QUIZ/TEST REVIEW NOTES SECTION 1 CARDIAC MYOCYTE PHYSIOLOGY [CARDIOLOGY]

Size: px
Start display at page:

Download "QUIZ/TEST REVIEW NOTES SECTION 1 CARDIAC MYOCYTE PHYSIOLOGY [CARDIOLOGY]"

Transcription

1 QUIZ/TEST REVIEW NOTES SECTION 1 CARDIAC MYOCYTE PHYSIOLOGY [CARDIOLOGY] Learning Objectives: Describe the ionic basis of action potentials in cardiac contractile and autorhythmic cells Explain the relationship between refractory periods and the absence of summation in cardiac muscle contraction I. TWO TYPES OF ELECTRICAL SIGNALS a. Structure of cardiac myocytes Appearance under microscope: Fiber arrangement: Fiber proteins: Control: Nervous control: Hormonal influence: Location: Morphology: Internal structure: Contraction speed: Contraction force of single fiber twitch: Initiation of contraction: Striated Sarcomeres Actin, myosin: troponin/tropomyosin Involuntary/Ca2+ and troponin/fibers electrically linked via gap junctions Autonomic neurons Epinephrine Heart muscle Uninucleate; branch fibers T-tubule and Sarcoplasmic reticulum Intermediate Graded Autorhythmic MAJOR POINTS INSERT FIGURE CARDIAC MUSCLE - Single nucleus per fiber - Individual cardiac cells branch and join neighboring cells end-to-end creating complex of networks formed through cell junctions known as intercalated disks Intercalated Disks components: (1) Desmosomes: tie cell together allowing contractile force to be transfer cell to cell (2) Gap Junctions: Electrically connect cardiac cells together - T-tubules branch inside the myocardial cells - Sarcoplasmic reticulum is smaller because Extracellular Ca2+ is needed to initiate contraction; not a adjacent protein - Mitochondria occupy about 1/3 the cell volume of a contractile fiber TWO FORMS OF MYOCYTES - Contractile Cardiac Muscle Cells (myocardium) [Organized sarcomeres/99% of heart] - Autorhythmic Myocytes (pacemakers) [Unorganized sarcomeres/1% of heart/generate A.P. spontaneously] 1

2 II. MYOCARDIAL CONTRACTION a. Depolarization - A.P. enters contractile cell moving across the sarcolemma into the t-tubes - A.P. then opens voltage-gated Ca2+ channels in the t-tubules, allowing Ca2+ to open up ryanodine receptor channels (RyR) in the Sarcoplasmic reticulum [RyR operated by Ca2+ binding unlike mechanical linkage of RyR found in skeletal muscle] - Ca2+ Induced Ca2+ Release: RyR opening caused by calcium, which leads to the flow of stored calcium out into the cytosol to meet with troponin and initiate the cycle of cross-bridge formation and movement REUPTAKE: Cytoplasmic Ca2+ concentrations decrease, Ca2+ unbinds from troponin, myosin releases actin, and contractile filaments slide back to relaxed position (1) Ca2+ transported back to Sarcoplasmic reticulum with Ca2+-ATPase (2) Ca2+ removed via Na+-Ca2+ antiport protein [3 Na+ in for 1 Ca2+ out] [Na is later removed by Na+-K+-ATPase] GRADED CONTRACTIONS: Force generated by cardiac muscle is proportional to the number of cross-bridges that are active; number of active cross-bridges is determined by how much Ca2+ is bound to troponin b. Action Potential of contractile Myocytes 1. Membrane Potential Changes - Resting potential -90mV [skeletal muscle -70mV] - Depolarization: Na+ influx - Repolarization: K+ efflux - Longer action potential caused by Ca2+ entry 2. Role of Calcium - Ca2+ influx at the plateau lengthens total duration of A.P, slowing down repolarization; causing the cell to stay positive for longer period of time 2

3 3. Increased length of refractory period - Longer A.P. helps prevent tetanus or sustained contraction which is important because muscles must relax between contractions so ventricles can fill with blood - Tetanus cannot occur in cardiac muscle because the longer A.P. means the refractory period and the contraction end almost simultaneously Phase 4: Resting Membrane Potential [resting potential of -90mV] Phase 0: Depolarization [Depolarization spreads through gap junctions, membrane becomes more positive. Voltage gated Na+ channels open allowing Na+ to enter cell and rapidly depolarize; potential reaches about +20mV then double-gated Na+ channels close] Phase 1: Initial Repolarization: Na+ channels close; cell begins to repolarize by efflux of K+ through K+ channels Phase 2: The Plateau: Decrease in K+ permeability and increase in Ca2+ permeability; Ca2+ channels slowly opening since phases 0 and 1; When Ca2+ channels open some K+ channels close, a influx of Ca2+ and decreased efflux of Na+ causes A.P. to flatten out into plateau [extending refractory period/action potential] Phase 3: Rapid Repolarization: Plateau ends with Ca2+ channels close and K+ permeability increase; K+ channels are activated during depolarization but are slow to open; Once K+ channels open K+ efflux occurs rapidly returning cell to resting potential III. AUTORHYTHMIC CELLS [pacemakers] a. Characteristics - Fulfill 1% of cardiac myocytes - Unstable membrane potential - No organized sarcomeres - Generated spontaneous action potentials 3

4 - Pacemaker cells found toward apex of the heart are faster then pacemaker cells found toward the base of the heart (slow) - Speed with which pacemaker cells depolarizes determines the rate at which heart contracts (bpm) b. Instability - If Channels: Permeable to both K+ and Na+ > Allow current (I) to flow > Subscript (f) stands for funny current because scientists did not understand them - If Channel opens at negative membrane potential: > Na+ influx exceeds K+ efflux > Net influx of positive charge depolarizes autorhythmic cell > As membrane becomes more, If channels close and Ca2+ channels open > Ca2+ channels close at peak of A.P, slow K+ channels now open > Repolarization phase autorhythmic action due to efflux K+ c. Pacemaker Autonomic Cardiac myocytes - SA node [Sinoatrial] - Internodal pathway - AV node [atrioventricular] - AV bundle - AV branch - Perkinje fibers Populations of cells and not neurons d. Action Potentials of autorhythmic cells (1) Unstable Membrane Potential > Membrane potential never rests at a constant value and is thus called a pacemaker potential rather then a resting membrane potential (2) Depolarization to threshold Unstable pacemaker potential usually starts at -60mV (3) Depolarization Na+ influx through If channels and Ca2+ influx NO REFRACTORY PERIOD (4) Repolarization K+ efflux e. Autonomic Neurotransmitters Modulate Heart Rate - Sympathetic stimulation of pacemaker cells increase heart rate > The catecholamines Norepinephrine (from sympathetic neurons) and epinephrine (from adrenal medulla) increase ion flow through both If and Ca2+ channels > Catecholamines bind to B1-adrenergic receptors on autorhythmic cells 4

5 - Parasympathetic stimulation of pacemaker cells decrease heart rate > Acetylcholine (ACh) activates Muscarinic cholinergic receptors that influence K+ and Ca2+ channels in pacemaker cell > K+ permeability increases, hyperpolarizing cell so pacemaker potential begins at more negative value > Ca2+ permeability of pacemaker decreases, slowing the rate at which the pacemaker potential depolarizes IV. CARDIAC CYCLE a. Anatomy (1) General Information - Heart is found at the center of thoracic cavity - Pointed apex of heart angles down to left side of the body - The base lies just behind the sternum - Incased with a tough membranous sac pericardium 5

6 (2) Chambers (3) Valves a. General Information > b. Atrioventricular Valves > Opening between each atrium and its ventricles > Formed by thin flaps that are anchored to ventricular side to collagenous tendons, chordae tendineae (prevent valve from being pushed back into atrium; prolapse) > Chordae tendineae connect to papillary muscles in ventricular chamber to provide stability [Neither Chordae or Papillary muscles open/close the AV valves] Tricuspid Valve (Right AV) - Three flaps - Separates right atrium and right ventricle Mitral Valve (Left AV; Bicuspid) - Two flaps - Separates left atrium and left ventricle c. Semilunar Valves > Between the ventricles and the arteries > Prevent backward flow of blood Pulmonary Semilunar Valve - Lies between right ventricle and the pulmonary trunk Aortic Semilunar Valve - Lies between left ventricle and the aorta 6

7 (4) Blood flow Right Atrium Tricuspid Valve Right Ventricle Pulmonary Semilunar Valve Pulmonary Trunk / Pulmonary Arties Lungs Left Atrium Bicuspid/Left AV/Mitral Valve Left Ventricle Aortic Semilunar Valve Aorta Systematic Circuit 7

8 (5) Contractions Diastole: Time during cardiac muscles relaxes Systole: Time during which muscle is contracting [Contractions of Atria and ventricles do not contract and relax at same time] a. Atrial Diastole Atrial Relaxation (both Atrium/Ventricle chambers fill passively) b. Atrial Systole Atrial contraction forces a small amount of additional blood into ventricles; c. Ventricular Systole (Part 1 Isovumic) Contraction closes AV valves but not enough pressure to open semilunar valves (Part 2 Ejection) Pressure rises, opening semilunar valves to eject blood d. Ventricular Diastole Ventricles relax, pressure falls, blood flows back into cups of semilunar valves and snaps them closed (6) Intrinsic Conducting System > Electrical communication in heart begins with A.P. in autorhythmic cell; depolarization spreads through gap junctions in intercalated disks; depolarization wave followed by wave of contraction that passes across atria, then moves into the ventricles a. Sinoatrial SA node > Autorhythmic cells in the right atrium > Serve as pacemaker to heart > Sets the pace for the entire heart > P-Waves in ECG [Internodal Pathway: Link between SA and AV nodes] 8

9 b. Atrioventircular AV node > Near the floor of the Atrium > Delay occurs at AV node while atria contract c. AV Bundle (of His) > Found in superior atrioventricular septum > Link between atria and ventricles d. Bilateral Bundle branches > Convey impulse down right and left ventricles to the hearts apex e. Purkinje fibers >Convey impulse throughout the ventricular walls [Ejection of blood aided by spiral arrangement of muscles/during contractions muscle pull the apex and base close together squeezing blood out the openings at the top of the ventricles] V. ELECTROCARDIOGRAM (ECG) 1. Background - ECG tracing shows the summed electrical potentials generated by all cells of the heart - ECG reflects depolarization and repolarizations of atria and ventricles - Contraction Cycle: Single contraction-relaxation cycle 9

10 - Heart rate is normally timed from the beginning of one P wave to the beginning of the next P wave or from peak of one R wave to peak of next R wave Waves: Deflections above or below the baseline Segments: Sections of baseline between two waves Intervals: Combinations of waves and segments NOTE: Cannot tell if ECG recording represents depolarization or repolarization by looking at the shape of wave relative to the baseline (example: P represents depolarization and T represents repolarization; even though both are above the baseline) a. Atrial Depolarization > P Wave b. Atrial systole > PR interval c. Atrial repolarization/relaxtion > Not represented by special wave but incorporated into QRS complex d. Atrial diastole > Later drop of QRS complex (S) to prefix of P wave e. Ventricular depolarization > QRS complex f. Ventricular systole > QT interval g. Ventricular repolarization > T wave h. Ventricular diastole > End of T wave to the first drop of QRS complex (Q) i. U-wave 10

11 11

12 b. Arrhythmias a. Sinus Rhythm > NORMAL > bpm adults > bpm older children > bpm small children > bpm infants b. Bradycardia > Slower then normal heart rate c. Trachycardia > Faster then normal heart rate d. Fluter > Coordinated fast heart rate > In Atrium > Little blood flow > Usually above 200 bpm > Light headed/dizziness/pass-out e. Fibrillation > Non-coordinated fast heart fate > Circus Rhythms > No blood flow [Fibulator repolarizes (resets) intrinsic conducting system to base] f. AV Heart Block > Slow conduction through AV node > Independence of atrial and ventricular rhythms 12

13 13

Electrical Conduction

Electrical Conduction Sinoatrial (SA) node Electrical Conduction Sets the pace of the heartbeat at 70 bpm AV node (50 bpm) and Purkinje fibers (25 40 bpm) can act as pacemakers under some conditions Internodal pathway from

More information

THE CARDIOVASCULAR SYSTEM. Heart 2

THE CARDIOVASCULAR SYSTEM. Heart 2 THE CARDIOVASCULAR SYSTEM Heart 2 PROPERTIES OF CARDIAC MUSCLE Cardiac muscle Striated Short Wide Branched Interconnected Skeletal muscle Striated Long Narrow Cylindrical PROPERTIES OF CARDIAC MUSCLE Intercalated

More information

Cardiovascular System

Cardiovascular System Cardiovascular System The Heart Cardiovascular System The Heart Overview What does the heart do? By timed muscular contractions creates pressure gradients blood moves then from high pressure to low pressure

More information

Chapter 20: Cardiovascular System: The Heart

Chapter 20: Cardiovascular System: The Heart Chapter 20: Cardiovascular System: The Heart I. Functions of the Heart A. List and describe the four functions of the heart: 1. 2. 3. 4. II. Size, Shape, and Location of the Heart A. Size and Shape 1.

More information

Introduction. Circulation

Introduction. Circulation Introduction Circulation 1- Systemic (general) circulation 2- Pulmonary circulation carries oxygenated blood to all parts of the body carries deoxygenated blood to the lungs From Lt. ventricle aorta From

More information

CARDIOVASCULAR SYSTEM

CARDIOVASCULAR SYSTEM CARDIOVASCULAR SYSTEM Overview Heart and Vessels 2 Major Divisions Pulmonary Circuit Systemic Circuit Closed and Continuous Loop Location Aorta Superior vena cava Right lung Pulmonary trunk Base of heart

More information

Cardiac physiology. b. myocardium -- cardiac muscle and fibrous skeleton of heart

Cardiac physiology. b. myocardium -- cardiac muscle and fibrous skeleton of heart I. Heart anatomy -- general gross. A. Size/orientation - base/apex B. Coverings D. Chambers 1. parietal pericardium 2. visceral pericardium 3. Layers of heart wall a. epicardium Cardiac physiology b. myocardium

More information

Collin County Community College. ! BIOL Anatomy & Physiology! WEEK 5. The Heart

Collin County Community College. ! BIOL Anatomy & Physiology! WEEK 5. The Heart Collin County Community College! BIOL. 2402 Anatomy & Physiology! WEEK 5 The Heart 1 (1578-1657) A groundbreaking work in the history of medicine, English physician William Harvey s Anatomical Essay on

More information

Chapter 18 - Heart. I. Heart Anatomy: size of your fist; located in mediastinum (medial cavity)

Chapter 18 - Heart. I. Heart Anatomy: size of your fist; located in mediastinum (medial cavity) Chapter 18 - Heart I. Heart Anatomy: size of your fist; located in mediastinum (medial cavity) A. Coverings: heart enclosed in double walled sac called the pericardium 1. Fibrous pericardium: dense connective

More information

Chapter 20b Cardiac Physiology

Chapter 20b Cardiac Physiology Chapter 20b Cardiac Physiology Heart Valve Mechanics The heart valve openand close because of pressure gradients. When pressure on one side is greater than the other, it pushes the valve open. For example,

More information

Chapter 13 The Cardiovascular System: Cardiac Function

Chapter 13 The Cardiovascular System: Cardiac Function Chapter 13 The Cardiovascular System: Cardiac Function Overview of the Cardiovascular System The Path of Blood Flow through the Heart and Vasculature Anatomy of the Heart Electrical Activity of the Heart

More information

Cardiovascular system

Cardiovascular system BIO 301 Human Physiology Cardiovascular system The Cardiovascular System: consists of the heart plus all the blood vessels transports blood to all parts of the body in two 'circulations': pulmonary (lungs)

More information

Department of medical physiology 7 th week and 8 th week

Department of medical physiology 7 th week and 8 th week Department of medical physiology 7 th week and 8 th week Semester: winter Study program: Dental medicine Lecture: RNDr. Soňa Grešová, PhD. Department of medical physiology Faculty of Medicine PJŠU Cardiovascular

More information

The Heart. Size, Form, and Location of the Heart. 1. Blunt, rounded point; most inferior part of the heart.

The Heart. Size, Form, and Location of the Heart. 1. Blunt, rounded point; most inferior part of the heart. 12 The Heart FOCUS: The heart is composed of cardiac muscle cells, which are elongated, branching cells that appear striated. Cardiac muscle cells behave as a single electrical unit, and the highly coordinated

More information

10/23/2017. Muscular pump Two atria Two ventricles. In mediastinum of thoracic cavity 2/3 of heart's mass lies left of midline of sternum

10/23/2017. Muscular pump Two atria Two ventricles. In mediastinum of thoracic cavity 2/3 of heart's mass lies left of midline of sternum It beats over 100,000 times a day to pump over 1,800 gallons of blood per day through over 60,000 miles of blood vessels. During the average lifetime, the heart pumps nearly 3 billion times, delivering

More information

AnS SI 214 Practice Exam 2 Nervous, Muscle, Cardiovascular

AnS SI 214 Practice Exam 2 Nervous, Muscle, Cardiovascular AnS SI 214 Practice Exam 2 Nervous, Muscle, Cardiovascular Select the best answer choice in the questions below. 1) On the electrocardiogram, repolarization of the atria is represented by the: A) P wave

More information

The Cardiovascular System

The Cardiovascular System Chapter 18 Part A The Cardiovascular System 1/19/16 1 Annie Leibovitz/Contact Press Images Similarities of Cardiac and Skeletal Muscle RMP Ion concentration Deploarization Action Potential Repolarization

More information

4. The two inferior chambers of the heart are known as the atria. the superior and inferior vena cava, which empty into the left atrium.

4. The two inferior chambers of the heart are known as the atria. the superior and inferior vena cava, which empty into the left atrium. Answer each statement true or false. If the statement is false, change the underlined word to make it true. 1. The heart is located approximately between the second and fifth ribs and posterior to the

More information

*Generating blood pressure *Routing blood: separates. *Ensuring one-way blood. *Regulating blood supply *Changes in contraction

*Generating blood pressure *Routing blood: separates. *Ensuring one-way blood. *Regulating blood supply *Changes in contraction *Generating blood pressure *Routing blood: separates pulmonary and systemic circulations *Ensuring one-way blood flow: valves *Regulating blood supply *Changes in contraction rate and force match blood

More information

Practice Exercises for the Cardiovascular System

Practice Exercises for the Cardiovascular System Practice Exercises for the Cardiovascular System On the diagram below, color the oxygen-rich blood red and the oxygen-poor blood blue. Label the parts: Continued on the next page... Label the parts on

More information

Cardiovascular System: The Heart

Cardiovascular System: The Heart Cardiovascular System: The Heart I. Anatomy of the Heart (See lab handout for terms list) A. Describe the size, shape and location of the heart B. Describe the structure and function of the pericardium

More information

The HEART. What is it???? Pericardium. Heart Facts. This muscle never stops working It works when you are asleep

The HEART. What is it???? Pericardium. Heart Facts. This muscle never stops working It works when you are asleep This muscle never stops working It works when you are asleep The HEART It works when you eat It really works when you exercise. What is it???? Located between the lungs in the mid thoracic region Apex

More information

11/10/2014. Muscular pump Two atria Two ventricles. In mediastinum of thoracic cavity 2/3 of heart's mass lies left of midline of sternum

11/10/2014. Muscular pump Two atria Two ventricles. In mediastinum of thoracic cavity 2/3 of heart's mass lies left of midline of sternum It beats over 100,000 times a day to pump over 1,800 gallons of blood per day through over 60,000 miles of blood vessels. During the average lifetime, the heart pumps nearly 3 billion times, delivering

More information

Collin County Community College

Collin County Community College Collin County Community College BIOL. 2402 Anatomy & Physiology WEEK 5 The Heart 1 The Heart Beat and the EKG 2 1 The Heart Beat and the EKG P-wave = Atrial depolarization QRS-wave = Ventricular depolarization

More information

Approximately the size of your fist Location. Pericardial physiology

Approximately the size of your fist Location. Pericardial physiology Heart Anatomy Approximately the size of your fist Location Superior surface of diaphragm Left of the midline Anterior to the vertebral column, posterior to the sternum Wednesday, March 28, 2012 Muscle

More information

The Heart. The Heart A muscular double pump. The Pulmonary and Systemic Circuits

The Heart. The Heart A muscular double pump. The Pulmonary and Systemic Circuits C H A P T E R 19 The Heart The Heart A muscular double pump circuit takes blood to and from the lungs Systemic circuit vessels transport blood to and from body tissues Atria receive blood from the pulmonary

More information

Cardiac Properties MCQ

Cardiac Properties MCQ Cardiac Properties MCQ Abdel Moniem Ibrahim Ahmed, MD Professor of Cardiovascular Physiology Cairo University 2007 1- Cardiac Valves: a- Prevent backflow of blood from the ventricles to the atria during

More information

The cardiovascular system is composed of the heart and blood vessels that carry blood to and from the body s organs. There are 2 major circuits:

The cardiovascular system is composed of the heart and blood vessels that carry blood to and from the body s organs. There are 2 major circuits: 1 The cardiovascular system is composed of the heart and blood vessels that carry blood to and from the body s organs. There are 2 major circuits: pulmonary and systemic. The pulmonary goes out to the

More information

Chapter 20 (2) The Heart

Chapter 20 (2) The Heart Chapter 20 (2) The Heart ----------------------------------------------------------------------------------------------------------------------------------------- Describe the component and function of

More information

The Heart. C h a p t e r. PowerPoint Lecture Slides prepared by Jason LaPres Lone Star College - North Harris

The Heart. C h a p t e r. PowerPoint Lecture Slides prepared by Jason LaPres Lone Star College - North Harris C h a p t e r 20 The Heart PowerPoint Lecture Slides prepared by Jason LaPres Lone Star College - North Harris Copyright 2009 Pearson Education, Inc., publishing as Pearson Benjamin Cummings Introduction

More information

Circulatory System Function Move circulatory fluid (blood) around body Gas Transport Nutrient Transport Excretory Product Transport

Circulatory System Function Move circulatory fluid (blood) around body Gas Transport Nutrient Transport Excretory Product Transport Lecture 37 Introduction to Circulation BY DR QAZI IMTIAZ RASOOL OBJECTIVES Functions of the Heart Generating blood pressure Routing blood: separates pulmonary and systemic circulations Ensuring one-way

More information

Conduction System of the Heart 4. Faisal I. Mohammed, MD, PhD

Conduction System of the Heart 4. Faisal I. Mohammed, MD, PhD Conduction System of the Heart 4 Faisal I. Mohammed, MD, PhD 1 Objectives List the parts that comprise the conduction system Explain the mechanism of slow response action potential (pacemaker potential)

More information

Ch 19: Cardiovascular System - The Heart -

Ch 19: Cardiovascular System - The Heart - Ch 19: Cardiovascular System - The Heart - Give a detailed description of the superficial and internal anatomy of the heart, including the pericardium, the myocardium, and the cardiac muscle. Trace the

More information

The Cardiovascular System: The Heart

The Cardiovascular System: The Heart PowerPoint Lecture Slides prepared by Meg Flemming Austin Community College C H A P T E R 12 The Cardiovascular System: The Heart Chapter 12 Learning Outcomes 12-1 12-2 Describe the anatomy of the heart,

More information

THE HEART. A. The Pericardium - a double sac of serous membrane surrounding the heart

THE HEART. A. The Pericardium - a double sac of serous membrane surrounding the heart THE HEART I. Size and Location: A. Fist-size weighing less than a pound (250 to 350 grams). B. Located in the mediastinum between the 2 nd rib and the 5 th intercostal space. 1. Tipped to the left, resting

More information

Lab 2. The Intrinsic Cardiac Conduction System. 1/23/2016 MDufilho 1

Lab 2. The Intrinsic Cardiac Conduction System. 1/23/2016 MDufilho 1 Lab 2 he Intrinsic Cardiac Conduction System 1/23/2016 MDufilho 1 Figure 18.13 Intrinsic cardiac conduction system and action potential succession during one heartbeat. Superior vena cava ight atrium 1

More information

The Heart. Happy Friday! #takeoutyournotes #testnotgradedyet

The Heart. Happy Friday! #takeoutyournotes #testnotgradedyet The Heart Happy Friday! #takeoutyournotes #testnotgradedyet Introduction Cardiovascular system distributes blood Pump (heart) Distribution areas (capillaries) Heart has 4 compartments 2 receive blood (atria)

More information

2. right heart = pulmonary pump takes blood to lungs to pick up oxygen and get rid of carbon dioxide

2. right heart = pulmonary pump takes blood to lungs to pick up oxygen and get rid of carbon dioxide A. location in thorax, in inferior mediastinum posterior to sternum medial to lungs superior to diaphragm anterior to vertebrae orientation - oblique apex points down and to the left 2/3 of mass on left

More information

Cardiovascular System Notes: Physiology of the Heart

Cardiovascular System Notes: Physiology of the Heart Cardiovascular System Notes: Physiology of the Heart Interesting Heart Fact Capillaries are so small it takes ten of them to equal the thickness of a human hair. Review What are the 3 parts of the cardiovascular

More information

The conduction system

The conduction system The conduction system In today s lecture we will discuss the conducting system of the heart. If we placed the heart in a special solution that contains Ca+ it will keep on contracting, keep in mind that

More information

PART I. Disorders of the Heart Rhythm: Basic Principles

PART I. Disorders of the Heart Rhythm: Basic Principles PART I Disorders of the Heart Rhythm: Basic Principles FET01.indd 1 1/11/06 9:53:05 AM FET01.indd 2 1/11/06 9:53:06 AM CHAPTER 1 The Cardiac Electrical System The heart spontaneously generates electrical

More information

Human Anatomy, First Edition

Human Anatomy, First Edition Human Anatomy, First Edition McKinley & O'Loughlin Chapter 22 : Heart 1 Functions of the Heart Center of the cardiovascular system, the heart. Connects to blood vessels that transport blood between the

More information

Functions of the Heart

Functions of the Heart Cardiovascular System The Heart What is the Cardiovascular System? Blood circulated in Arteries, veins, and capillaries by the Pumping action of the heart Functions of the Heart Generating blood pressure

More information

Cardiac Cycle. Each heartbeat is called a cardiac cycle. First the two atria contract at the same time.

Cardiac Cycle. Each heartbeat is called a cardiac cycle. First the two atria contract at the same time. The Heartbeat Cardiac Cycle Each heartbeat is called a cardiac cycle. First the two atria contract at the same time. Next the two ventricles contract at the same time. Then all the chambers relax. http://www.youtube.com/watch?v=frd3k6lkhws

More information

- what other structures, besides the heart, does the mediastinum contain?

- what other structures, besides the heart, does the mediastinum contain? Basic A & P II Dr. L. Bacha Chapter Outline (Martini & Nath 2010) An Introduction to the Cardiovascular System - read the paragraphs under this heading on page 580 The Heart is a Four Chambered Organ describe

More information

Conduction System of the Heart. Faisal I. Mohammed, MD, PhD

Conduction System of the Heart. Faisal I. Mohammed, MD, PhD Conduction System of the Heart Faisal I. Mohammed, MD, PhD 1 Objectives l List the parts that comprise the conduction system l Explain the mechanism of slow response action potential (pacemaker potential)

More information

Circulatory system. Terminology. Ventricles and resistance. Pressure gradients move blood through the heart and vessels.

Circulatory system. Terminology. Ventricles and resistance. Pressure gradients move blood through the heart and vessels. Circulatory system Pressure gradients move blood through the heart and vessels. Pulmonary circulation vs. systemic circulation (to pulmonary circuit) liver head and arms heart aorta diaphragm (from pulmonary

More information

Where are the normal pacemaker and the backup pacemakers of the heart located?

Where are the normal pacemaker and the backup pacemakers of the heart located? CASE 9 A 68-year-old woman presents to the emergency center with shortness of breath, light-headedness, and chest pain described as being like an elephant sitting on her chest. She is diagnosed with a

More information

The Cardiovascular System

The Cardiovascular System Essentials of Human Anatomy & Physiology Elaine N. Marieb Seventh Edition Chapter 11 The Cardiovascular System Slides 11.1 11.19 Lecture Slides in PowerPoint by Jerry L. Cook The Cardiovascular System

More information

IP: Regulation of Cardiac Output

IP: Regulation of Cardiac Output ANP 1105D Winter 2013 Assignment 9: The Heart, part 2: Chap... Assignment 9: The Heart, part 2: Chapter 18 Signed in as Alex Sokolowski Help Close Resources Due: 11:59pm on Monday, March 25, 2013 Note:

More information

Heart. Heart 2-Tunica media: middle layer (media ='middle') muscle fibers (smooth or cardiac).

Heart. Heart 2-Tunica media: middle layer (media ='middle') muscle fibers (smooth or cardiac). t. innermost lumenal General Circulatory system heart and blood vessels walls have 3 layers (inside to outside) 1-Tunica interna: aka tunica intima layer--lumenal layer epithelium--endothelium simple squamous

More information

BIPN100 F15 Human Physiology I (Kristan) Problem set #5 p. 1

BIPN100 F15 Human Physiology I (Kristan) Problem set #5 p. 1 BIPN100 F15 Human Physiology I (Kristan) Problem set #5 p. 1 1. Dantrolene has the same effect on smooth muscles as it has on skeletal muscle: it relaxes them by blocking the release of Ca ++ from the

More information

(D) (E) (F) 6. The extrasystolic beat would produce (A) increased pulse pressure because contractility. is increased. increased

(D) (E) (F) 6. The extrasystolic beat would produce (A) increased pulse pressure because contractility. is increased. increased Review Test 1. A 53-year-old woman is found, by arteriography, to have 5% narrowing of her left renal artery. What is the expected change in blood flow through the stenotic artery? Decrease to 1 2 Decrease

More information

Principles of Biomedical Systems & Devices. Lecture 8: Cardiovascular Dynamics Dr. Maria Tahamont

Principles of Biomedical Systems & Devices. Lecture 8: Cardiovascular Dynamics Dr. Maria Tahamont Principles of Biomedical Systems & Devices Lecture 8: Cardiovascular Dynamics Dr. Maria Tahamont Review of Cardiac Anatomy Four chambers Two atria-receive blood from the vena cave and pulmonary veins Two

More information

Anatomy Review: The Heart Graphics are used with permission of A.D.A.M. Software, Inc. and Benjamin/Cummings Publishing Co.

Anatomy Review: The Heart Graphics are used with permission of A.D.A.M. Software, Inc. and Benjamin/Cummings Publishing Co. Anatomy Review: The Heart Graphics are used with permission of A.D.A.M. Software, Inc. and Benjamin/Cummings Publishing Co. Anatomy Views Label the diagrams of the heart below: Interactive Physiology Study

More information

Marah karablieh. Osama khader. Muhammad khatatbeh. 0 P a g e

Marah karablieh. Osama khader. Muhammad khatatbeh. 0 P a g e 15 Marah karablieh Osama khader 0 P a g e Muhammad khatatbeh Cardiac Muscle Physiology Introduction The heart has two ventricles and two atriums. The heart wall is composed primarily of spirally arranged

More information

CARDIAC PHYSIOLOGY. Amelyn U. Ramos-Rafael,M.D. Functional Anatomy of the Heart

CARDIAC PHYSIOLOGY. Amelyn U. Ramos-Rafael,M.D. Functional Anatomy of the Heart CARDIAC PHYSIOLOGY Amelyn U. Ramos-Rafael,M.D. Functional Anatomy of the Heart 1 Functional Anatomy of The Heart The Atria relatively thin walled The Ventricles ventricular walls thicker than atrial walls

More information

Full file at

Full file at MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) What electrical event must occur for atrial kick to occur? 1) A) Atrial repolarization B) Ventricular

More information

Chapter 12: Cardiovascular Physiology System Overview

Chapter 12: Cardiovascular Physiology System Overview Chapter 12: Cardiovascular Physiology System Overview Components of the cardiovascular system: Heart Vascular system Blood Figure 12-1 Plasma includes water, ions, proteins, nutrients, hormones, wastes,

More information

The Cardiovascular System

The Cardiovascular System 11 PART A The Cardiovascular System PowerPoint Lecture Slide Presentation by Jerry L. Cook, Sam Houston University ESSENTIALS OF HUMAN ANATOMY & PHYSIOLOGY EIGHTH EDITION ELAINE N. MARIEB The Cardiovascular

More information

Lab Activity 23. Cardiac Anatomy. Portland Community College BI 232

Lab Activity 23. Cardiac Anatomy. Portland Community College BI 232 Lab Activity 23 Cardiac Anatomy Portland Community College BI 232 Cardiac Muscle Histology Branching cells Intercalated disc: contains many gap junctions connecting the adjacent cell cytoplasm, creates

More information

flow of blood May carry blood

flow of blood May carry blood Heart 1 CARDIOVASCULAR SYSTEM: The Heart I. THE HEART & BLOOD FLOW Functional Anatomy off the heart - CARDIOVASCULAR SYSTEM - heart + blood vessels. - HEART = muscular pump; keeps blood CONSTANTLY moving

More information

The Circulatory System. The Heart, Blood Vessels, Blood Types

The Circulatory System. The Heart, Blood Vessels, Blood Types The Circulatory System The Heart, Blood Vessels, Blood Types The Closed Circulatory System Humans have a closed circulatory system, typical of all vertebrates, in which blood is confined to vessels and

More information

EXAM II Animal Physiology ZOO 428 Fall 2006

EXAM II Animal Physiology ZOO 428 Fall 2006 V Eq EXAM II Animal Physiology ZOO 428 Fall 2006 = RT X o. ln( [ zf [ X ) RT p K[K o pna[na o pcl[cl i V = m ln i F pk[k i pna[na i pcl[cl o I = g(v m V eq. ) Q = C m V m Q Driving Force = V m V eq. 10

More information

current, and acting like

current, and acting like Heart 10 IV. HEART PHYSIOLOGY - How the heart beats. How the heart depolarizes the myocardium, which leads to a contraction. A) INTRINSIC CONTROL - Heart controls its own rhythm. HOW? The presence of gap

More information

CARDIAC CYCLE CONTENTS. Divisions of cardiac cycle 11/13/13. Definition. Badri Paudel GMC

CARDIAC CYCLE CONTENTS. Divisions of cardiac cycle 11/13/13. Definition. Badri Paudel GMC CARDIAC CYCLE Badri Paudel GMC CONTENTS Ø DEFINATION Ø DIVISION OF CARDIAC CYCLE Ø SUB DIVISION AND DURATION OF CARDIAC CYCLE Ø SYSTOLE Ø DIASTOLE Ø DESCRIPTION OF EVENTS OF CARDIAC CYCLE Ø SUMMARY Ø ELECTROCARDIOGRAPHY

More information

The Cardiovascular System

The Cardiovascular System The Cardiovascular System The Cardiovascular System A closed system of the heart and blood vessels The heart pumps blood Blood vessels allow blood to circulate to all parts of the body The function of

More information

The Cardiovascular System

The Cardiovascular System Essentials of Human Anatomy & Physiology Elaine N. Marieb Slides 11.1 11.19 Seventh Edition Chapter 11 The Cardiovascular System Functions of the Cardiovascular system Function of the heart: to pump blood

More information

Using Figure 14.1, match the following: 1) Myelin sheath. 1) 2) Cell body of ANS preganglionic neuron. 2)

Using Figure 14.1, match the following: 1) Myelin sheath. 1) 2) Cell body of ANS preganglionic neuron. 2) Practice Exam 1 AP 2 chapters 14 and 18 Name MATCHING: Match labeled areas with the appropriate terminology from the list below. Figure 14.1 Using Figure 14.1, match the following: 1) Myelin sheath. 1)

More information

Physiology sheet #2. The heart composed of 3 layers that line its lumen and cover it from out side, these layers are :

Physiology sheet #2. The heart composed of 3 layers that line its lumen and cover it from out side, these layers are : Physiology sheet #2 * We will talk in this lecture about cardiac muscle physiology, the mechanism and the energy sources of their contraction and intracellular calcium homeostasis. # Slide 4 : The heart

More information

The Heart and Heart Disease

The Heart and Heart Disease The Heart and Heart Disease Illustration of the heart by Leonardo DaVinci heart-surgeon.com/ history.html 2/14/2010 1 I. Location, Size and Position of the Heart A. Triangular organ located 1. of mass

More information

Heart: Cardiac Function & ECGs. The Heart and Circulatory System

Heart: Cardiac Function & ECGs. The Heart and Circulatory System Heart: Cardiac Function & ECGs Adapted From: Textbook Of Medical Physiology, 11 th Ed. Arthur C. Guyton, John E. Hall Chapters 9, 10, 11, 12, & 13 John P. Fisher The Heart and Circulatory System Introduction

More information

Atlantic Health System

Atlantic Health System Atlantic Health System Morristown Medical Center Newton Medical Center Overlook Medical Center Basic Dysrhythmia Course Day 1 1 2 Chapter 1 Anatomy and Physiology Learning Objectives 1) Identify electrophysiology

More information

1. Which of the following conditions will result in a dilated, flaccid heart?

1. Which of the following conditions will result in a dilated, flaccid heart? 1. Which of the following conditions will result in a dilated, flaccid heart? A) Excess calcium ions in the blood B) Excess potassium ions in the blood C) Excess sodium ions in the blood D) Increased sympathetic

More information

37 1 The Circulatory System

37 1 The Circulatory System H T H E E A R T 37 1 The Circulatory System The circulatory system and respiratory system work together to supply cells with the nutrients and oxygen they need to stay alive. a) The respiratory system:

More information

The Cardiovascular System: The Heart: Part A

The Cardiovascular System: The Heart: Part A PowerPoint Lecture Slides prepared by Janice Meeking, Mount Royal College CHAPTER 18 The Cardiovascular System: The Heart: Part A Heart Anatomy Approximately the size of a fist Location In the mediastinum

More information

10. Thick deposits of lipids on the walls of blood vessels, called, can lead to serious circulatory issues. A. aneurysm B. atherosclerosis C.

10. Thick deposits of lipids on the walls of blood vessels, called, can lead to serious circulatory issues. A. aneurysm B. atherosclerosis C. Heart Student: 1. carry blood away from the heart. A. Arteries B. Veins C. Capillaries 2. What is the leading cause of heart attack and stroke in North America? A. alcohol B. smoking C. arteriosclerosis

More information

Cardiovascular System Notes: Heart Disease & Disorders

Cardiovascular System Notes: Heart Disease & Disorders Cardiovascular System Notes: Heart Disease & Disorders Interesting Heart Facts The Electrocardiograph (ECG) was invented in 1902 by Willem Einthoven Dutch Physiologist. This test is still used to evaluate

More information

Human Anatomy and Physiology II Laboratory Cardiovascular Physiology

Human Anatomy and Physiology II Laboratory Cardiovascular Physiology Human Anatomy and Physiology II Laboratory Cardiovascular Physiology 1 This lab involves two exercises: 1) Conduction System of the Heart and Electrocardiography and 2) Human Cardiovascular Physiology:

More information

CV Anatomy Quiz. Dr Ella Kim Dr Pip Green

CV Anatomy Quiz. Dr Ella Kim Dr Pip Green CV Anatomy Quiz Dr Ella Kim Dr Pip Green Q1 The location of the heart is correctly described as A) lateral to the lungs. B) medial to the sternum. C) superior to the diaphragm. D) posterior to the spinal

More information

Cardiovascular health & Health Promotion HH2602 & HH5607

Cardiovascular health & Health Promotion HH2602 & HH5607 Cardiovascular health & Health Promotion HH2602 & HH5607 Lecture 2: Microscopic Structure and Function of the Heart 2pm 28-02-17 ESGW Teaching Aims To introduce you to the microstructure of heart muscle.

More information

BIOL 4350 Cardiovascular Physiology Dr. Hamilton. Using the figure above, match the following: 1. Purkinje fibers. 2. SA node. 3. AV node.

BIOL 4350 Cardiovascular Physiology Dr. Hamilton. Using the figure above, match the following: 1. Purkinje fibers. 2. SA node. 3. AV node. BIOL 4350 Cardiovascular Physiology Dr. Hamilton Using the figure above, match the following: 1. Purkinje fibers. 2. SA node. 3. AV node. 1 Using the figure above, match the following: 4. Atrial depolarization.

More information

CIRCULATION & GAS EXCHANGE

CIRCULATION & GAS EXCHANGE AP BIOLOGY ACTIVITY2.13 Text:Campbell,v.8,chapter42 NAME DATE HOUR CIRCULATION & GAS EXCHANGE 1. In general, what is the function of transport systems? 2. What method/structure do most invertebrates use

More information

آالء العجرمي أسامة الخضر. Faisal Muhammad

آالء العجرمي أسامة الخضر. Faisal Muhammad 16 آالء العجرمي أسامة الخضر Faisal Muhammad 1. Summary for what taken : *changes in permeability of ions: 1. During phase 0: changes happen due to the influx of Na+, the permeability of Na ions increase

More information

the Cardiovascular System I

the Cardiovascular System I the Cardiovascular System I By: Dr. Nabil A Khouri MD, MsC, Ph.D MEDIASTINUM 1. Superior Mediastinum 2. inferior Mediastinum Anterior mediastinum. Middle mediastinum. Posterior mediastinum Anatomy of

More information

Effects of Temperature, Stretch, and Various Drug Treatments on the

Effects of Temperature, Stretch, and Various Drug Treatments on the Nicole Rodi Bio 235: Animal Physiology Heart Muscle Lab Report 10/24/2014 Effects of Temperature, Stretch, and Various Drug Treatments on the Cardiac Muscle Activity of Rana pipiens Abstract Mechanical

More information

Circulation. Circulation = is a process used for the transport of oxygen, carbon! dioxide, nutrients and wastes through-out the body

Circulation. Circulation = is a process used for the transport of oxygen, carbon! dioxide, nutrients and wastes through-out the body Circulation Circulation = is a process used for the transport of oxygen, carbon! dioxide, nutrients and wastes through-out the body Heart = muscular organ about the size of your fist which pumps blood.

More information

BME 5742 Bio-Systems Modeling and Control. Lecture 41 Heart & Blood Circulation Heart Function Basics

BME 5742 Bio-Systems Modeling and Control. Lecture 41 Heart & Blood Circulation Heart Function Basics BME 5742 Bio-Systems Modeling and Control Lecture 41 Heart & Blood Circulation Heart Function Basics Dr. Zvi Roth (FAU) 1 Pumps A pump is a device that accepts fluid at a low pressure P 1 and outputs the

More information

Cardiovascular System

Cardiovascular System Cardiovascular System Purpose Transport oxygen and nutrients Take waste products away from tissues & organs Things we learned Blood pressure: the force of blood pushing against the walls of blood vessels

More information

Heart. Structure Physiology of blood pressure and heartbeat

Heart. Structure Physiology of blood pressure and heartbeat Heart Structure Physiology of blood pressure and heartbeat Location and Anatomy Location and Anatomy Pericardial cavity: surrounds, isolates, and anchors heart Parietal pericardium lined with serous membrane

More information

The Cardiovascular System (Heart)

The Cardiovascular System (Heart) The Cardiovascular System The Cardiovascular System (Heart) A closed system of the heart and blood vessels The heart pumps blood Blood vessels allow blood to circulate to all parts of the body The function

More information

Circulatory system of mammals

Circulatory system of mammals Circulatory system of mammals Explain the cardiac cycle and its initiation Discuss the internal factors that control heart action Blood flows through the heart as a result of pressure differences Blood

More information

THE HEART Dr. Ali Ebneshahidi

THE HEART Dr. Ali Ebneshahidi THE HEART Dr. Ali Ebneshahidi Functions is of the heart & blood vessels 1. The heart is an essential pumping organ in the cardiovascular system where the right heart pumps deoxygenated blood (returned

More information

About This Chapter. Skeletal muscle Mechanics of body movement Smooth muscle Cardiac muscle Pearson Education, Inc.

About This Chapter. Skeletal muscle Mechanics of body movement Smooth muscle Cardiac muscle Pearson Education, Inc. About This Chapter Skeletal muscle Mechanics of body movement Smooth muscle Cardiac muscle Skeletal Muscle Usually attached to bones by tendons Origin: closest to the trunk or to more stationary bone Insertion:

More information

Chapter 20! The Heart!

Chapter 20! The Heart! Chapter 20! The Heart! SECTION 20-1! The heart is a four-chambered organ, supplied by the coronary circulation, that pumps oxygen-poor blood to the lungs and oxygen-rich blood to the rest of the body!

More information

Objectives of the Heart

Objectives of the Heart Objectives of the Heart Electrical activity of the heart Action potential EKG Cardiac cycle Heart sounds Heart Rate The heart s beat separated into 2 phases Relaxed phase diastole (filling of the chambers)

More information

Conduction system of the heart

Conduction system of the heart Conduction system of the heart -For skeletal muscle to contract, it has to be innervated by spinal nerves (there must be a neuromuscular junction). *The heart is innervated by autonomic nervous system

More information

Cardiac muscle is different from other types of muscle in that cardiac muscle

Cardiac muscle is different from other types of muscle in that cardiac muscle 6 E X E R C I S E Cardiovascular Physiology O B J E C T I V E S 1. To define autorhythmicity, sinoatrial node, pacemaker cells, and vagus nerves 2. To understand the effects of the sympathetic and parasympathetic

More information

Derived copy of Cardiac Muscle and Electrical Activity *

Derived copy of Cardiac Muscle and Electrical Activity * OpenStax-CNX module: m47785 1 Derived copy of Cardiac Muscle and Electrical Activity * Steven Telleen Based on Cardiac Muscle and Electrical Activity by OpenStax This work is produced by OpenStax-CNX and

More information

Biology November 2009 Exam Three FORM W KEY

Biology November 2009 Exam Three FORM W KEY Biology 251 3 November 2009 Exam Three FORM W KEY PRINT YOUR NAME AND ID NUMBER in the space that is provided on the answer sheet, and then blacken the letter boxes below the corresponding letters of your

More information