Nature Neuroscience: doi: /nn Supplementary Figure 1. Large-scale calcium imaging in vivo.

Size: px
Start display at page:

Download "Nature Neuroscience: doi: /nn Supplementary Figure 1. Large-scale calcium imaging in vivo."

Transcription

1 Supplementary Figure 1 Large-scale calcium imaging in vivo. (a) Schematic illustration of the in vivo camera imaging set-up for large-scale calcium imaging. (b) High-magnification two-photon image from a region in layer 2/3 of the frontal cortex and representative activity traces from neurons (1 3), neuropil and the entire image frame (integral).

2 Supplementary Figure 2 Correlations across brain regions. (a) Schematic representation of the cortical area that was stained with fluorescent calcium indicator OGB-1 AM (left panel). The cortical subregions were identified by using a mouse brain atlas (right panel). Note that midline structures (cingulate and retrosplenial cortex) were not labeled by the calcium indicator. (b) Regions of interest for cortical imaging. (c) Regions for simultaneous recordings from cortex and contra-lateral hippocampus. (d) Regions for simultaneous recordings from cortex and contra-lateral thalamus.

3 Supplementary Figure 3 Average correlation matrix from all calcium imaging experiments. Mean correlation coefficient plotted for all pairs of cortical areas in wild-type (WT, black) and APP23 x PS45 (Tg, red) mice. Occ. = occipital, som. = somatosensory, mot. = motor and fro. = frontal cortex. Error bars correspond to one standard error of the mean. Note that pairs of areas that have the same distance from each other (e.g. occipital and somatosensory vs. motor and frontal, both being adjacent pairs, or occipital and motor vs. somatosensory and frontal, both pairs having one intervening area between them) also have about the same correlation values (the correlation matrices have approximately constant diagonals).

4 Supplementary Figure 4 Impairment of the correlation between brain areas occurs predominantly in the slow wave and delta range, but is present in all frequency bands. (a-d) The mean correlation coefficients of the fluorescent calcium signals are plotted as a function of cortical distance in wild-type (WT, black) and APP23 x PS45 (Tg, red) mice. Panel a presents the same data as in Supplementary Fig. 3 (the correlations calculated from the broadband signal). Instead of plotting the data in 3-d, the correlation coefficients from the four areas (six coefficients in total) are plotted separated by the cortical distance between the areas (these are the diagonal of the correlation matrix), demonstrating the dependence of the correlation on cortical distance. Near = two nearby cortical domains (e.g., occipital and somatosensory cortex), mid = two domains separated by one region (e.g., occipital and motor cortex), far = two domains separated by two regions (always occipital and frontal cortex). Panels b-d show the correlations, plotted in the same way, for the different frequency bands. The slow wave and delta correlation values (0.1 3 Hz, b) are essentially the same as the broadband ( Hz, a) values, because this is the frequency range with the highest power (see also Supplementary Fig. 12). However, in all frequency bands, the correlations are higher in the WT than in the Tg animals.

5 Supplementary Figure 5 Impairment of correlation between brain areas is reflected in phase consistency in all frequency bands. The average pairwise phase consistency (PPC; Vinck, M., et al. (2010) NeuroImage 51, ) is plotted in the format as in Supplementary Fig. 4. The PPC was calculated for 32 s long segments of calcium recording, as elsewhere in the paper, using a multitaper method (Mitra, P.P. & Pesaran, B. (1999) Biophys. J. 76, ) with NW = 16 (32 tapers). The PPC was averaged over frequency bands in order to be comparable to the correlation coefficients displayed in the other figures. For all anatomical distances and all frequency bands, the PPC in the WT animals (black) is larger than in the Tg animals (red). The PPC was analyzed using a linear mixed effect model with anatomical distance and genetic background as fixed factors, and with mouse and hemisphere within mouse as random factors. The effect of transgenic background was highly significant in all frequency bands. Effect of genetic background on PPC in the slow-wave frequency range was highly significant: F(1,450) = 65.8, P = 4.8e-15. In the theta range, the effect of genetic background was not significant. In the alpha range, there was a significant interaction between genetic background and anatomical distance, with phase consistency decreasing faster with distance in the Tg animals: F(2,450) = 6.09, P = The lack of significance of genetic background in the theta band, and its presence in the alpha band, were also found for LFP recordings in unanesthetized animals (see Supplementary Fig. 18).

6 Supplementary Figure 6 Similar impairment of long-range coherence of slow waves in APP23 PS45 and APP23 mice. (a) Summary graph displaying the average cross-correlation coefficients and standard errors plotted against the cortical distance (near = two nearby cortical domains, mid = two cortical domains separated by one region, far = two domains separated by two regions) in wild-type (WT, black, n = 9), APP23 (blue, n = 3) and APP23 x PS45 (red, n = 9) mice, respectively. (b) Bar graph shows the average correlation coefficients between cortical and hippocampal activity for WT (n = 5), APP23 (n = 3) and APP23 x PS45 (n = 5) mice, respectively. WT and APP23 x PS45: two-sample t-test, t(108) = 17, P = 2.7e-32 (these are the same data as shown in Fig. 3i of the main text); WT and APP23: t(75) = 21.6, P = 5.7e-34. Error bars denote SEM.

7 Supplementary Figure 7 LFP recordings in anesthetized animals yielded results that were similar to those obtained with calcium fluorescence imaging. (a) Scheme illustrating the positions of the LFP electrodes. (b) Examples of LFP recordings in a wild-type (WT, top panel) and an APP23 x PS45 (Tg, bottom panel) mouse. Superimposed traces are from the shaded areas. (c) Bar graph shows the mean correlation coefficient between occipital and frontal cortex (ctx-ctx), frontal cortex and hippocampus (ctx-hc) as well as frontal cortex and thalamus (ctx-thl) for WT (gray bars) and Tg (green bars) mice (n = 18 animals), respectively. Two-way ANOVA on genotype (WT vs. Tg) and correlation type (ctx-ctx, ctx-hc and ctx-thl): main effect of genotype F(1,14) = 197, P = 1.2e-9; main effect of correlation type: F(2,14) = 0.27, P = 0.77; interaction: F(2,14) = 0.09, P = Thus, all three correlation types are equally depressed in Tg relative to WT mice. Error bars denote SEM.

8 Supplementary Figure 8 Correlation between calcium transients and local field potentials in the hippocampus. Simultaneous recording of the local field potential (LFP was inverted, blue) and camera-fluorescence signals (black) in the dorsal hippocampus.

9 Supplementary Figure 9 Correlation between calcium transients and local field potentials in the thalamus. Simultaneous recording of the local field potential (LFP was inverted, blue) and camera-fluorescence signals (black) in the thalamus.

10 Supplementary Figure 10 Cortico-thalamic correlation maps. Correlation maps using a seed-pixel in cortical regions (top and middle) or in the thalamus (bottom) in a wild-type (WT, left panel) and an APP23 x PS45 (Tg, right panel) mouse, respectively. The white asterisks denote the location of the seed pixel.

11 Supplementary Figure 11 Histological identification of local field potential electrode position. (a, b) Example sections showing the electrode location in the hippocampus (a, top panel) and in the thalamus (b, bottom panel). Red: DiI-labeled electrode track. White arrows indicate the inferred location of the electrode tip.

12 Supplementary Figure 12 Power spectra of calcium imaging data. Power spectra of cortical calcium fluorescence time series in wild-type (WT) and APP23 x PS45 (Tg) mice. While all power spectra show clear peaks at 0.3 Hz, the peak bandwidth increased substantially in the Tg mice, reflecting the higher rates of calcium transients in the Tg animals (see Fig. 2h of the main text). Note that, in the Tg mice, there is a greater increase in bandwidth in the frontal cortex (solid red line) compared to the occipital cortex (solid blue line). This finding is consistent with the relatively larger increase in the calcium wave rate in these areas (see Fig. 2h of the main text).

13 Supplementary Figure 13 The glutamate receptor antagonist APV has no effect on impaired slow-wave activity in APP23 PS45 mice. Superimposed traces of slow-wave activity in the frontal (red) and the occipital (black) cortex of an APP23 x PS45 mouse before (control), during and after (wash-out) application of 50 µm APV.

14 Supplementary Figure 14 Correlation maps of the pharmacological experiments. (a-d) Correlation maps of the pharmacological experiments shown in Figs. 5 and 6 of the main text (topical midazolam application in Fig. 5a, topical gabazine application in Fig. 5b, topical Aβ application in Fig. 6a and rescue of topical Aβ application with midazolam in Fig. 6b). White asterisks mark the seed pixel that was used for the generation of the maps.

15 Supplementary Figure 15 Aβ 1 40 and Aβ 1 42 lead to similar impairments of coherent activity. (a, b) Summary graph showing the average cross-correlation coefficients and standard errors plotted against the cortical distance (near = two nearby cortical domains, mid = two cortical domains separated by one region, far = two domains separated by two regions) before (black), during (red) and after (gray) wash-in of amyloid-β (Aβ) 1-40 in a or Aβ 1-42 in b in WT mice (n = 6 animals). For statistics see Supplementary Table 1.

16 Supplementary Figure 16 Determination of sleep and wake states in unanesthetized animals. (a, b) Representative traces of surface EMG (top), cortical LFP (middle) and power spectral density of the LFP (bottom) under sleep (left) and wake (right) states in a wild-type (WT, a) and APP23 x PS45 (Tg, b) mouse, respectively. Sleep was defined as the prolonged periods with immobility of the animal, absence of EMG activity, closed eyes, and large-amplitude, low frequency activity in the LFP recordings. Wakefulness was characterized by periods with high EMG activity, occasional locomotion, opened eyes, as well as lower amplitude and higher frequency LFP activity. (c,d) Median power spectra of 200-sec LFP traces during sleep (left) and waking (right) in WT (c) and Tg (d) mice (n = 8 animals). Shaded error bands represent upper and lower quartile of the power spectra.

17 Supplementary Figure 17 Impairment of long-range coherence of slow-wave activity in naturally sleeping APP23 PS45 mice. (a, b) Example traces of LFP recordings from the frontal (red) and the occipital (black) cortex in unanesthetized wild-type (WT, a) and APP23 x PS45 (Tg, b) mice, respectively. (c) Example traces of LFP recordings from the frontal (red) and occipital (black) cortex in a Tg mouse before and 10 min after intraperitoneal injection of a low-dose of clonazepam. (d) Bar graph shows that the mean correlation between frontal and occipital cortex in the slow wave and delta range was significantly lower in Tg compared to WT mice (n = 10 animals; t(10) = 2.69, P = 0.023, two-sample t-test), and that, in the Tg mice, treatment with clonazepam increased this correlation (t(5) = 4.83, P = , two-sample t-test).

18 Supplementary Figure 18 Impairment of long-range coherence in non-anesthetized animals extends to higher frequency bands. Bar graph displays the mean correlation coefficients between LFP recordings from frontal and occipital cortex at different frequency bands in naturally sleeping wild-type (WT) and APP23 x PS45 (Tg) mice. Note that in the Tg mice (red bars) the correlation coefficients are considerably smaller compared to WT mice (gray bars), and that a low-dose of clonazepam (blue bars) increased the correlations. For the differences between WT and Tg, one-way nested ANOVA with animals nested within genotype, F(1,3) = 40.7, 11.6, 7.23, 13.2, 10.2 (P = , 0.042, 0.074, 0.036, 0.049) for the broadband, slow wave and delta, theta, alpha and beta ranges. For the differences before and after clonazepam, two-sample t-test, t(5) = 4.07, 4.83, 0.35, 3.82, 4.30 (P = , , 0.74, 0.012, ) in the same ranges. The data in the slow wave and delta range is the same as in Supplementary Fig. 17. Error bars indicate SEM.

19 Mouse strain/treatment Anatomical distance/brain area Interaction Fig. 2g F(1,390)=406 P=0 F(2,390)=20.5 P=3.4e- 9 F(2,390)=11 P=2.2e- 5 Suppl. Fig. 4 (a) Same data as Fig. 2g (b) F(1,390)=931 (c) F(1,390)=29.6 (d) F(1,390)=17.1 P=0 P=9.4e- 8 P=4.3e- 5 (b) F(2,390)=163 (c) F(2,390)=220 (d) F(2,390)=39.5 P=0 P=0 P=2.2e- 16 (b) F(2,390)=79.3 (c) F(2,390)=0.42 (d) F(2,390)=0.29 P=0 P=0.65 P=0.75 Suppl. Fig. 6a F(2,216)=227 P=0 F(2,216)=142 P=0 F(2,216)=21.6 P=2.8e- 9 Fig. 3h F(1,290)=356 P=2.4e- 52 F(4,290)=160 P=3.5e- 72 F(4,290)=38.6 P=6.7e- 26 Fig. 4c F(1,112)=280 P=2.7e- 32 F(3,112)=87.9 p=2.6e- 29 F(3,112)=12.7 P=3.2e- 7 Suppl. Fig. 13 F(2,51)=1.9 P=0.16 F(2,51)=44.7 P=6.1e- 12 F(4,51)=0.13 P=0.97 Fig. 5c F(2,81)=93 P=0 F(2,81)=75 P=0 F(4,81)=6.3 P=1.8e- 4 Fig. 5d F(1,276)=47.2 P=4.2e- 11 F(2,276)=15.1 P=6.0e- 7 F(2,276)=0.01 P=0.99 Fig. 5e F(2,123)=137 P=0 F(2,123)= e- 9 F(4,123)=12 2.9e- 8 Fig. 6c F(2,99)=414 P=8.4e- 49 F(2,99)=64.2 P=1.3e- 18 F(4,99)=33.5 P=1.2e- 17 Fig. 6d F(2,108)=12 2.0e- 5 F(2,108)=153 P=0 F(2,108)= e- 4 Suppl. Fig. 15a F(2,57)=131 P=0 F(2,57)= e- 8 F(4,57)= e- 6 Suppl. Fig. 15b F(2,81)=142 P=0 F(2,81)= e- 15 F(4,81)= e- 10 Reverse peptide F(1,24)=3 P=0.096 F(2,24)=76 P=4.1e- 11 F(4,24)=0.08 P=0.99 Supplementary Table 1

Supplementary Figure 1

Supplementary Figure 1 Supplementary Figure 1 Supplementary Figure 1. Short latency of the fepsp evoked in CA3 by electrical stimulation of perforant path inputs (a) Single and superimposed representative perforant pathway-ca3

More information

Supplementary Figure 1: Kv7 currents in neonatal CA1 neurons measured with the classic M- current voltage-clamp protocol.

Supplementary Figure 1: Kv7 currents in neonatal CA1 neurons measured with the classic M- current voltage-clamp protocol. Supplementary Figures 1-11 Supplementary Figure 1: Kv7 currents in neonatal CA1 neurons measured with the classic M- current voltage-clamp protocol. (a), Voltage-clamp recordings from CA1 pyramidal neurons

More information

Nature Neuroscience: doi: /nn Supplementary Figure 1. Behavioral training.

Nature Neuroscience: doi: /nn Supplementary Figure 1. Behavioral training. Supplementary Figure 1 Behavioral training. a, Mazes used for behavioral training. Asterisks indicate reward location. Only some example mazes are shown (for example, right choice and not left choice maze

More information

Supplementary Figure 1 Information on transgenic mouse models and their recording and optogenetic equipment. (a) 108 (b-c) (d) (e) (f) (g)

Supplementary Figure 1 Information on transgenic mouse models and their recording and optogenetic equipment. (a) 108 (b-c) (d) (e) (f) (g) Supplementary Figure 1 Information on transgenic mouse models and their recording and optogenetic equipment. (a) In four mice, cre-dependent expression of the hyperpolarizing opsin Arch in pyramidal cells

More information

Wenqin Hu, Cuiping Tian, Tun Li, Mingpo Yang, Han Hou & Yousheng Shu

Wenqin Hu, Cuiping Tian, Tun Li, Mingpo Yang, Han Hou & Yousheng Shu Distinct contributions of Na v 1.6 and Na v 1.2 in action potential initiation and backpropagation Wenqin Hu, Cuiping Tian, Tun Li, Mingpo Yang, Han Hou & Yousheng Shu Supplementary figure and legend Supplementary

More information

Nature Neuroscience doi: /nn Supplementary Figure 1. Characterization of viral injections.

Nature Neuroscience doi: /nn Supplementary Figure 1. Characterization of viral injections. Supplementary Figure 1 Characterization of viral injections. (a) Dorsal view of a mouse brain (dashed white outline) after receiving a large, unilateral thalamic injection (~100 nl); demonstrating that

More information

Nov versus Fam. Fam 1 versus. Fam 2. Supplementary figure 1

Nov versus Fam. Fam 1 versus. Fam 2. Supplementary figure 1 a Environment map similarity score (mean r ).5..3.2.1 Fam 1 versus Fam 2 Nov versus Fam b Environment cofiring similarity score (mean r ).7.6.5..3.2.1 Nov versus Fam Fam 1 versus Fam 2 First half versus

More information

Supplementary Figure 1

Supplementary Figure 1 Supplementary Figure 1 Miniature microdrive, spike sorting and sleep stage detection. a, A movable recording probe with 8-tetrodes (32-channels). It weighs ~1g. b, A mouse implanted with 8 tetrodes in

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:1.138/nature1139 a d Whisker angle (deg) Whisking repeatability Control Muscimol.4.3.2.1 -.1 8 4-4 1 2 3 4 Performance (d') Pole 8 4-4 1 2 3 4 5 Time (s) b Mean protraction angle (deg) e Hit rate (p

More information

Supplementary Materials for

Supplementary Materials for advances.sciencemag.org/cgi/content/full/1/10/e1500775/dc1 Supplementary Materials for Structural-functional connectivity deficits of neocortical circuits in the Fmr1 /y mouse model of autism Matthias

More information

Supplementary figure 1: LII/III GIN-cells show morphological characteristics of MC

Supplementary figure 1: LII/III GIN-cells show morphological characteristics of MC 1 2 1 3 Supplementary figure 1: LII/III GIN-cells show morphological characteristics of MC 4 5 6 7 (a) Reconstructions of LII/III GIN-cells with somato-dendritic compartments in orange and axonal arborizations

More information

Nature Neuroscience: doi: /nn Supplementary Figure 1. Trial structure for go/no-go behavior

Nature Neuroscience: doi: /nn Supplementary Figure 1. Trial structure for go/no-go behavior Supplementary Figure 1 Trial structure for go/no-go behavior a, Overall timeline of experiments. Day 1: A1 mapping, injection of AAV1-SYN-GCAMP6s, cranial window and headpost implantation. Water restriction

More information

Supplementary Information. Staged decline of neuronal function in vivo in an animal model of Alzheimer s Disease. Supplementary Figures S1-10

Supplementary Information. Staged decline of neuronal function in vivo in an animal model of Alzheimer s Disease. Supplementary Figures S1-10 Supplementary Information Staged decline of neuronal function in vivo in an animal model of Alzheimer s Disease Christine Grienberger 1 *, Nathalie L. Rochefort 1 *, Helmuth Adelsberger 1, Horst A. Henning

More information

Matrix Energetics Research Brainwaves and Heart waves Research on Matrix Energetics in Action

Matrix Energetics Research Brainwaves and Heart waves Research on Matrix Energetics in Action Matrix Energetics Research Brainwaves and Heart waves Research on Matrix Energetics in Action QEEG (quantitative electroencephalography) and HRV (heart rate variability analysis) tests revealed Dr. Richard

More information

Nature Medicine: doi: /nm.4084

Nature Medicine: doi: /nm.4084 Supplementary Figure 1: Sample IEDs. (a) Sample hippocampal IEDs from different kindled rats (scale bar = 200 µv, 100 ms). (b) Sample temporal lobe IEDs from different subjects with epilepsy (scale bar

More information

SUPPLEMENTARY INFORMATION. Supplementary Figure 1

SUPPLEMENTARY INFORMATION. Supplementary Figure 1 SUPPLEMENTARY INFORMATION Supplementary Figure 1 The supralinear events evoked in CA3 pyramidal cells fulfill the criteria for NMDA spikes, exhibiting a threshold, sensitivity to NMDAR blockade, and all-or-none

More information

Supplementary Figure 1) GABAergic enhancement by leptin hyperpolarizes POMC neurons A) Representative recording samples showing the membrane

Supplementary Figure 1) GABAergic enhancement by leptin hyperpolarizes POMC neurons A) Representative recording samples showing the membrane Supplementary Figure 1) GABAergic enhancement by leptin hyperpolarizes POMC neurons A) Representative recording samples showing the membrane potential recorded from POMC neurons following treatment with

More information

Supplementary Figure 1. GABA depolarizes the majority of immature neurons in the

Supplementary Figure 1. GABA depolarizes the majority of immature neurons in the Supplementary Figure 1. GABA depolarizes the majority of immature neurons in the upper cortical layers at P3 4 in vivo. (a b) Cell-attached current-clamp recordings illustrate responses to puff-applied

More information

Nature Neuroscience: doi: /nn Supplementary Figure 1

Nature Neuroscience: doi: /nn Supplementary Figure 1 Supplementary Figure 1 Atlas representations of the midcingulate (MCC) region targeted in this study compared against the anterior cingulate (ACC) region commonly reported. Coronal sections are shown on

More information

Nature Neuroscience: doi: /nn Supplementary Figure 1

Nature Neuroscience: doi: /nn Supplementary Figure 1 Supplementary Figure 1 Hippocampal recordings. a. (top) Post-operative MRI (left, depicting a depth electrode implanted along the longitudinal hippocampal axis) and co-registered preoperative MRI (right)

More information

Nature Neuroscience: doi: /nn Supplementary Figure 1. Lick response during the delayed Go versus No-Go task.

Nature Neuroscience: doi: /nn Supplementary Figure 1. Lick response during the delayed Go versus No-Go task. Supplementary Figure 1 Lick response during the delayed Go versus No-Go task. Trial-averaged lick rate was averaged across all mice used for pyramidal cell imaging (n = 9). Different colors denote different

More information

CCK mouse 1:5000 *Dr. G. Ohning, CURE, UCLA, USA, Code 9303 (Ohning et al., 1996)

CCK mouse 1:5000 *Dr. G. Ohning, CURE, UCLA, USA, Code 9303 (Ohning et al., 1996) Supplemental Table 1 antibody to host dilution source CB rabbit 1:5000 Swant, Bellinzona, Switzerland, code no 38 reference of characterization and specificity labelling patterns as published with other

More information

Suppl. Information Supplementary Figure 1. Strategy/latency analysis of individual mice during maze learning. a,

Suppl. Information Supplementary Figure 1. Strategy/latency analysis of individual mice during maze learning. a, Goal-oriented searching mediated by ventral hippocampus early in trial-and-error learning Ruediger, S, Spirig, D., Donato, F., Caroni, P. Suppl. Information Supplementary Figure 1. Strategy/latency analysis

More information

Supplementary Information

Supplementary Information Supplementary Information Title Degeneration and impaired regeneration of gray matter oligodendrocytes in amyotrophic lateral sclerosis Authors Shin H. Kang, Ying Li, Masahiro Fukaya, Ileana Lorenzini,

More information

Supplementary Material for

Supplementary Material for Supplementary Material for Selective neuronal lapses precede human cognitive lapses following sleep deprivation Supplementary Table 1. Data acquisition details Session Patient Brain regions monitored Time

More information

Oscillations: From Neuron to MEG

Oscillations: From Neuron to MEG Oscillations: From Neuron to MEG Educational Symposium, MEG UK 2014, Nottingham, Jan 8th 2014 Krish Singh CUBRIC, School of Psychology Cardiff University What are we trying to achieve? Bridge the gap from

More information

Astrocyte signaling controls spike timing-dependent depression at neocortical synapses

Astrocyte signaling controls spike timing-dependent depression at neocortical synapses Supplementary Information Astrocyte signaling controls spike timing-dependent depression at neocortical synapses Rogier Min and Thomas Nevian Department of Physiology, University of Berne, Bern, Switzerland

More information

Nature Neuroscience: doi: /nn Supplementary Figure 1. Distribution of starter cells for RV-mediated retrograde tracing.

Nature Neuroscience: doi: /nn Supplementary Figure 1. Distribution of starter cells for RV-mediated retrograde tracing. Supplementary Figure 1 Distribution of starter cells for RV-mediated retrograde tracing. Parcellation of cortical areas is based on Allen Mouse Brain Atlas and drawn to scale. Thick white curves, outlines

More information

Supplementary Information

Supplementary Information Supplementary Information D-Serine regulates cerebellar LTD and motor coordination through the 2 glutamate receptor Wataru Kakegawa, Yurika Miyoshi, Kenji Hamase, Shinji Matsuda, Keiko Matsuda, Kazuhisa

More information

Nature Biotechnology: doi: /nbt Supplementary Figure 1. Analysis of hair bundle morphology in Ush1c c.216g>a mice at P18 by SEM.

Nature Biotechnology: doi: /nbt Supplementary Figure 1. Analysis of hair bundle morphology in Ush1c c.216g>a mice at P18 by SEM. Supplementary Figure 1 Analysis of hair bundle morphology in Ush1c c.216g>a mice at P18 by SEM. (a-c) Heterozygous c.216ga mice displayed normal hair bundle morphology at P18. (d-i) Disorganized hair bundles

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi: 10.1038/nature06310 SUPPLEMENTARY INFORMATION www.nature.com/nature 1 www.nature.com/nature 2 www.nature.com/nature 3 Supplementary Figure S1 Spontaneous duration of wake, SWS and REM sleep (expressed

More information

Ube3a is required for experience-dependent maturation of the neocortex

Ube3a is required for experience-dependent maturation of the neocortex Ube3a is required for experience-dependent maturation of the neocortex Koji Yashiro, Thorfinn T. Riday, Kathryn H. Condon, Adam C. Roberts, Danilo R. Bernardo, Rohit Prakash, Richard J. Weinberg, Michael

More information

Supplementary materials for: Executive control processes underlying multi- item working memory

Supplementary materials for: Executive control processes underlying multi- item working memory Supplementary materials for: Executive control processes underlying multi- item working memory Antonio H. Lara & Jonathan D. Wallis Supplementary Figure 1 Supplementary Figure 1. Behavioral measures of

More information

Power-Based Connectivity. JL Sanguinetti

Power-Based Connectivity. JL Sanguinetti Power-Based Connectivity JL Sanguinetti Power-based connectivity Correlating time-frequency power between two electrodes across time or over trials Gives you flexibility for analysis: Test specific hypotheses

More information

Introduction to Electrophysiology

Introduction to Electrophysiology Introduction to Electrophysiology Dr. Kwangyeol Baek Martinos Center for Biomedical Imaging Massachusetts General Hospital Harvard Medical School 2018-05-31s Contents Principles in Electrophysiology Techniques

More information

Unique functional properties of somatostatin-expressing GABAergic neurons in mouse barrel cortex

Unique functional properties of somatostatin-expressing GABAergic neurons in mouse barrel cortex Supplementary Information Unique functional properties of somatostatin-expressing GABAergic neurons in mouse barrel cortex Luc Gentet, Yves Kremer, Hiroki Taniguchi, Josh Huang, Jochen Staiger and Carl

More information

Zhu et al, page 1. Supplementary Figures

Zhu et al, page 1. Supplementary Figures Zhu et al, page 1 Supplementary Figures Supplementary Figure 1: Visual behavior and avoidance behavioral response in EPM trials. (a) Measures of visual behavior that performed the light avoidance behavior

More information

Nature Neuroscience: doi: /nn Supplementary Figure 1

Nature Neuroscience: doi: /nn Supplementary Figure 1 Supplementary Figure 1 Relative expression of K IR2.1 transcript to enos was reduced 29-fold in capillaries from knockout animals. Relative expression of K IR2.1 transcript to enos was reduced 29-fold

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION DOI: 10.1038/ncb2566 Figure S1 CDKL5 protein expression pattern and localization in mouse brain. (a) Multiple-tissue western blot from a postnatal day (P) 21 mouse probed with an antibody against CDKL5.

More information

Nature Neuroscience: doi: /nn Supplementary Figure 1. Diverse anorexigenic signals induce c-fos expression in CEl PKC-δ + neurons

Nature Neuroscience: doi: /nn Supplementary Figure 1. Diverse anorexigenic signals induce c-fos expression in CEl PKC-δ + neurons Supplementary Figure 1 Diverse anorexigenic signals induce c-fos expression in CEl PKC-δ + neurons a-c. Quantification of CEl c-fos expression in mice intraperitoneal injected with anorexigenic drugs (a),

More information

File name: Supplementary Information Description: Supplementary Figures, Supplementary Table and Supplementary References

File name: Supplementary Information Description: Supplementary Figures, Supplementary Table and Supplementary References File name: Supplementary Information Description: Supplementary Figures, Supplementary Table and Supplementary References File name: Supplementary Data 1 Description: Summary datasheets showing the spatial

More information

Theta sequences are essential for internally generated hippocampal firing fields.

Theta sequences are essential for internally generated hippocampal firing fields. Theta sequences are essential for internally generated hippocampal firing fields. Yingxue Wang, Sandro Romani, Brian Lustig, Anthony Leonardo, Eva Pastalkova Supplementary Materials Supplementary Modeling

More information

Introduction to EEG del Campo. Introduction to EEG. J.C. Martin del Campo, MD, FRCP University Health Network Toronto, Canada

Introduction to EEG del Campo. Introduction to EEG. J.C. Martin del Campo, MD, FRCP University Health Network Toronto, Canada Introduction to EEG J.C. Martin, MD, FRCP University Health Network Toronto, Canada What is EEG? A graphic representation of the difference in voltage between two different cerebral locations plotted over

More information

Supplementary Figure 1. Microglia do not show signs of classical immune activation following MD a-b. Images showing immunoreactivity for MHCII (a)

Supplementary Figure 1. Microglia do not show signs of classical immune activation following MD a-b. Images showing immunoreactivity for MHCII (a) 1 Supplementary Figure 1. Microglia do not show signs of classical immune activation following MD a-b. Images showing immunoreactivity for MHCII (a) and CD45 (b) in fixed sections of binocular visual cortex

More information

Supplemental Information. A Visual-Cue-Dependent Memory Circuit. for Place Navigation

Supplemental Information. A Visual-Cue-Dependent Memory Circuit. for Place Navigation Neuron, Volume 99 Supplemental Information A Visual-Cue-Dependent Memory Circuit for Place Navigation Han Qin, Ling Fu, Bo Hu, Xiang Liao, Jian Lu, Wenjing He, Shanshan Liang, Kuan Zhang, Ruijie Li, Jiwei

More information

Nature Neuroscience: doi: /nn Supplementary Figure 1. MADM labeling of thalamic clones.

Nature Neuroscience: doi: /nn Supplementary Figure 1. MADM labeling of thalamic clones. Supplementary Figure 1 MADM labeling of thalamic clones. (a) Confocal images of an E12 Nestin-CreERT2;Ai9-tdTomato brain treated with TM at E10 and stained for BLBP (green), a radial glial progenitor-specific

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Supplementary Figure 1. Behavioural effects of ketamine in non-stressed and stressed mice. Naive C57BL/6 adult male mice (n=10/group) were given a single dose of saline vehicle or ketamine (3.0 mg/kg,

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Supplementary Figure 1. Normal AMPAR-mediated fepsp input-output curve in CA3-Psen cdko mice. Input-output curves, which are plotted initial slopes of the evoked fepsp as function of the amplitude of the

More information

Supplementary Table I Blood pressure and heart rate measurements pre- and post-stroke

Supplementary Table I Blood pressure and heart rate measurements pre- and post-stroke SUPPLEMENTARY INFORMATION doi:10.1038/nature09511 Supplementary Table I Blood pressure and heart rate measurements pre- and post-stroke Pre Post 7-days Systolic Diastolic BPM Systolic Diastolic BPM Systolic

More information

Nature Neuroscience: doi: /nn Supplementary Figure 1

Nature Neuroscience: doi: /nn Supplementary Figure 1 Supplementary Figure 1 Drd1a-Cre driven ChR2 expression in the SCN. (a) Low-magnification image of a representative Drd1a-ChR2 coronal brain section (n = 2) showing endogenous tdtomato fluorescence (magenta).

More information

Dopamine in Ube3a m-/p+ mice. Online Supplemental Material

Dopamine in Ube3a m-/p+ mice. Online Supplemental Material Online Supplemental Material S1 Supplemental Figure 1. Schematic of rate-dependent intracranial self-stimulation (ICSS) (A) Mice implanted with monopolar stimulating electrodes to the medial forebrain

More information

Transcranial Pulsed Ultrasound Stimulates Intact Brain Circuits

Transcranial Pulsed Ultrasound Stimulates Intact Brain Circuits Neuron, Volume 66 Supplemental Information Transcranial Pulsed Ultrasound Stimulates Intact Brain Circuits Yusuf Tufail, Alexei Matyushov, Nathan Baldwin, Monica L. Tauchmann, Joseph Georges, Anna Yoshihiro,

More information

Exclusion criteria and outlier detection

Exclusion criteria and outlier detection 1 Exclusion criteria and outlier detection 1 2 Supplementary Fig. 1 31 subjects complied with the inclusion criteria as tested during the familiarization session. The upper part of the figure (ovals) indicates

More information

Supplementary Figure 1

Supplementary Figure 1 Supplementary Figure 1 Supplementary Figure 1 SNARE Probes for FRET/2pFLIM Analysis Used in the Present Study. mturquoise (mtq) and Venus (Ven) are in blue and yellow, respectively. The soluble N-ethylmaleimide-sensitive

More information

Supplementary Figure 1. Reinforcement altered Training phase RTs.

Supplementary Figure 1. Reinforcement altered Training phase RTs. Supplementary Figure 1. Reinforcement altered Training phase RTs. To investigate if there were any effects of reinforcement on Simon task performance, the slope of RTs within each block was quantified

More information

Supplementary Figure 1. Nature Neuroscience: doi: /nn.4547

Supplementary Figure 1. Nature Neuroscience: doi: /nn.4547 Supplementary Figure 1 Characterization of the Microfetti mouse model. (a) Gating strategy for 8-color flow analysis of peripheral Ly-6C + monocytes from Microfetti mice 5-7 days after TAM treatment. Living

More information

Supplementary Figure 1. Basic properties of compound EPSPs at

Supplementary Figure 1. Basic properties of compound EPSPs at Supplementary Figure 1. Basic properties of compound EPSPs at hippocampal CA3 CA3 cell synapses. (a) EPSPs were evoked by extracellular stimulation of the recurrent collaterals and pharmacologically isolated

More information

EEG Changes (Research Abstracts)

EEG Changes (Research Abstracts) EEG Changes (Research Abstracts) Kennerly, Richard. QEEG analysis of cranial electrotherapy: a pilot study. Journal of Neurotherapy (8)2, 2004. Presented at the International Society for Neuronal Regulation

More information

Nature Neuroscience: doi: /nn Supplementary Figure 1. Neuron class-specific arrangements of Khc::nod::lacZ label in dendrites.

Nature Neuroscience: doi: /nn Supplementary Figure 1. Neuron class-specific arrangements of Khc::nod::lacZ label in dendrites. Supplementary Figure 1 Neuron class-specific arrangements of Khc::nod::lacZ label in dendrites. Staining with fluorescence antibodies to detect GFP (Green), β-galactosidase (magenta/white). (a, b) Class

More information

Silencing neurotransmission with membrane-tethered toxins

Silencing neurotransmission with membrane-tethered toxins nature methods Silencing neurotransmission with membrane-tethered toxins Sebastian Auer, Annika S Stürzebecher, René Jüttner, Julio Santos-Torres, Christina Hanack, Silke Frahm, Beate Liehl & Inés Ibañez-Tallon

More information

Hippocampal mechanisms of memory and cognition. Matthew Wilson Departments of Brain and Cognitive Sciences and Biology MIT

Hippocampal mechanisms of memory and cognition. Matthew Wilson Departments of Brain and Cognitive Sciences and Biology MIT Hippocampal mechanisms of memory and cognition Matthew Wilson Departments of Brain and Cognitive Sciences and Biology MIT 1 Courtesy of Elsevier, Inc., http://www.sciencedirect.com. Used with permission.

More information

Structural basis for the role of inhibition in facilitating adult brain plasticity

Structural basis for the role of inhibition in facilitating adult brain plasticity Structural basis for the role of inhibition in facilitating adult brain plasticity Jerry L. Chen, Walter C. Lin, Jae Won Cha, Peter T. So, Yoshiyuki Kubota & Elly Nedivi SUPPLEMENTARY FIGURES 1-6 a b M

More information

Mnemonic representations of transient stimuli and temporal sequences in the rodent hippocampus in vitro

Mnemonic representations of transient stimuli and temporal sequences in the rodent hippocampus in vitro Supplementary Material Mnemonic representations of transient stimuli and temporal sequences in the rodent hippocampus in vitro Robert. Hyde and en W. Strowbridge Mossy ell 1 Mossy ell Mossy ell 3 Stimulus

More information

Behavioral generalization

Behavioral generalization Supplementary Figure 1 Behavioral generalization. a. Behavioral generalization curves in four Individual sessions. Shown is the conditioned response (CR, mean ± SEM), as a function of absolute (main) or

More information

Supplementary Figure 1

Supplementary Figure 1 8w Pia II/III IV V VI PV EYFP EYFP PV EYFP PV d PV EYFP Supplementary Figure a Spike probability x - PV-Cre d Spike probability x - RS RS b e Spike probability Spike probability.6......8..... FS FS c f

More information

Testing the Accuracy of ECG Captured by Cronovo through Comparison of ECG Recording to a Standard 12-Lead ECG Recording Device

Testing the Accuracy of ECG Captured by Cronovo through Comparison of ECG Recording to a Standard 12-Lead ECG Recording Device Testing the Accuracy of ECG Captured by through Comparison of ECG Recording to a Standard 12-Lead ECG Recording Device Data Analysis a) R-wave Comparison: The mean and standard deviation of R-wave amplitudes

More information

Supplemental Digital Content 1: Supplemental Results

Supplemental Digital Content 1: Supplemental Results Supplemental Digital Content 1: Supplemental Results Fig. 1 presents the normalized symbolic transfer entropy (NSTE) matrix of eight electroencephalographic channels and significant changes of connectivity

More information

Nature Methods: doi: /nmeth Supplementary Figure 1. Activity in turtle dorsal cortex is sparse.

Nature Methods: doi: /nmeth Supplementary Figure 1. Activity in turtle dorsal cortex is sparse. Supplementary Figure 1 Activity in turtle dorsal cortex is sparse. a. Probability distribution of firing rates across the population (notice log scale) in our data. The range of firing rates is wide but

More information

Informationsverarbeitung im zerebralen Cortex

Informationsverarbeitung im zerebralen Cortex Informationsverarbeitung im zerebralen Cortex Thomas Klausberger Dept. Cognitive Neurobiology, Center for Brain Research, Med. Uni. Vienna The hippocampus is a key brain circuit for certain forms of memory

More information

Summary of behavioral performances for mice in imaging experiments.

Summary of behavioral performances for mice in imaging experiments. Supplementary Figure 1 Summary of behavioral performances for mice in imaging experiments. (a) Task performance for mice during M2 imaging experiments. Open triangles, individual experiments. Filled triangles,

More information

Hormonal gain control of a medial preoptic area social reward circuit

Hormonal gain control of a medial preoptic area social reward circuit CORRECTION NOTICE Nat. Neurosci. 20, 449 458 (2017) Hormonal gain control of a medial preoptic area social reward circuit Jenna A McHenry, James M Otis, Mark A Rossi, J Elliott Robinson, Oksana Kosyk,

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi: 1.138/nature6416 Supplementary Notes Spine Ca 2+ signals produced by glutamate uncaging We imaged uncaging-evoked [Ca 2+ ] transients in neurons loaded with a green Ca 2+ - sensitive indicator (G;

More information

Supplementary Figure 1

Supplementary Figure 1 Supplementary Figure 1 Genetic labeling of microglia Male and female 2-3 month-old CreERT2;R26-tdTomato mice or CreERT2;R26-tdTomato;Iba1-eGFP transgenic mice were treated with 1x, 2x (48 h apart), or

More information

Supplemental Information. Transcranial Direct Current Stimulation. Facilitates Associative Learning and Alters

Supplemental Information. Transcranial Direct Current Stimulation. Facilitates Associative Learning and Alters Current Biology, Volume 27 Supplemental Information Transcranial Direct Current Stimulation Facilitates Associative Learning and Alters Functional Connectivity in the Primate Brain Matthew R. Krause, Theodoros

More information

mm Distance (mm)

mm Distance (mm) b a Magnet Illumination Coverslips MPs Objective 2575 µm 1875 µm 1575 µm 1075 µm 875 µm 545 µm 20µm 2 3 0.5 0.3mm 1 1000 100 10 1 0.1 1000 100 10 1 0.1 Field Induction (Gauss) 1.5 0 5 10 15 20 Distance

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:10.1038/nature11239 Introduction The first Supplementary Figure shows additional regions of fmri activation evoked by the task. The second, sixth, and eighth shows an alternative way of analyzing reaction

More information

Supplementary Figure 1. SybII and Ceb are sorted to distinct vesicle populations in astrocytes. Nature Neuroscience: doi: /nn.

Supplementary Figure 1. SybII and Ceb are sorted to distinct vesicle populations in astrocytes. Nature Neuroscience: doi: /nn. Supplementary Figure 1 SybII and Ceb are sorted to distinct vesicle populations in astrocytes. (a) Exemplary images for cultured astrocytes co-immunolabeled with SybII and Ceb antibodies. SybII accumulates

More information

Thalamo-Cortical Relationships Ultrastructure of Thalamic Synaptic Glomerulus

Thalamo-Cortical Relationships Ultrastructure of Thalamic Synaptic Glomerulus Central Visual Pathways V1/2 NEUR 3001 dvanced Visual Neuroscience The Lateral Geniculate Nucleus () is more than a relay station LP SC Professor Tom Salt UCL Institute of Ophthalmology Retina t.salt@ucl.ac.uk

More information

Supplementary Figure 1. ACE robotic platform. A. Overview of the rig setup showing major hardware components of ACE (Automatic single Cell

Supplementary Figure 1. ACE robotic platform. A. Overview of the rig setup showing major hardware components of ACE (Automatic single Cell 2 Supplementary Figure 1. ACE robotic platform. A. Overview of the rig setup showing major hardware components of ACE (Automatic single Cell Experimenter) including the MultiClamp 700B, Digidata 1440A,

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:10.1038/nature10776 Supplementary Information 1: Influence of inhibition among blns on STDP of KC-bLN synapses (simulations and schematics). Unconstrained STDP drives network activity to saturation

More information

Supplementary Information. Gauge size. midline. arcuate 10 < n < 15 5 < n < 10 1 < n < < n < 15 5 < n < 10 1 < n < 5. principal principal

Supplementary Information. Gauge size. midline. arcuate 10 < n < 15 5 < n < 10 1 < n < < n < 15 5 < n < 10 1 < n < 5. principal principal Supplementary Information set set = Reward = Reward Gauge size Gauge size 3 Numer of correct trials 3 Numer of correct trials Supplementary Fig.. Principle of the Gauge increase. The gauge size (y axis)

More information

A genetically targeted optical sensor to monitor calcium signals in astrocyte processes

A genetically targeted optical sensor to monitor calcium signals in astrocyte processes A genetically targeted optical sensor to monitor calcium signals in astrocyte processes 1 Eiji Shigetomi, 1 Sebastian Kracun, 2 Michael V. Sofroniew & 1,2 *Baljit S. Khakh Ψ 1 Departments of Physiology

More information

Supplementary Materials for

Supplementary Materials for www.sciencesignaling.org/cgi/content/full/6/278/rs11/dc1 Supplementary Materials for In Vivo Phosphoproteomics Analysis Reveals the Cardiac Targets of β-adrenergic Receptor Signaling Alicia Lundby,* Martin

More information

Normal EEG of wakeful resting adults of years of age. Alpha rhythm. Alpha rhythm. Alpha rhythm. Normal EEG of the wakeful adult at rest

Normal EEG of wakeful resting adults of years of age. Alpha rhythm. Alpha rhythm. Alpha rhythm. Normal EEG of the wakeful adult at rest Normal EEG of wakeful resting adults of 20-60 years of age Suthida Yenjun, M.D. Normal EEG of the wakeful adult at rest Alpha rhythm Beta rhythm Mu rhythm Vertex sharp transients Intermittent posterior

More information

Supporting Information

Supporting Information ATP from synaptic terminals and astrocytes regulates NMDA receptors and synaptic plasticity through PSD- 95 multi- protein complex U.Lalo, O.Palygin, A.Verkhratsky, S.G.N. Grant and Y. Pankratov Supporting

More information

CD4 and CD8 T cells show a similar accumulation in the tumor stroma.

CD4 and CD8 T cells show a similar accumulation in the tumor stroma. Fig S1 CD4 Fibronectin EpCM CD8 CD4 and CD8 T cells show a similar accumulation in the tumor stroma. Fluorescently-labeled CD4 (CMFD, green) and CD8 (Hoechst, yellow) T cells were added to a human lung

More information

Processed by HBI: Russia/Switzerland/USA

Processed by HBI: Russia/Switzerland/USA 1 CONTENTS I Personal and clinical data II Conclusion. III Recommendations for therapy IV Report. 1. Procedures of EEG recording and analysis 2. Search for paroxysms 3. Eyes Open background EEG rhythms

More information

Physiology Unit 2 CONSCIOUSNESS, THE BRAIN AND BEHAVIOR

Physiology Unit 2 CONSCIOUSNESS, THE BRAIN AND BEHAVIOR Physiology Unit 2 CONSCIOUSNESS, THE BRAIN AND BEHAVIOR In Physiology Today What the Brain Does The nervous system determines states of consciousness and produces complex behaviors Any given neuron may

More information

Supplemental information Acid-sensing ion channel 1a contributes to hippocampal LTP inducibility through multiple mechanisms

Supplemental information Acid-sensing ion channel 1a contributes to hippocampal LTP inducibility through multiple mechanisms Supplemental information Acid-sensing ion channel 1a contributes to hippocampal LTP inducibility through multiple mechanisms Ming-Gang Liu, Hu-Song Li, Wei-Guang Li, Yan-Jiao Wu, Shi-Ning Deng, Chen Huang,

More information

SLEEP STAGING AND AROUSAL. Dr. Tripat Deep Singh (MBBS, MD, RPSGT, RST) International Sleep Specialist (World Sleep Federation program)

SLEEP STAGING AND AROUSAL. Dr. Tripat Deep Singh (MBBS, MD, RPSGT, RST) International Sleep Specialist (World Sleep Federation program) SLEEP STAGING AND AROUSAL Dr. Tripat Deep Singh (MBBS, MD, RPSGT, RST) International Sleep Specialist (World Sleep Federation program) Scoring of Sleep Stages in Adults A. Stages of Sleep Stage W Stage

More information

Supplemental Information. Memory-Relevant Mushroom Body. Output Synapses Are Cholinergic

Supplemental Information. Memory-Relevant Mushroom Body. Output Synapses Are Cholinergic Neuron, Volume 89 Supplemental Information Memory-Relevant Mushroom Body Output Synapses Are Cholinergic Oliver Barnstedt, David Owald, Johannes Felsenberg, Ruth Brain, John-Paul Moszynski, Clifford B.

More information

Resistance to forgetting associated with hippocampus-mediated. reactivation during new learning

Resistance to forgetting associated with hippocampus-mediated. reactivation during new learning Resistance to Forgetting 1 Resistance to forgetting associated with hippocampus-mediated reactivation during new learning Brice A. Kuhl, Arpeet T. Shah, Sarah DuBrow, & Anthony D. Wagner Resistance to

More information

The AASM Manual for the Scoring of Sleep and Associated Events

The AASM Manual for the Scoring of Sleep and Associated Events The AASM Manual for the Scoring of Sleep and Associated Events Summary of Updates in Version 2.1 July 1, 2014 The American Academy of Sleep Medicine (AASM) is committed to ensuring that The AASM Manual

More information

Spectral Analysis of EEG Patterns in Normal Adults

Spectral Analysis of EEG Patterns in Normal Adults Spectral Analysis of EEG Patterns in Normal Adults Kyoung Gyu Choi, M.D., Ph.D. Department of Neurology, Ewha Medical Research Center, Ewha Womans University Medical College, Background: Recently, the

More information

marker. DAPI labels nuclei. Flies were 20 days old. Scale bar is 5 µm. Ctrl is

marker. DAPI labels nuclei. Flies were 20 days old. Scale bar is 5 µm. Ctrl is Supplementary Figure 1. (a) Nos is detected in glial cells in both control and GFAP R79H transgenic flies (arrows), but not in deletion mutant Nos Δ15 animals. Repo is a glial cell marker. DAPI labels

More information

Microcircuitry coordination of cortical motor information in self-initiation of voluntary movements

Microcircuitry coordination of cortical motor information in self-initiation of voluntary movements Y. Isomura et al. 1 Microcircuitry coordination of cortical motor information in self-initiation of voluntary movements Yoshikazu Isomura, Rie Harukuni, Takashi Takekawa, Hidenori Aizawa & Tomoki Fukai

More information

Nature Neuroscience: doi: /nn Supplementary Figure 1. ACx plasticity is required for fear conditioning.

Nature Neuroscience: doi: /nn Supplementary Figure 1. ACx plasticity is required for fear conditioning. Supplementary Figure 1 ACx plasticity is required for fear conditioning. (a) Freezing time of conditioned and control mice before CS presentation and during CS presentation in a new context. Student s

More information

EEG WORKSHOP Nonepileptiform Abnormalities

EEG WORKSHOP Nonepileptiform Abnormalities EEG WORKSHOP Nonepileptiform Abnormalities Kamornwan Katanyuwong MD Chiangmai University Hospital EST: 20th July 2010 EEG reading Age Background Epileptiform Non epileptiform Activation procedure normal

More information

Supplementary Figure 1. SDS-FRL localization of CB 1 in the distal CA3 area of the rat hippocampus. (a-d) Axon terminals (t) in stratum pyramidale

Supplementary Figure 1. SDS-FRL localization of CB 1 in the distal CA3 area of the rat hippocampus. (a-d) Axon terminals (t) in stratum pyramidale Supplementary Figure 1. SDS-FRL localization of CB 1 in the distal CA3 area of the rat hippocampus. (a-d) Axon terminals (t) in stratum pyramidale (b) show stronger immunolabeling for CB 1 than those in

More information

Common EEG pattern in critical care

Common EEG pattern in critical care Common EEG pattern in critical care พ.ญ.ส ธ ดา เย นจ นทร Causes Direct neuronal injury Cerebral dysfunction : encephalopathy Psychic problems EEG in critical care 1 October 2009, Pramongkutklao Hospital

More information