRST MIDTERM EXAM October 18, 2011 BILD2

FIRST MIDTERM EXAM October 18, 2011 BILD2 FIRST MIDTERM EXAM October 18, 2011 BILD2 WRITE YOUR NAME ON ALL 6 PAGES. ANSWER ALL 10 QUESTIONS (100 POINTS). CONFINE YOUR ANSWERS TO THE SPACE ALLOWED. If you would like to write on the back of the

More information

Test Bank for Human Physiology: From Cells to Systems 8th Edition by Sherwood

Test Bank for Human Physiology: From Cells to Systems 8th Edition by Sherwood Test Bank for Human Physiology: From Cells to Systems 8th Edition by Sherwood Link download full: https://digitalcontentmarket.org/download/test-bankfor-human-physiology-from-cells-to-systems-8thedition-by-sherwood

More information

Neurobiology: The nerve cell. Principle and task To use a nerve function model to study the following aspects of a nerve cell:

Neurobiology: The nerve cell. Principle and task To use a nerve function model to study the following aspects of a nerve cell: Principle and task To use a nerve function model to study the following aspects of a nerve cell: INTRACELLULAR POTENTIAL AND ACTION POTENTIAL Comparison between low and high threshold levels Comparison

More information

Nervous Tissue and Neurophysiology

Nervous Tissue and Neurophysiology Nervous Tissue and Neurophysiology Objectives Describe the two major divisions of the nervous system and their characteristics. Identify the structures/functions of a typical neuron. Describe the location

More information

Action Potentials and Synaptic Transmission. BIO 219 Napa Valley College Dr. Adam Ross

Action Potentials and Synaptic Transmission. BIO 219 Napa Valley College Dr. Adam Ross Action Potentials and Synaptic Transmission BIO 219 Napa Valley College Dr. Adam Ross Review of action potentials Nodes of Ranvier Nucleus Dendrites Cell body In saltatory conduction, the nerve impulses

More information

6.5 Nerves, Hormones and Homeostasis

6.5 Nerves, Hormones and Homeostasis 6.5 Nerves, Hormones and Homeostasis IB Biology SL Part 1 - Nerves Outcomes Part 1 6.5.1State that the nervous system consists of the central nervous system (CNS) and peripheral nerves, and is composed

More information

BIOL 436: Neurobiology: Neurophysiology

BIOL 436: Neurobiology: Neurophysiology 1 Biol 436-01 Spring, 2012 Instructor: Michael Chen, Ph.D. Location: KH C4071 Office: Biol Sci 235 Mon, Wed, 9:50 11:30 am Office hrs: Tues, Thurs, 12:45 3:00 pm. mchen@calstatela.edu BIOL 436: Neurobiology:

More information

Biopsychology. Neurons

Biopsychology. Neurons Biopsychology What is Biopsychology? The study of the physiological, evolutionary, and developmental mechanisms of behavior and experience (Kalat) Primarily focused on brain activity especially as it relates

More information