Karen L.P. McNally, Amy S. Fabritius, Marina L. Ellefson, Jonathan R. Flynn, Jennifer A. Milan, and Francis J. McNally

Size: px
Start display at page:

Download "Karen L.P. McNally, Amy S. Fabritius, Marina L. Ellefson, Jonathan R. Flynn, Jennifer A. Milan, and Francis J. McNally"

Transcription

1 Developmental Cell, Volume 22 Supplemental Information Kinesin-1 Prevents Capture of the Oocyte Meiotic Spindle by the Sperm Aster Karen L.P. McNally, Amy S. Fabritius, Marina L. Ellefson, Jonathan R. Flynn, Jennifer A. Milan, and Francis J. McNally Inventory of Online Supplemental Materials Figure S1. SPD-5 is not recruited to sperm centrioles until completion of meiosis in wild-type C. elegans. This figure show details of wild-type centrosome maturation relevant to figure 1. Figure S2. Specificity of antibody staining. This figure shows supplemental data related to figure 2. Figure S3. Centrosomes mature normally in tba-1(rnai) embryos. This figure shows supplemental data related to figure 3. Table S1. Frequency of centrosome maturation during meiosis. This table presents additional mutant phenotypes related to figure 1.

2 Figure S1 related to Figure 1. SPD-5 is not recruited to sperm centrioles until completion of meiosis in wild-type C. elegans. Maximum intensity projections of 3D image stacks of fixed meiotic embryos stained with DAPI (DNA) and anti- SPD-5 antibody. A. Anaphase II embryo. Inset shows that sperm DNA is highly condensed and no SPD-5 focus is apparent. B. Scission of the second polar body as indicated by the dispersal of the maternal chromosomes in the embryo. C. The spermderived DNA decondenses before the maternal DNA but no SPD-5 focus is present. D. A single SPD-5 focus has formed adjacent to the male pronucleus which is now at the cortex. Maternal chromosomes are still condensed. E. A single SPD-5 focus is next to the male pronucleus. Both male and female pronuclei have decondensed DNA but both pronuclei are still small. F. 2 large foci of SPD-5 are associated with the male pronucleus close to the cortex and DNA has started to condense in both large pronuclei. G. 2 foci of SPD-5 are associated with the male pronucleus which has moved away from the cortex and the female pronucleus has begun migrating. H. Pronuclear meeting. Bar in A = 5 μm, same scale A-H. I. Time-lapse sequence of living meiotic embryo expressing GFP::histone H2b and GFP::γ-tubulin filmed in utero. Time = extrusion of the first polar body. Sperm DNA, which also labeled with mcherry:histone H2B expressed from a sperm-specific promoter, is indicated by an arrow. A single focus of γ-tubulin (arrowhead) is first apparent at 15.5 min, after decondensation of the sperm-derived DNA and movement of the male pronucleus toward the cortex. In this sequence, the male pronucleus transiently dissociated from the centrosome (15.5 min) then reassociated with it (22 min). Embryo outlines drawn for clarity in E, H and I. Bar in I = 5 μm.

3 Figure S2 related to Figure 2. Specificity of antibody staining. A. Example of fixed kca- 1(RNAi) meiotic embryos stained with anti-kca-1 and DAPI (DNA). No staining around the sperm DNA was observed in 42 kca-1(rnai) embryos. B. Quantification of raw pixel values of cytoplasmic anti-kca-1 staining in wild type vs kca-1 (RNAi) meiotic embryos. Error bars = SEM. * two-tailed p-value <.5. C. Quantification of raw pixel values of cytoplasmic anti- UNC-116 staining in wild type vs 116 (RNAi) meiotic embryos. Error bars = SEM. * twotailed p-value <.5. D. Fixed 116(RNAi) meiotic embryo showed no increased anti- UNC-116 staining intensity around the sperm DNA in meiotic embryos. Ratio indicates the fluorescence intensity around the sperm DNA divided by the fluorescence intensity of the adjacent cytoplasm. E. Fixed kca-1(rnai) meiotic embryo showed no increased anti-kca-1 staining intensity around the sperm DNA in meiotic embryos. F. Fixed meiotic embryo expressing tdimer2:yp17, DAPI (DNA) and anti-spd-5 (cytoplasm) showing an example where the sperm DNA is outside the region of packed yolk granules. Bar = 5 μm.

4 Figure S3 related to Figure 3. Centrosomes mature normally in tba-1(rnai) and 116(f13) embryos. A. /1 tba-1(rnai) meiotic embryos had foci of maternally expressed GFP:TAC-1 associated with the sperm DNA. Lower images are enlargements of the boxed region containing the sperm DNA in the upper images. B. GFP:TAC-1 was recruited to sperm centrioles in 1/1 kca-1(rnai) meiotic embryos. C. Because tba-1(rnai) embryos never divide, staging mitotic embryos dissected from the worm is difficult. The preparation shown is of fixed embryos in the uterus of a partially dissected adult worm. The embryo labeled +1 is adjacent to the spermatheca and is in meiosis. The embryo in the +2 position is normally in the first mitotic division. The +2 embryo of this tba-1(rnai) worm has 2 foci of GFP:TAC-1 indicating that centrosome maturation occurs in the absence of cytoplasmic microtubules. Embryos have been outlined for clarity. 15/17 tba-1(rnai) embryos with mitotic chromosomes had centrosomal foci of GFP:TAC-1. 3/33 tba-1(rnai) embryos with mitotic chromosomes had centrosomal foci of GFP:γ-tubulin. D. SPD-5 was recruited to centrioles in 9/9 116(f13) pronuclear phase embryos just as in wild type. Three pronuclei were present in nearly all 116(f13) pronuclear phase embryos indicating a failure in polar body extrusion. Bar = 5 μm.

5 Table S1 related to Figure 1: Frequency of centrosome maturation during meiosis genotype wild type (n=15) kca-1(rnai) 14 (n=28) rol-1 rol-1; (RNAi) brc- 1(tm1145) brc-1; kca- 1 1(RNAi) brd- 1(ok1623) brd-1; kca- 27 1(RNAi) (n=11) szy-2(ts) 14(e57) 76(e911) 33(mn47) 16(e19) hpl- 2(tm1489) mpk-1(ts) % of embryos with SPD-5 foci at sperm DNA (n = # of embryos) % of embryos with γ-tubulin foci at sperm DNA (n = # of embryos) M I A I M II A II PN M I A I M II A II PN (n=15) 68 (n=22) (n=18) (n=17) 4 (n=16) 1 (n=32) 92 (n=11) 1 (n=9) 13 (n=15) small focus 6 (n=15) small focus 21 (n=33) small focus 7 small focus 1 1 (n=11) (n=21) Embryos were fixed and stained with anti-spd-5 antibody and scored for the presence of one or two foci of SPD-5 adjacent to the sperm DNA. For γ-tubulin, the endogenous fluorescence of GFP:γ-tubulin was used. M I = metaphase I, A I = anaphase I, M II = metaphase II, A II = anaphase II, PN = pronuclear stage. Merged cells indicate mixed stage meiotic embryos were scored. "Small focus" indicates a focus of SPD-5 staining that was smaller in diameter than those produced by kca-1(rnai) and no microtubule aster emanated from these small foci.

klp-18 (RNAi) Control. supplementary information. starting strain: AV335 [emb-27(g48); GFP::histone; GFP::tubulin] bleach

klp-18 (RNAi) Control. supplementary information. starting strain: AV335 [emb-27(g48); GFP::histone; GFP::tubulin] bleach DOI: 10.1038/ncb1891 A. starting strain: AV335 [emb-27(g48); GFP::histone; GFP::tubulin] bleach embryos let hatch overnight transfer to RNAi plates; incubate 5 days at 15 C RNAi food L1 worms adult worms

More information

The Cell Cycle CHAPTER 12

The Cell Cycle CHAPTER 12 The Cell Cycle CHAPTER 12 The Key Roles of Cell Division cell division = reproduction of cells All cells come from pre-exisiting cells Omnis cellula e cellula Unicellular organisms division of 1 cell reproduces

More information

MII. Supplement Figure 1. CapZ β2. Merge. 250ng. 500ng DIC. Merge. Journal of Cell Science Supplementary Material. GFP-CapZ β2 DNA

MII. Supplement Figure 1. CapZ β2. Merge. 250ng. 500ng DIC. Merge. Journal of Cell Science Supplementary Material. GFP-CapZ β2 DNA A GV GVBD MI DNA CapZ β2 CapZ β2 Merge B DIC GFP-CapZ β2 Merge CapZ β2-gfp 250ng 500ng Supplement Figure 1. MII A early MI late MI Control RNAi CapZαβ DNA Actin Tubulin B Phalloidin Intensity(A.U.) n=10

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION DOI: 1.138/ncb222 / b. WB anti- WB anti- ulin Mitotic index (%) 14 1 6 2 T (h) 32 48-1 1 2 3 4 6-1 4 16 22 28 3 33 e. 6 4 2 Time (min) 1-6- 11-1 > 1 % cells Figure S1 depletion leads to mitotic defects

More information

Unduplicated. Chromosomes. Telophase

Unduplicated. Chromosomes. Telophase 10-2 Cell Division The Cell Cycle Interphase Mitosis Prophase Cytokinesis G 1 S G 2 Chromatin in Parent Nucleus & Daughter Cells Chromatin Daughter Nuclei Telophase Mitotic Anaphase Metaphase Use what

More information

Tanimoto et al., http ://www.jcb.org /cgi /content /full /jcb /DC1

Tanimoto et al., http ://www.jcb.org /cgi /content /full /jcb /DC1 Supplemental material JCB Tanimoto et al., http ://www.jcb.org /cgi /content /full /jcb.201510064 /DC1 THE JOURNAL OF CELL BIOLOGY Figure S1. Method for aster 3D tracking, extended characterization of

More information

Cell Cycle and Mitosis

Cell Cycle and Mitosis Ch 12 BIOL 221 Cell Cycle and Mitosis The Key Roles of Cell Division Cell division Cellular reproduc2on An ability of organisms that best dis2nguishes living things from nonliving ma:er Cell Division Unicellular

More information

Cell Division. The Process of Cell Division Section Section 10.2: The Process of Cell Division 12/8/2010

Cell Division. The Process of Cell Division Section Section 10.2: The Process of Cell Division 12/8/2010 The Process of Cell Division Section 10.2 Biology B Section 10.2: The Process of Cell Division The student will investigate and understand common mechanisms of inheritance and protein synthesis. Key concepts

More information

Supplementary information. The Light Intermediate Chain 2 Subpopulation of Dynein Regulates Mitotic. Spindle Orientation

Supplementary information. The Light Intermediate Chain 2 Subpopulation of Dynein Regulates Mitotic. Spindle Orientation Supplementary information The Light Intermediate Chain 2 Subpopulation of Dynein Regulates Mitotic Spindle Orientation Running title: Dynein LICs distribute mitotic functions. Sagar Mahale a, d, *, Megha

More information

BIOLOGY 4/6/2015. Cell Cycle - Mitosis. Outline. Overview: The Key Roles of Cell Division. identical daughter cells. I. Overview II.

BIOLOGY 4/6/2015. Cell Cycle - Mitosis. Outline. Overview: The Key Roles of Cell Division. identical daughter cells. I. Overview II. 2 Cell Cycle - Mitosis CAMPBELL BIOLOGY TENTH EDITION Reece Urry Cain Wasserman Minorsky Jackson Outline I. Overview II. Mitotic Phase I. Prophase II. III. Telophase IV. Cytokinesis III. Binary fission

More information

Chapter 8: Cellular Reproduction

Chapter 8: Cellular Reproduction Chapter 8: Cellular Reproduction 1. The Cell Cycle 2. Mitosis 3. Meiosis 2 Types of Cell Division 2n 1n Mitosis: occurs in somatic cells (almost all cells of the body) generates cells identical to original

More information

Developmental Biology

Developmental Biology Developmental Biology 327 (2009) 433 446 Contents lists available at ScienceDirect Developmental Biology journal homepage: www.elsevier.com/developmentalbiology Centrosome attachment to the C. elegans

More information

Cell Division Questions. Mitosis and Meiosis

Cell Division Questions. Mitosis and Meiosis Cell Division Questions Mitosis and Meiosis 1 10 Do not write outside the box 5 Figure 3 shows a pair of chromosomes at the start of meiosis. The letters represent alleles. Figure 3 E E e e F F f f 5 (a)

More information

The Cell Life Cycle. S DNA replication, INTERPHASE. G 2 Protein. G 1 Normal THE CELL CYCLE. Indefinite period. synthesis. of histones.

The Cell Life Cycle. S DNA replication, INTERPHASE. G 2 Protein. G 1 Normal THE CELL CYCLE. Indefinite period. synthesis. of histones. Mitosis & Meiosis The Cell Life Cycle INTERPHASE G 1 Normal cell functions plus cell growth, duplication of organelles, protein synthesis S DNA replication, synthesis of histones THE CELL CYCLE M G 2 Protein

More information

Supplementary Figure S1

Supplementary Figure S1 Supplementary Figure S1 Supplementary Figure S1. PARP localization patterns using GFP-PARP and PARP-specific antibody libraries GFP-PARP localization in non-fixed (A) and formaldehyde fixed (B) GFP-PARPx

More information

The Cell Cycle and How Cells Divide

The Cell Cycle and How Cells Divide The Cell Cycle and How Cells Divide 1 Phases of the Cell Cycle The cell cycle consists of Interphase normal cell activity The mitotic phase cell divsion INTERPHASE Growth G 1 (DNA synthesis) Growth G 2

More information

(a) Reproduction. (b) Growth and development. (c) Tissue renewal

(a) Reproduction. (b) Growth and development. (c) Tissue renewal 100 µm 200 µm 20 µm (a) Reproduction (b) Growth and development (c) Tissue renewal 1 20 µm 2 0.5 µm Chromosomes DNA molecules Chromosome arm Centromere Chromosome duplication (including DNA synthesis)

More information

The Cell Cycle. Chapter 12. Biology. Edited by Shawn Lester. Eighth Edition Neil Campbell and Jane Reece. PowerPoint Lecture Presentations for

The Cell Cycle. Chapter 12. Biology. Edited by Shawn Lester. Eighth Edition Neil Campbell and Jane Reece. PowerPoint Lecture Presentations for Chapter 12 The Cell Cycle Edited by Shawn Lester PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions

More information

Cellular innovations at the origin of new reproductive modes: the case of pseudogamy in nematodes

Cellular innovations at the origin of new reproductive modes: the case of pseudogamy in nematodes Cellular innovations at the origin of new reproductive modes: the case of pseudogamy in nematodes Marie Delattre Plasticité et Evolution de la Division Cellulaire ENS Lyon Marie-Anne Félix Evolution des

More information

Why do cells divide? Cells divide in order to make more cells they multiply in order to create a larger surface to volume ratio!!!

Why do cells divide? Cells divide in order to make more cells they multiply in order to create a larger surface to volume ratio!!! Why do cells divide? Cells divide in order to make more cells they multiply in order to create a larger surface to volume ratio!!! Chromosomes Are made of chromatin: a mass of genetic material composed

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION DOI: 10.1038/ncb2988 Supplementary Figure 1 Kif7 L130P encodes a stable protein that does not localize to cilia tips. (a) Immunoblot with KIF7 antibody in cell lysates of wild-type, Kif7 L130P and Kif7

More information

Genetics and Cellular Function

Genetics and Cellular Function Genetics and Cellular Function DNA replication and the cell cycle Mitosis Mitosis Mitosis: division of cells that results in daughter cells with the same the genetic information that the original cell

More information

Centrioles are surrounded by pericentriolar material

Centrioles are surrounded by pericentriolar material JCB: ARTICLE SAS-4 is recruited to a dynamic structure in newly forming centrioles that is stabilized by the -tubulin mediated addition of centriolar microtubules Alexander Dammermann, Paul S. Maddox,

More information

Biology Developmental Biology Spring Quarter Midterm 1 Version A

Biology Developmental Biology Spring Quarter Midterm 1 Version A Biology 411 - Developmental Biology Spring Quarter 2013 Midterm 1 Version A 75 Total Points Open Book Choose 15 out the 20 questions to answer (5 pts each). Only the first 15 questions that are answered

More information

Developmental Biology Biology Fertilization. October 19, 2006

Developmental Biology Biology Fertilization. October 19, 2006 Developmental Biology Biology 4361 Fertilization October 19, 2006 Fertilization Fertilization accomplishes two things: Sex (combining genes from two genomes) Reproduction (initiates reactions in the egg

More information

BIOLOGY. Cell Cycle - Mitosis. Outline. Overview: The Key Roles of Cell Division. identical daughter cells. I. Overview II.

BIOLOGY. Cell Cycle - Mitosis. Outline. Overview: The Key Roles of Cell Division. identical daughter cells. I. Overview II. 2 Cell Cycle - Mitosis CAMPBELL BIOLOGY TENTH EDITION Reece Urry Cain Wasserman Minorsky Jackson Outline I. Overview II. Mitotic Phase I. Prophase II. III. Telophase IV. Cytokinesis III. Binary fission

More information

The Cell Cycle. Packet #9. Thursday, August 20, 2015

The Cell Cycle. Packet #9. Thursday, August 20, 2015 1 The Cell Cycle Packet #9 2 Introduction Cell Cycle An ordered sequence of events in the life of a dividing eukaryotic cell and is a cellular asexual reproduction. The contents of the parent s cell nucleus

More information

DNA double-strand break repair of parental chromatin in ooplasm and origin of de novo mutations. Peter de Boer

DNA double-strand break repair of parental chromatin in ooplasm and origin of de novo mutations. Peter de Boer DNA double-strand break repair of parental chromatin in ooplasm and origin of de novo mutations Peter de Boer Department of Obst.& Gynaecology, Div. Reproductive Medicine Radboud University Nijmegen Medical

More information

a Control IgG Intestine c Testis b Thymus 1 3 2 S S 2 1 3 4 4 Figure S1 The wild-type mouse (C57BL/6J) organs (intestine, thymus and testis) were frozen in liquid nitrogen and sectioned at 5 µm on a cryostat.

More information

Biology 4361 Developmental Biology. Fertilization. October 18, 2007

Biology 4361 Developmental Biology. Fertilization. October 18, 2007 Biology 4361 Developmental Biology Fertilization October 18, 2007 Fertilization Fertilization accomplishes two things: Sex (combining genes from two genomes) Reproduction (initiates reactions in the egg

More information

Mitosis THE CELL CYCLE. In unicellular organisms, division of one cell reproduces the entire organism Multicellular organisms use cell division for..

Mitosis THE CELL CYCLE. In unicellular organisms, division of one cell reproduces the entire organism Multicellular organisms use cell division for.. Mitosis THE CELL CYCLE In unicellular organisms, division of one cell reproduces the entire organism Multicellular organisms use cell division for.. Development from a fertilized cell Growth Repair Cell

More information

Dynein pulling forces counteract lamin-mediated nuclear stability during nuclear envelope repair

Dynein pulling forces counteract lamin-mediated nuclear stability during nuclear envelope repair Dynein pulling forces counteract lamin-mediated nuclear stability during nuclear envelope repair The Harvard community has made this article openly available. Please share how this access benefits you.

More information

Mitosis: cell division that forms identical daughter cells with the same number of chromosomes as the parent cell (duplicate and divide)

Mitosis: cell division that forms identical daughter cells with the same number of chromosomes as the parent cell (duplicate and divide) Mitosis: cell division that forms identical daughter cells with the same number of chromosomes as the parent cell (duplicate and divide) Meiosis: cell division that forms daughter cells with half the number

More information

Why do cells reproduce?

Why do cells reproduce? Outline Cell Reproduction 1. Overview of Cell Reproduction 2. Cell Reproduction in Prokaryotes 3. Cell Reproduction in Eukaryotes 1. Chromosomes 2. Cell Cycle 3. Mitosis and Cytokinesis Examples of Cell

More information

Name: Date: Block: 10-2 Cell Division Worksheet

Name: Date: Block: 10-2 Cell Division Worksheet 10-2 Cell Division Worksheet W hat do you think would happen if a cell were simple to split into two, without any advance preparation? Would each daughter cell have everything it needed to survive? Because

More information

The Cell Cycle. Chapter 12. Biology Eighth Edition Neil Campbell and Jane Reece. PowerPoint Lecture Presentations for

The Cell Cycle. Chapter 12. Biology Eighth Edition Neil Campbell and Jane Reece. PowerPoint Lecture Presentations for Chapter 12 The Cell Cycle PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions from Joan Sharp Copyright

More information

T H E J O U R N A L O F C E L L B I O L O G Y

T H E J O U R N A L O F C E L L B I O L O G Y T H E J O U R N A L O F C E L L B I O L O G Y Supplemental material Lu et al., http://www.jcb.org/cgi/content/full/jcb.201012063/dc1 Figure S1. Kinetics of nuclear envelope assembly, recruitment of Nup133

More information

T R L J. Version 2, 2018 NAME: OPTION GROUP: CELL DIVISION MITOSIS WORKBOOK

T R L J. Version 2, 2018 NAME: OPTION GROUP: CELL DIVISION MITOSIS WORKBOOK NAME: OPTION GROUP: CELL DIVISION MITOSIS WORKBOOK 1 STUDY CHECKLIST AND ASSESSMENT OBJECTIVES Instructions Regular revision throughout the year is essential. It s vital you keep a track of what you understand

More information

2014 Pearson Education, Inc.

2014 Pearson Education, Inc. 2 The Cell Cycle CAMPBELL BIOLOGY TENTH EDITION Reece Urry Cain Wasserman Minorsky Jackson The Key Roles of Cell Division The ability of organisms to produce more of their own kind best distinguishes living

More information

BIOLOGY. The Cell Cycle CAMPBELL. Reece Urry Cain Wasserman Minorsky Jackson. Lecture Presentation by Nicole Tunbridge and Kathleen Fitzpatrick

BIOLOGY. The Cell Cycle CAMPBELL. Reece Urry Cain Wasserman Minorsky Jackson. Lecture Presentation by Nicole Tunbridge and Kathleen Fitzpatrick CAMPBELL BIOLOGY TENTH EDITION Reece Urry Cain Wasserman Minorsky Jackson 12 The Cell Cycle Lecture Presentation by Nicole Tunbridge and Kathleen Fitzpatrick The Key Roles of Cell Division The ability

More information

Supplementary tables and figure legends

Supplementary tables and figure legends Supplementary tables and figure legends Suzuki et al., Mitotic Reprogramming of Sperm, Supplementary Information, 5/7/16, page 1 Supplementary Figure 1 Characteristics of mouse preimplantation development

More information

Chapter 4 The Chromosome Theory of Inheritance

Chapter 4 The Chromosome Theory of Inheritance Chapter 4 The Chromosome Theory of Inheritance 4-1 Sections to study 4.1 Chromosomes: The carriers of genes 4.2 Mitosis: Cell division that preserves chromosome number 4.3 Meiosis: Cell division that halve

More information

DAPI ASY1 DAPI/ASY1 DAPI RAD51 DAPI/RAD51. Supplementary Figure 1. Additional information on meiosis in R. pubera. a) The

DAPI ASY1 DAPI/ASY1 DAPI RAD51 DAPI/RAD51. Supplementary Figure 1. Additional information on meiosis in R. pubera. a) The a % 10 Number of crossover per bivalent b 0 1 c DAPI/telomere 80 1 60 40 1 2 20 d 0 0 1 2 >=3 DAPI ASY1 DAPI/ASY1 e DAPI RAD51 DAPI/RAD51 Supplementary Figure 1. Additional information on meiosis in R.

More information

Cell Cycle and Mitosis

Cell Cycle and Mitosis Ch 4 BIOL 100 Cell Cycle and Mitosis The Key Roles of Cell Division Cell division Cellular reproduc2on An ability of organisms that best dis2nguishes living things from nonliving ma:er Cell Division Unicellular

More information

SLX4 + MUS81 SLX4 + GEN1 SLX4 CONTROL SLX4

SLX4 + MUS81 SLX4 + GEN1 SLX4 CONTROL SLX4 GEN MUS8 GEN MUS8 GEN MUS8 GEN MUS8 GEN C LM MUS8 XPF (loading control) D H2AX Frequency of -positive bridges (% of anaphase cells) 6 4 2 p =.8 x -4 GM855 p =.27 PSNF5 E H2AX Figure S. Analysis of anaphase

More information

10-2 Cell Division. Slide 1 of 38. End Show. Copyright Pearson Prentice Hall

10-2 Cell Division. Slide 1 of 38. End Show. Copyright Pearson Prentice Hall 1 of 38 Cell Division In eukaryotes, cell division occurs in two major stages. The first stage, division of the cell nucleus, is called mitosis. The second stage, division of the cell cytoplasm, is called

More information

Cellular Reproduction, Part 1: Mitosis Lecture 10 Fall 2008

Cellular Reproduction, Part 1: Mitosis Lecture 10 Fall 2008 Cell Theory 1 Cellular Reproduction, Part 1: Mitosis Lecture 10 Fall 2008 Cell theory: All organisms are made of cells All cells arise from preexisting cells How do new cells arise? Cell division the reproduction

More information

Chapter 2. Mitosis and Meiosis

Chapter 2. Mitosis and Meiosis Chapter 2. Mitosis and Meiosis Chromosome Theory of Heredity What structures within cells correspond to genes? The development of genetics took a major step forward by accepting the notion that the genes

More information

The Cell Cycle. Chapter 12. PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece

The Cell Cycle. Chapter 12. PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Chapter 12 The Cell Cycle PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions from Joan Sharp Overview:

More information

10-2 Cell Division. Chromosomes

10-2 Cell Division. Chromosomes Cell Division In eukaryotes, cell division occurs in two major stages. The first stage, division of the cell nucleus, is called mitosis. The second stage, division of the cell cytoplasm, is called cytokinesis.

More information

LECTURE PRESENTATIONS

LECTURE PRESENTATIONS LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert B. Jackson Chapter 12 The Cell Cycle Lectures by Erin

More information

Multiple Choice Identify the letter of the choice that best completes the statement or answers the question.

Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. Biology Mo Test: Q3 Mr. Rellinger Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. Which event occurs during interphase? The cell carries

More information

Molecular Cell Biology - Problem Drill 22: The Mechanics of Cell Division

Molecular Cell Biology - Problem Drill 22: The Mechanics of Cell Division Molecular Cell Biology - Problem Drill 22: The Mechanics of Cell Division Question No. 1 of 10 1. Which of the following statements about mitosis is correct? Question #1 (A) Mitosis involves the dividing

More information

MITOSIS IN ONION ROOTLET CELLS

MITOSIS IN ONION ROOTLET CELLS Lesson 6: CELL CYCLE, MITOSIS Name: Group: MITOSIS IN ONION ROOTLET CELLS Permanent slide: onion rootlet stained with acetorcein The particular mitotic phases are visible in the onion rootlet cells. Chromosomes

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION DOI: 0.038/ncb33 a b c 0 min 6 min 7 min (fixed) DIC -GFP, CenpF 3 µm Nocodazole Single optical plane -GFP, CenpF Max. intensity projection d µm -GFP, CenpF, -GFP CenpF 3-D rendering e f 0 min 4 min 0

More information

The Cell Cycle. Chapter 12. Biology Eighth Edition Neil Campbell and Jane Reece. PowerPoint Lecture Presentations for

The Cell Cycle. Chapter 12. Biology Eighth Edition Neil Campbell and Jane Reece. PowerPoint Lecture Presentations for Chapter 12 The Cell Cycle PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions from Joan Sharp 1

More information

T H E J O U R N A L O F C E L L B I O L O G Y

T H E J O U R N A L O F C E L L B I O L O G Y T H E J O U R N A L O F C E L L B I O L O G Y Supplemental material Dunsch et al., http://www.jcb.org/cgi/content/full/jcb.201202112/dc1 Figure S1. Characterization of HMMR and CHICA antibodies. (A) HeLa

More information

Bacterial cell. Origin of replication. Septum

Bacterial cell. Origin of replication. Septum Bacterial cell Bacterial chromosome: Double-stranded DNA Origin of replication Septum 1 2 3 Chromosome Rosettes of Chromatin Loops Scaffold protein Chromatin Loop Solenoid Scaffold protein Chromatin loop

More information

Origin of replication. Septum

Origin of replication. Septum Bacterial cell Bacterial chromosome: Double-stranded DNA Origin of replication Septum 1 2 3 Chromosome Rosettes of Chromatin Loops Chromatin Loop Solenoid Scaffold protein Scaffold protein Chromatin loop

More information

The zygote. Contents. Introduction. Loredana Papale, Agnese Fiorentino, Markus Montag, and Giovanna Tomasi CHAPTER TWO

The zygote. Contents. Introduction. Loredana Papale, Agnese Fiorentino, Markus Montag, and Giovanna Tomasi CHAPTER TWO Human Reproduction, Vol.27, No.S1 pp. i22 i49, 2012 doi:10.1093/humrep/des205 CHAPTER TWO The zygote Loredana Papale, Agnese Fiorentino, Markus Montag, and Giovanna Tomasi Contents Introduction A. Fertilization

More information

Cell Division. Learning Objectives: Introduction. Revised Fall 2018

Cell Division. Learning Objectives: Introduction. Revised Fall 2018 Revised Fall 2018 Cell Division Learning Objectives: 1. Define cell cycle and the ordered sequence of events in the cell cycle (Interphase and The divisional phase or M phase) 2. Explain the stages in

More information

life Lab 7 Centromere region One (replicated) chromosome Sister Figure I. The Cell Cycle. Figure 2. A Replicated Chromosome.

life Lab 7 Centromere region One (replicated) chromosome Sister Figure I. The Cell Cycle. Figure 2. A Replicated Chromosome. 71 life.. -' - \ Lab 7 Cell Division Cellular reproduction in the cells is accomplished by mitosis or meiosis. The chromosomes of the cell have to repli cate themselves in both processes and then move

More information

基醫所. The Cell Cycle. Chi-Wu Chiang, Ph.D. IMM, NCKU

基醫所. The Cell Cycle. Chi-Wu Chiang, Ph.D. IMM, NCKU 基醫所 The Cell Cycle Chi-Wu Chiang, Ph.D. IMM, NCKU 1 1 Introduction to cell cycle and cell cycle checkpoints 2 2 Cell cycle A cell reproduces by performing an orderly sequence of events in which it duplicates

More information

Supplementary Figure 1. Mother centrioles can reduplicate while in the close association

Supplementary Figure 1. Mother centrioles can reduplicate while in the close association C1-GFP distance (nm) C1-GFP distance (nm) a arrested HeLa cell expressing C1-GFP and Plk1TD-RFP -3 s 1 2 3 4 5 6 7 8 9 11 12 13 14 16 17 18 19 2 21 22 23 24 26 27 28 29 3 b 9 8 7 6 5 4 3 2 arrested HeLa

More information

DNA synthesis after polyspernric fertilization in the axolotl

DNA synthesis after polyspernric fertilization in the axolotl /. Embryol. exp. Morph. Vol. 2, pp. 9-8, 1979 9 Printed in Great Britain Company of Biologists Limited 1979 DNA synthesis after polyspernric fertilization in the axolotl BYB. T. WAKIMOTO 1 From the Department

More information

Marina E. Crowder, PhD

Marina E. Crowder, PhD Marina E. Crowder, PhD University of California, Davis email: mecrowder@ucdavis.edu Department of Molecular and Cellular Biology phone: (916) 425-1343 156 Briggs Hall, Davis, CA 95616 EDUCATION Doctor

More information

THE SPERM CENTRIOLE PERSISTS DURING EARLY EGG CLEAVAGE IN THE INSECT CHRYSOPA CARNEA (NEUROPTERA, CHRYSOPIDAE)

THE SPERM CENTRIOLE PERSISTS DURING EARLY EGG CLEAVAGE IN THE INSECT CHRYSOPA CARNEA (NEUROPTERA, CHRYSOPIDAE) J. Cell Sci. 42, 221-226 (1980) 221 Printed in Great Britain Company of Biologists Limited 1980 THE SPERM CENTRIOLE PERSISTS DURING EARLY EGG CLEAVAGE IN THE INSECT CHRYSOPA CARNEA (NEUROPTERA, CHRYSOPIDAE)

More information

The Cell Cycle 4/10/12. Chapter 12. Overview: The Key Roles of Cell Division

The Cell Cycle 4/10/12. Chapter 12. Overview: The Key Roles of Cell Division LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert B. Jackson Chapter 12 The Cell Cycle Lectures by Erin

More information

10-2 Cell Division mitosis. cytokinesis. Chromosomes chromosomes Slide 1 of 38

10-2 Cell Division mitosis. cytokinesis. Chromosomes chromosomes Slide 1 of 38 In eukaryotes, cell division occurs in two major stages. The first stage, division of the cell nucleus, is called mitosis. The second stage, division of the cell cytoplasm, is called cytokinesis. Chromosomes

More information

LECTURE PRESENTATIONS

LECTURE PRESENTATIONS LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert B. Jackson Chapter 12 The Cell Cycle Lectures by Erin

More information

Cell Cycle and Mitosis

Cell Cycle and Mitosis Cell Cycle and Mitosis Name Period A# THE CELL CYCLE The cell cycle, or cell-division cycle, is the series of events that take place in a eukaryotic cell between its formation and the moment it replicates

More information

MITOSIS AND THE CELL CYCLE PowerPoint Notes

MITOSIS AND THE CELL CYCLE PowerPoint Notes 1 Name: Date: MITOSIS AND THE CELL CYCLE PowerPoint Notes THE FUNCTIONS OF CELL DIVISION 1. Cell division is vital for all. living organisms This is the only process that can create. new cells 2. Cell

More information

Supplementary table 1

Supplementary table 1 Supplementary table 1 S. pombe strain list Fig. 1A JX38 h + ade6-m216 nda3-km311 PX476 PW775 PX545 PX546 h- ade6-m216 sgo2::ura4 + nda3-km311 h 9 mad2::ura4 + nda3-km311 h + ade6-m21 nda3-km311 rad21 +

More information

Name Date Class. Interphase. (1) The. grows. DNA is duplicated.

Name Date Class. Interphase. (1) The. grows. DNA is duplicated. Concept Mapping The Cell Cycle Complete the cycle map about the cell cycle. These terms may be used more than once: cell, cytoplasm, metaphase, nuclear membrane, nucleoli, poles. (1) The Interphase grows.

More information

Fertilization depends on mechanisms that help sperm meet eggs of the same species.

Fertilization depends on mechanisms that help sperm meet eggs of the same species. Fertilization depends on mechanisms that help sperm meet eggs of the same species. www.uchsc.edu/ltc/fertilization.html Fertilization union of sperm and egg Is a chain of events. Interruption of any step

More information

CELL CYCLE INTRODUCTION PART I ANIMAL CELL CYCLE INTERPHASE

CELL CYCLE INTRODUCTION PART I ANIMAL CELL CYCLE INTERPHASE CELL CYCLE INTRODUCTION The nuclei in cells of eukaryotic organisms contain chromosomes with clusters of genes, discrete units of hereditary information consisting of double-stranded DNA. Structural proteins

More information

Gametogenesis. Omne vivum ex ovo All living things come from eggs.

Gametogenesis. Omne vivum ex ovo All living things come from eggs. Omne vivum ex ovo All living things come from eggs. William Harvery, 1651 Gametogenesis This lecture is the preface, so to speak, to embryology; that is, it introduces the development of the specialized

More information

Animal Development. Lecture 3. Germ Cells and Sex

Animal Development. Lecture 3. Germ Cells and Sex Animal Development Lecture 3 Germ Cells and Sex 1 The ovary of sow. The ovary of mare. The ovary of cow. The ovary of ewe. 2 3 The ovary. A generalized vertebrate ovary. (Wilt and Hake, Ch 2, 2004) 4 The

More information

Prentice Hall Biology Slide 1 of 38

Prentice Hall Biology Slide 1 of 38 Prentice Hall Biology 1 of 38 2 of 38 In eukaryotes, cell division occurs in two major stages. The first stage, division of the cell nucleus, is called mitosis. The second stage, division of the cell cytoplasm,

More information

General Embryology. School of Medicine Department of Anatomy and Histology School of medicine The University of Jordan

General Embryology. School of Medicine Department of Anatomy and Histology School of medicine The University of Jordan General Embryology 2019 School of Medicine Department of Anatomy and Histology School of medicine The University of Jordan https://www.facebook.com/dramjad-shatarat What is embryology? Is the science that

More information

CHAPTER 8 CELL REPRODUCTION

CHAPTER 8 CELL REPRODUCTION CHAPTER 8 CELL REPRODUCTION CHROMOSOME STRUCTURE Structures in the nucleus that carry genetic information Composed of DNA coiled around proteins called histones Consists of 2 identical parts called sister

More information

LECTURE PRESENTATIONS

LECTURE PRESENTATIONS LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert B. Jackson Chapter 12 The Cell Cycle Lectures by Erin

More information

The Cell Cycle. Dr. SARRAY Sameh, Ph.D

The Cell Cycle. Dr. SARRAY Sameh, Ph.D The Cell Cycle Dr. SARRAY Sameh, Ph.D Overview When an organism requires additional cells (either for growth or replacement of lost cells), new cells are produced by cell division (mitosis) Somatic cells

More information

10.2 The Cell Cycle *

10.2 The Cell Cycle * OpenStax-CNX module: m52672 1 10.2 The Cell Cycle * Shannon McDermott Based on The Cell Cycle by OpenStax This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License

More information

BIOLOGY LTF DIAGNOSTIC TEST CELL CYCLE & MITOSIS

BIOLOGY LTF DIAGNOSTIC TEST CELL CYCLE & MITOSIS Biology Multiple Choice 016044 BIOLOGY LTF DIAGNOSTIC TEST CELL CYCLE & MITOSIS TEST CODE: 016044 Directions: Each of the questions or incomplete statements below is followed by five suggested answers

More information

JCB Article. The kinetically dominant assembly pathway for centrosomal asters in Caenorhabditis elegans is -tubulin dependent

JCB Article. The kinetically dominant assembly pathway for centrosomal asters in Caenorhabditis elegans is -tubulin dependent JCB Article The kinetically dominant assembly pathway for centrosomal asters in Caenorhabditis elegans is -tubulin dependent Eva Hannak, 1 Karen Oegema, 1 Matthew Kirkham, 1 Pierre Gönczy, 2 Bianca Habermann,

More information

The Cellular Basis of Reproduction and Inheritance

The Cellular Basis of Reproduction and Inheritance Chapter 8 The Cellular Basis of Reproduction and Inheritance PowerPoint Lectures for! Biology: Concepts and Connections, Fifth Edition! Campbell, Reece, Taylor, and Simon Lectures by Chris Romero Objective:

More information

Supplementary Figure S1: TIPF reporter validation in the wing disc.

Supplementary Figure S1: TIPF reporter validation in the wing disc. Supplementary Figure S1: TIPF reporter validation in the wing disc. a,b, Test of put RNAi. a, In wildtype discs the Dpp target gene Sal (red) is expressed in a broad stripe in the centre of the ventral

More information

(a) Schematic diagram of the FS mutation of UVRAG in exon 8 containing the highly instable

(a) Schematic diagram of the FS mutation of UVRAG in exon 8 containing the highly instable Supplementary Figure 1. Frameshift (FS) mutation in UVRAG. (a) Schematic diagram of the FS mutation of UVRAG in exon 8 containing the highly instable A 10 DNA repeat, generating a premature stop codon

More information

Cell Division and Mitosis

Cell Division and Mitosis Chromatin-Uncoiled DNA during interphase Cell Division and Mitosis Chromosomes-Tightly coiled DNA Chromatid-One half of a duplicated chromosome. Each is identical and called sister chromatids Centromere-The

More information

The subcortical maternal complex controls symmetric division of mouse zygotes by

The subcortical maternal complex controls symmetric division of mouse zygotes by The subcortical maternal complex controls symmetric division of mouse zygotes by regulating F-actin dynamics Xing-Jiang Yu 1,2, Zhaohong Yi 1, Zheng Gao 1,2, Dan-dan Qin 1,2, Yanhua Zhai 1, Xue Chen 1,

More information

Lesson 1. Quiz (short) Cell cycle Chromosomes Mitosis phases

Lesson 1. Quiz (short) Cell cycle Chromosomes Mitosis phases Lesson 1 Quiz (short) Cell cycle Chromosomes Mitosis phases 2 Cell division is needed for Growth (Mitosis) Repair (Mitosis) Reproduction (Meiosis) 3 Mitosis consists of 4 phases (division of the nuclear

More information

Cytoskelet Prednáška 6 Mikrotubuly a mitóza

Cytoskelet Prednáška 6 Mikrotubuly a mitóza Cytoskelet Prednáška 6 Mikrotubuly a mitóza Polarity of tubulin polymerization Nuclei Tubulin > C C Preferential addition of tubulin ar (+) ends Tubulin < C C Preferential loss of tubulin ar (+) ends Kinesin

More information

UNC-Duke Biology Course for Residents Fall Cell Cycle Effects of Radiation

UNC-Duke Biology Course for Residents Fall Cell Cycle Effects of Radiation UNC-Duke Biology Course for Residents Fall 2018 1 Cell Cycle: Sequence of changes in a cell starting with the moment the cell is created by cell division, continuing through the doubling of the DNA and

More information

A Role for Intraflagellar Transport Proteins in Mitosis: A Dissertation

A Role for Intraflagellar Transport Proteins in Mitosis: A Dissertation University of Massachusetts Medical School escholarship@umms GSBS Dissertations and Theses Graduate School of Biomedical Sciences 6-18-2013 A Role for Intraflagellar Transport Proteins in Mitosis: A Dissertation

More information

The Maternal Effect Mutation sésame Affects the Formation of the Male Pronucleus in Drosophila melanogaster

The Maternal Effect Mutation sésame Affects the Formation of the Male Pronucleus in Drosophila melanogaster Developmental Biology 222, 392 404 (2000) doi:10.1006/dbio.2000.9718, available online at http://www.idealibrary.com on The Maternal Effect Mutation sésame Affects the Formation of the Male Pronucleus

More information

Organisms that reproduce Sexually are made up of two different types of cells.

Organisms that reproduce Sexually are made up of two different types of cells. MEIOSIS Organisms that reproduce Sexually are made up of two different types of cells. 1. Somatic Cells are body cells and contain the normal number of chromosomes.called the Diploid number (the symbol

More information

Mitosis Flap Book Excludes Prometaphase

Mitosis Flap Book Excludes Prometaphase Mitosis Flap Book Excludes Prometaphase TEACHER S INSTRUCTIONS 1) Choose one of the foldables from the choices below. Three Color Choices Black & White Cells without Chromosomes Choose this option if you

More information

Microtubule and microfilament organization in maturing human oocytes

Microtubule and microfilament organization in maturing human oocytes Human Reproduction vol.13 no.8 pp.2217 2222, 1998 Microtubule and microfilament organization in maturing human oocytes Nam-Hyung Kim 1, Hyung Min Chung 2, Kwang-Yul Cha 2 and Kil Saeng Chung 1,3 1 Animal

More information