Multilocus genetic analysis of single interphase cells by spectral imaging

Size: px
Start display at page:

Download "Multilocus genetic analysis of single interphase cells by spectral imaging"

Transcription

1 Hum Genet (2000) 107 : DOI /s ORIGINAL INVESTIGATION J. Fung H.-U. G. Weier J. D. Goldberg R. A. Pedersen Multilocus genetic analysis of single interphase cells by spectral imaging Received: 21 June 2000 / Accepted: 26 September 2000 / Published online: 15 November 2000 Springer-Verlag 2000 Abstract Numerical chromosome aberrations are detrimental to early embryonic, fetal and perinatal development of mammals. When fetuses carrying a chromosomal imbalance survive to term, an aberrant gene dosage typically leads to stillbirth or causes a severely altered phenotype. Aneuploidy of any of the 24 chromosomes will negatively impact on human development, and a preimplantation and prenatal genetic diagnosis test should thus score as many chromosomes as possible. Since cells available for analysis are likely to be in interphase, we set out to develop a rapid enumeration procedure based on hybridization of chromosome-specific probes and spectral imaging detection. The probe set was chosen to allow the simultaneous enumeration of ten chromosome types and was expected to detect more than 70% of all numerical chromosome aberrations responsible for spontaneous abortions, i.e., human chromosomes 9, 13, 14, 15, 16, 18, 21, 22, X, and Y. Cell fixation protocols were optimized to achieve the desired detection sensitivity and reproducibility. We were able to resolve and identify ten separate chromosomal signals in interphase nuclei from different types of cells, including lymphocytes, uncultured amniocytes, and blastomeres. In summary, this study demonstrates the strength of spectral imaging, allowing us to construct partial spectral imaging karyotypes for individual interphase cells by assessing the number of each of the target chromosome types. J. Fung ( ) J. D. Goldberg R. A. Pedersen Reproductive Genetics Unit, Department of Obstetrics, Gynecology and Reproductive Sciences, Box 0720, 533 Parnassus Avenue, University of California, San Francisco, CA , USA jlfung@itsa.ucsf.edu, Tel.: , Fax: H-U. G. Weier Life Sciences Division , University of California, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA Introduction Chromosome abnormalities, whether numerical or structural, are common causes of congenital malformations and spontaneous abortions. Cytogenetic analysis of 1,000 spontaneous abortions showed about half of these abortuses (463/1,000) carrying recognized chromosome abnormalities (Hassold et al. 1980). Numerical aberrations involving partial or entire chromosomes have detrimental effects on mammalian embryonic, fetal, and perinatal development. The most common chromosomal abnormalities found in human abortuses are trisomy 16, triploidy, or 45, XO (Turner syndrome) (Sadler 1995). Women over age 35 have a significantly higher risk of chromosomally abnormal conceptuses, since the incidence of aneuploid germ cells increases with age. Abnormal chromosome numbers may originate from nondisjunction of chromosomes at first or second meiotic division. Monosomy for chromosomes other than the sex chromosomes does not lead to live birth, since it causes death at a very early stage of gestation. Trisomy occurs in at least 4% of all clinically recognized pregnancies, although few such fetuses survive to term (Hassold and Jacobs 1984). The rate of chromosomal abnormality among in vitro fertilized embryos is higher than in spontaneous abortions (Dailey et al. 1996; Munné et al. 1995), suggesting that many chromosomally abnormal embryos are eliminated before the pregnancies are recognized. Couples who are at risk of having children with genetic disorders and undergo in vitro fertilization may benefit from new methods for diagnosing genetic disease during the earliest stages of development, i.e., before implantation into the uterus. This procedure has been termed preimplantation genetic diagnosis (PGD) (Handyside et al. 1990, 1998; Grifo 1992). PGD includes micromanipulation of oocytes or embryos, removing polar bodies from mature oocytes (Verlinsky et al. 1994; Verlinsky and Evsikov 1999), or biopsying one or more blastomeres from the developing embryo (Hardy et al. 1990; Munné et al. 1998a, b). Accurate determination of chromosome

2 616 number and ploidy status of oocytes prior to fertilization, of embryos prior to transfer, and of fetuses during the first trimester is expected to increase the efficiency of assisted reproductive techniques and the proportion of normal fullterm births. Genetic analysis of single cells is then performed either by PCR (Wells and Sherlock 1998) or fluorescence in situ hybridization (FISH) (Conn et al. 1998; Munné et al. 1998b). However, few of the cells available from these sources are found in metaphase, and the chromosomes cannot be analyzed by conventional karyotyping, i.e., chromosome banding. Therefore, the procedure must be able to unambiguously determine the chromosomal composition of interphase nuclei. For diagnosis of numerical chromosome abnormalities, FISH has provided a rapid method with unambiguous results and fewer contamination problems than PCR (Tkachuk et al. 1991). FISH also has been applied very successfully to the rapid identification of aneuploidies in uncultured cells from amniotic fluid for prenatal diagnosis (Eiben et al. 2000; Feldman et al. 2000; Gersen et al. 1995; Pergament et al. 2000). Implicated in hyperdiploid embryos that survive to term, chromosomes 13, 18, 21, X, or Y have been proposed as targets for the rapid prenatal detection of aneuploid cells (Ward et al. 1993). However, these five chromosomes represent only about 38% of cases of spontaneous abortions caused by the presence of an extra chromosome (Hassold and Jacobs 1984). Ideally, one would like to detect aneuploidy involving any of the 24 human chromosomes. Thus, an analytical method to enumerate as many chromosomes as possible in only a few interphase cells is desirable. Presently, commercially available hybridization kits allow enumeration of five chromosomes in interphase cells using filter-based fluorescence microscope systems [X, Y, 13, 18, 21 (Aneu- Vysion assay kit, Vysis) or 13, 16, 18, 21, 22 (MultiVysion PB multicolor probe panel, Vysis)]. Repeated hybridization on single interphase cells must be applied in order to score additional chromosomes (Munné et al. 1998b). Furthermore, several groups recently reported the less invasive isolation of fetal cells from maternal peripheral blood samples between weeks 13 and 17 of gestation (Cheung et al. 1996; Zheng et al. 1993). Unfortunately, fetal cells are rare in the maternal circulation, and cells obtained by these procedures are extremely difficult to culture. Therefore, our study using spectral imaging was prompted by a need to recognize the majority of numerical chromosome aberrations in the few available fetal or embryonic interphase cells. Spectral imaging is a powerful technique in which standard emission filters in a fluorescence microscope are replaced with an interferometer to record high-resolution spectra from fluorescently stained specimens. This bioimaging system combines the techniques of fluorescence optical microscopy, charged coupled device imaging, Fourier spectroscopy, and software for digital image analysis. The power of this technology has been demonstrated by specific staining of all 24 human chromosomes in metaphase spreads, termed spectral karyotyping (SKY) (Garini et al. 1996; Schröck et al. 1996). SKY has been applied in cancer studies (Schröck et al. 1996; Zitzelsberger et al. 1999), prenatal diagnosis (Ning et al. 1999), human oocytes and polar bodies (Márquez et al. 1998), and artificially condensed chromatin of blastomeres (Willadsen et al. 1999). For the analysis of interphase cells, however, whole-chromosome painting probes are inappropriate because the chromosomal domains overlap in the nucleus. We previously reported hybridization of a 7-chromosomes probe set (chromosomes 10, 14, 16, 18, 22, X, and Y) and an 11-chromosomes probe set (chromosomes 3, 4, 7, 13, 14, 16, 18, 21, 22, X, and Y) to lymphocyte interphase nuclei and blastomeres using the spectral imaging system and filter-based quantitative imaging processing system (Fung et al. 1998a). Our results demonstrated that the spectral imaging system provides a significant improvement over conventional filter-based microscope systems for enumeration of multiple chromosomes in interphase nuclei. However, we were able to detect only seven chromosomes in lymphocyte interphase nuclei and failed to analyze the blastomeres. Therefore, we focused our most recent efforts on developing a 10-chromosomes probe set for detection of DNA targets most frequently associated with aneuploidy and spontaneous abortions (chromosomes 9, 13, 14, 15, 16, 18, 21, 22, X, and Y). We investigated the effects of cell preparations (blastomeres from abnormal human preimplantation embryos, and uncultured amniocytes from amniocentesis) and directed effort towards software development (building the reference spectra library file). Using this approach, we are now able to detect and count copies of ten chromosomes in single interphase cells, thereby demonstrating that spectral imaging can be an important technique for genetic analysis in non-dividing cells. Materials and methods Slides preparation and pretreatment Metaphase spreads from white blood cells Metaphase spreads were made from phytohemagglutinin-stimulated short-term cultures of normal male lymphocytes according to the procedure described by Harper and Saunders (1981). Fixed cells were dropped on ethanol-cleaned slides in a CDS-5 Cytogenetic Drying Chamber (Thermatron Industries) at 25 C and 45 50% relative humidity. Metaphase spreads and interphase nuclei were checked using a phase microscope. If cytoplasmic residue was visible around the spreads, the remaining cells were washed several more times with fixative before being dropped. Ideally, the chromosome metaphase spread appeared dark black by phase-contrast microscopy. If metaphase spreads appeared glassy, it suggested that the cells had dried too slowly. We then decreased the chamber s humidity by 2 5%. If metaphase spreads appeared gray, it suggested the cells had dried too fast and we increased the chamber s humidity by 2 5%. Slides were stored in boxes for at least 2 weeks at room temperature, then in sealed plastic bags under nitrogen gas at 20 C until used. Blastomeres All procedures followed protocols approved by the UCSF Committee on Human Research regarding use of embryos for research.

3 617 Prior written consent was obtained from all donors. All embryos used for this study had arrested development or were morphologically abnormal. The zona pellucida of embryos was removed in 0.5% pronase after which the embryo was placed in Ca 2+ /Mg 2+ - free PBS until the blastomeres came apart during repeated pipetting of the embryo. Individual blastomeres were incubated in a hypotonic solution of 1% Na-citrate, 6 mg/ml bovine serum albumin in water for 5 min before being placed on microscope slides and fixed with a solution of methanol/acetic acid (3/1 or 1/1, v/v) (Tarkowski 1966). Throughout the procedure, the nucleus was observed in a phase-contrast microscope and its location on the slide was marked using a carbide- or diamond-tip pen following fixation. The slide was then dehydrated in three consecutive baths of 70%, 80% and 100% ethanol for 2 min each before it was used for FISH or stored at 20 C. Human uncultured amniocytes Amniocytes were donated for research under an approved protocol in accordance with guidelines set by the UCSF Committee on Human Research. Uncultured amniocytes were obtained from 1 2 ml of amniotic fluid and fixed on slides within a few hours of amniocentesis. The cells were pelleted and then resuspended in a hypotonic solution consisting of 0.3% KCl for 30 min at 37 C. Several drops of ice-cold fixative (methanol/acetic acid, 3/1, v/v) were added and gently mixed, after which the cells were spun down. The cells were resuspended with ice-cold fixative and pelleted several times. Then, the cells were dropped on fixative-cleaned slides above a boiling water bath. The slides were air dried and aged in 2 SSC at 37 C for 1 h. Cells were pretreated with pepsin (50 µg/ml pepsin in 0.01 N HCl) at 37 C for 13 min, 1 PBS at room temperature for 5 min, and then postfixed in 1% formaldehyde in 1 PBS/MgCl 2 at room temperature for 5 min and washed in PBS. Finally, the slides were dehydrated in 70%, 80%, and 100% ethanol for 2 min each. The slides were used for FISH or stored at 20 C. Probe preparation Probes specific for repeated DNA on chromosome 15 (CEP15, satellite III, D15Z1, Vysis), chromosome X (CEPX, alpha satellite, DXZ1, Vysis), and chromosome Y (CEPY, satellite III, DYZ1, Vysis) were labeled with either a green or red fluorochrome (spectrum green or spectrum orange, respectively). The probe specific for satellite II DNA of chromosome 16 was prepared from clone phur195 (Moyzis et al. 1987). The probe specific for repeated DNA of chromosome 9 was prepared from flow-sorted chromosome 9 by in vitro amplification, similar to the scheme described earlier (Weier et al. 1991), and primers used were specific for satellite III DNA (H.-U.G. Weier, unpublished data). Locus-specific DNA probes for chromosome 13 (YAC 900g6), chromosome 14 (YAC 886a3), chromosome 18 (YAC 945b6), chromosome 21 (YAC 141g6), and chromosome 22 (YAC 849e9) were obtained from yeast artificial chromosome (YAC) clones. YAC clones were obtained from the Genethon/CEPH library (Weissenbach et al. 1992) and purchased from Research Genetics. The DNA from YACs was isolated using pulsed-field gel electrophoresis (PFGE) and amplified by degenerate oligonucleotide-primed PCR (DOP-PCR) (Cassel et al. 1997; Fung et al. 1998b; Weier et al. 1994). All PCR products were purified by chloroform extraction, precipitated in 2-propanol and resuspended in 1 TE buffer, ph 7.2. The DNAs from clones specific for chromosomes 9, 13, 14, 16, 18, 21, and 22 were labeled by random priming (BioPrime Kit, GIBCO/LTI, Gaithersburg, Md.) incorporating biotin-14-dctp (part of the Bio- Prime Kit), digoxigenin-11-dutp (Roche Molecular Biochemicals, Indianapolis, Ind.), fluorescein-12-dutp (Roche Molecular Biochemicals) (Weier et al. 1994), or Cy3-dUTP (Amersham, Arlington Heights, Ind.). Table 1 lists the components of our 10-chromosomes probe set and the respective labeling and detection scheme. Briefly, bound biotinylated probes were detected with avidin-cy5, and bound digoxigenin-labeled probes were detected with Cy5.5-conjugated antibodies against digoxin (Sigma, St. Louis, Mo.). Between 0.5 and 3 µl of each probe along with of 1 µl human COT1DNA (1 mg/ml, GIBCO/LTI) and 1 µl salmon sperm DNA (20 mg/ml, 3-5, Boulder, Co.) were precipitated with 1 µl glycogen (Roche Molecular Biochemicals, 1 mg/ml) and 1/10 volume of 3 M sodium acetate in two volumes of 2-propanol, air dried and resuspended in 3 µl water, before 7 µl of hybridization master mix [78.6% formamide (FA, GIBCO/LTI), 14.3% dextran sulfate in 2.9 SSC, ph 7.0 (1 SSC is 150 mm NaCl, 15 mm Na citrate)], were added. This gave a total hybridization mixture of 10 µl. In situ hybridization The hybridization mixture was denatured at 76 C for 7 min, then allowed to pre-anneal at 37 C for 60 min. The slides were denatured at 76 C for 5 min in 70% FA/2 SSC, ph 7.0, dehydrated in 70%, 80%, and 100% ethanol for 2 min each step, and allowed to air dry. The hybridization mixture was applied to the slides, covered with a glass coverslip, and sealed with rubber cement. The hybridization proceeded at 37 C for h in a moisture chamber. Following hybridization, the slides were washed at 43 C three times in 50% FA/2 SSC for 10 min each followed by two washes in 2 SSC for 10 min each, one wash in 0.4 SSC for 5 min, and a final wash in 0.1% Tween 20 /4 SSC at room temperature for 2 min. Next, 80 µl of blocking reagent (vial 2, SKY kit, Applied Spectral Imaging, Migdal Haemek, Israel) were applied to each slide, and slides were covered with a plastic coverslip, and incubated at 37 C for 45 min. After removal of the coverslip, 80 µl of buffer I (vial 3, SKY kit, containing avidin-cy5 and mouse-antidigoxin) were added to each slide. The slides were then incubated at 37 C for 45 min and washed three times in 0.1% Tween 20/4 SSC at room temperature for 5 min each on a shaking platform. Next, 80 µl of buffer II (vial 4, SKY kit, containing goatanti-mouse antibody conjugated to Cy5.5) were applied to each Table 1 Fluorochrome labeling scheme for chromosomespecific DNA probes. Probes labeled with biotin or digoxigenin were detected with avidin-cy5 and Cy5.5-conjugated antibodies against digoxin, respectively Chromosome Spectrum FITC Spectrum Cy3 Biotin Digoxigenin Green Orange (Cy5) (Cy5.5) X + + Y +

4 618 slide, and slides were incubated at 37 C for 45 min in the dark. Slides were washed three times in 0.1% Tween 20/4 SSC at room temperature for 5 min each on a shaker, and finally, the slides were mounted in 10 µl of 4,6-diamidino-2-phenylindole (DAPI, vial 5, SKY kit). Spectral imaging detection Spectral images were acquired using an SD200 SpectraCube spectral imaging system (Applied Spectral Imaging) (Fung et al. 1998a; Garini et al. 1996; Schröck et al. 1996). The SD200 imaging system attached to a Nikon E600 microscope consisted of an optical head (Sagnac interferometer) coupled to a multi-line CCD camera (Hamamatsu, Bridgewater, N.J.) to capture images at discrete interferometric steps. The images were stored as a stack in a Pentium 586/300 MHz computer. The multiple-band-pass filter set used for fluorochrome excitation was custom-designed (SKY-1, Chroma Technology, Brattleboro, Vt.) to provide broad emission bands (giving a fractional spectral reading from ~450 nm to ~850 nm). Using a xenon light source, the spectral image was generated by acquiring interferometric frames per object. Next, each interferogram was Fourier-transformed, producing the fluorescence spectrum for each pixel of the image. DAPI images were recorded using a DAPI-specific optical filter set. Sample emission spectra were measured in the visible and near-infrared spectral range simultaneously at all points in the microscopic image. The spectral information was displayed by assigning red, green or blue colors (RGB color image) to three areas of interest in the spectrum. Based on the measured spectrum for each signal domain, a spectral classification algorithm comparing the measured spectra with reference spectra allowed the assignment of a pseudocolor to all points in the image that had the same spectrum. This algorithm forms the basis for chromosome identification by spectral karyotyping. Thus, a classification color image and a karyotype table were obtained. Building the reference spectra library file The probe set shown in Table 1 was hybridized on metaphase spreads to build the reference spectra library. This library was essential for karyotyping metaphase spreads and interphase nuclei. It is built by analyzing a metaphase plate with known chromosome identities. The spectra of the pure dyes, i.e., the signals on chromosome 9, 15, 21, 22, and Y, were stored as reference spectra. Then, we built a combinatorial table using the probe combinations listed in Table 1 and assigned pseudocolors to each chromosome type. Results Metaphase spread analysis In the present study, six fluorochromes (spectrum green, FITC, spectrum orange, Cy3, Cy5, and Cy5.5) were used to label DNA probes. The emission maxima of spectrum green, FITC, spectrum orange (or Cy3), Cy5, and Cy5.5 are 530 nm, 525 nm, 592 nm, 678 nm, and 702 nm, respectively. A previous publication suggested a wavelength difference of about 20 nm between the emission maxima of spectrum orange and Cy3 fluorochrome (Carter 1996). However, the emission spectra of Cy3 probes prepared inhouse and the commercially available spectrum-orangelabeled DNA probes were found to be identical. Therefore, these two fluorochromes were indistinguishable. One inverted DAPI image of a metaphase spread prepared from short-term lymphocyte cultures from a healthy male individual is shown in Fig. 1A, and Fig. 1B is the corresponding RGB color image acquired by the spectral imaging system. The signals in the RGB color image were selected by manually drawing red contour lines around each signal domain. To make the signals in Fig. 1B, C clear, the red contour lines are not shown in both of them, but only in Fig. 1A. A total of 18 signals were counted. After the spectrum of each signal was compared to the reference spectra library, the classification color image (Fig. 1C) and karyotype table (Fig. 1D) were constructed. The size and shape of the signals in the classification color image (Fig. 1C) and the karyotype table (Fig. 1D) were the same as the size and shape of each contour (red, Fig. 1A). In the karyotype table (Fig. 1D), chromosomal signals were grouped such that signals from the RGB color image (Fig. 1B) were aligned with corresponding images from the classification color image (Fig. 1C). This normal karyotype (Fig. 1D) showed two copies each of chromosome 9, chromosome 13, chromosome 14, chromosome 15, chromosome 16, chromosome 18, chromosome 21, chromosome 22, and one copy each of the X and Y chromosomes, as expected for a normal male metaphase spread. Interphase cell analysis Once a combinatorial table was built from a normal male metaphase spread, we hybridized the probe set on three different human interphase cell types. Most interphase cells, especially the uncultured amniocytes, showed elevated levels of background fluorescence compared to lymphocyte metaphases. Figure 2 shows the background fluorescence after hybridization from different cells. The signal amplitude for uncultured amniocytes is shown in Fig. 2 at one half that of the other signals, and the strength of background level was: uncultured amniocytes>>blastomeres>interphase cells from lymphocytes>metaphase cells from lymphocytes. Since the spectrum of background fluorescence differed from the reference spectra, it could easily be distinguished and eliminated using the spectral imaging system. Figure 1E shows the RGB image of a normal male lymphocyte nucleus with its classification color image shown in Fig. 1F. A nonspecific signal (at the 8 o clock position) was not scored, because its spectrum differed greatly from all reference spectra. The karyotype table (data not shown) showed a normal karyotype with a total of 18 signals representing the eight autosomal targets and one copy each of chromosomes X and Y. The interphase nuclei from lymphocytes hybridized with our probes demonstrated good hybridization efficiency and were karyotyped as being normal. The 10-chromosomes probe set was also hybridized to human uncultured amniocytes. Figure 1G shows the RGB color image of a hybridized amniocyte; its classification image is shown in Fig. 1H. This normal male cell showed a total of 18 signals representing eight autosomal targets

5 619 Fig. 1A J Fluorescence in situ hybridization (FISH) results using different human cell types. A The inverted DAPI image of a lymphocyte metaphase spread with contour lines indicating the position of the chromosome-specific signals. B The red, green or blue (RGB) color image of the metaphase spread. C The classification color image of the metaphase spread. D The karyotype table: autosomal signals are grouped in two pairs with the left member of each pair from B, and the right member from C. E The RGB color image of a lymphocyte interphase nucleus. F The classification color image corresponding to E. G The RGB color image of an amniocyte interphase nucleus. H The classification color image corresponding to G. I The RGB color image of a binucleated blastomere. J The classification color image corresponding to I and one copy each of chromosomes X and Y (karyotype not shown). It should be noted that the nuclei of uncultured amniocytes were much smaller than those of interphase lymphocytes and blastomeres after fixation. The fixation of uncultured amniocytes on slides turned out to be somewhat difficult. Most nuclei were not flattened out well enough, presenting a problem due to the limited focal depth. Figure 1G showed signals in close proximity to one another. Overlapping signal domains were a problem in uncultured amniocytes, in which only about 20% of all cells showed interpretable spreads. One of our main objectives was to demonstrate the spectral imaging-based enumeration of ten different chromosome types in single blastomere cells from human preimplantation embryos. Figure 1I, J (RGB color image and classification image, respectively) shows the results

6 620 Intensity [a.u.] of our spectral imaging analysis of one such blastomere. This cell, a binucleated blastomere, was found to be an abnormal male cell displaying a total of 29 signals. The classification image indicated a large nucleus (top, Fig. 1J) with signals corresponding to two chromosomes 9, four chromosomes 13, four chromosomes 14, two chromosomes 15, two chromosomes 16, five chromosomes 18, three chromosomes 21, two chromosomes 22, and one X chromosome. A smaller nucleus (bottom, Fig. 1J) contained hybridization targets equivalent to one chromosome 15, one chromosome 18, one X chromosome, and one Y chromosome. Based on the spectral imaging results, this blastomere was considered a hyperdiploid male cell [9(2), 13(4), 14(4), 15(3), 16(2), 18(6), 21(3), 22(2), X(2), Y(1)]. All blastomeres fixed for this study (N=25) spread very well. Fourteen nuclei (56%) showed clearly interpretable hybridization results, and most of them were karyotyped as abnormal, since all those cells were from one-pronuclei (PN) and three-pn human embryos and had arrested development or were morphologically abnormal. The signals from 11 nuclei (44%) were faint. This may be related to the quality of the embryos, since all of them were developing abnormally. Alternatively, we could not exclude the possibility that either the method of fixation was suboptimal or the efficiency of FISH on blastomeres is lower than that on either lymphocytes or amniocytes. Because the number of blastomeres with karyotyping resulting from each embryo was very limited, chromosomal mosaicism was not addressed in this study. Discussion Metaphase Interphase Amniocyte Blastomere Wavelength [nm] Fig. 2 The emission spectra of background fluorescence on slides from four different cell types after hybridization (metaphase cells from lymphocytes, interphase cells from lymphocytes, uncultured amniocytes, and blastomeres). The signal for uncultured amniocyte is shown at one half the scale of the other signals In our previous publication (Fung et al. 1998a), we only detected seven chromosomes in interphase nuclei from lymphocytes using the SpectraCube software. In this study, we tested our 10-chromosomes probe set on three cell types, lymphocytes, amniocytes, and human blastomeres. We also used the SkyView software instead of SpectraCube software. The subtraction of background is done automatically using the SkyView software. The signals then were selected by drawing contour lines manually around the recognized signals. In some cases, we selected a dot that was not the signal. For example, there is a dot between the position of 8 and 9 o clock in Fig.1E at an intensity similar to other signals. However, it would not be recognized as a signal since it exhibited a different spectrum from the reference spectra library. The results demonstrated that spectral imaging system can identify and count ten chromosome-specific targets in interphase cells even in the presence of relatively high levels of autofluorescence or non-specified signals, especially uncultured amniocytes. On the basis of these findings, we anticipate that the spectral imaging system can provide information for patient decision-making that will augment current modalities for preimplantation and prenatal diagnosis. Specifically, the ability to assess multiple chromosome types in interphase cells can enhance the value of early screening of conceptuses. This is particularly true for preimplantation diagnosis of aneuploidies. Owing to the high frequency of numerical chromosome anomalies in early embryos (Munné and Cohen 1998), many of the embryos ordinarily transferred after assisted reproductive technology procedures are genetically abnormal (Munné et al. 1998c). Screening such embryos by PGD could both enhance implantation rates per embryo transferred (by selecting out monosomic conceptuses) and decrease spontaneous abortion rates (by selecting out trisomic conceptuses) (Munné et al. 1999). The detection and enumeration of chromosome-specific signal domains in interphase cells is often complicated by reduced penetration of probe molecules into the interphase nuclei, overlapping or overly spread signals, and high levels of nuclear autofluorescence. Some of these problems appear to be caused by inappropriate cell fixation and choice of probes. In order to obtain high-efficiency of FISH, meticulous slide preparation was essential. In this study, we applied three different methods to fix each of the three different types of cells. All fixations and cell spreads of lymphocytes were performed under controlled environmental conditions inside a Cytogenetic Drying Chamber at 25 C and 45 50% relative humidity. This highly controlled environment contributes greatly to the reproducibility of this technique. While developing our probe set for spectral imaging analysis of interphase cells, we had to optimize several hybridization parameters such as target DNA, probe labeling, fluorochrome selection, and cell preparation. The ideal probe set should consist of bright, single-copy locus-specific probes rather than DNA repeat probes to avoid crosshybridization and domain clustering. If a probe target, such as the satellite III chromosome Y-specific target, were too big (Wyrobek et al. 1994), it might easily spread over too great an area in the interphase nucleus and impair the spectral imaging analysis. On the other hand, when a probe such as the chromosome 22-specific probe (YAC 849e9) caused cross-hybridization (Fung et al. 1999), we attempted to adjust the hybridization stringency and block-

7 ing protocol before evaluating another chromosome-specific probe. To suppress cross-hybridization signals generated by YAC 849e9, for example, it was sufficient to add an increased amount of human COT-1 DNA to the probe mixture. We also found that not all ratio-labeling schemes worked with the same efficiency. Often, one fluorochrome yielded stronger signals than the other fluorochrome when both were bound on the same DNA. For example, the intensity of probes detected with Cy5.5 was usually much stronger than the intensity of Cy3-labeled probes. This effect was probably a combination of different quantum efficiencies, probe labeling index, energy transfer and detection sensitivity. In filter-based microscope systems, signals from weaker probes are typically enhanced through longer exposure times. The SD-200 spectral imaging system, however, uses the same exposure time for each interferogram in an exposure series. To adjust the ratio of Cy3 fluorescence to Cy5 or Cy5.5 fluorescence, the Cy3 probes were thus used at a higher concentration than their Cy5 counterparts. Another complicating factor was that the positions of emission peaks in the spectrum were found to be slightly different from cell type to cell type. For example, the difference between emission maxima of Cy5 and Cy5.5 on interphase nuclei measured less than the difference on metaphase spreads. While this observation suggested some influence of hybridization target environment and/or autofluorescence levels on fluorescence emission spectra, it also emphasized that selection of DNA labels, i.e., fluorochromes, remains an important issue for spectral imaging analysis. While the high spectral resolution of spectral imaging now offers a reliable way to record fluorescence profiles for the various probes and thus to discriminate specific signals from background noise, exposure times to acquire this large amount of information are still in the order of minutes. Often, fluorescence had bleached significantly after acquisition of two images. A substantial increase in the quality and number of DNA probes that can be hybridized and enumerated simultaneously seems feasible once additional reporter molecules become commercially available, such as nanocrystals or quantum beads (Bruchez et al. 1998; Chan and Nie 1998) or dyes from other suppliers. Recently, Munné et al. (1998b) described FISH techniques in which one can analyze nine probe targets in two consecutive hybridizations on day-3 human preimplantation embryos, allowing embryo transfer on the same day as the analysis. In our study, the hybridization time was h, but the time could be shortened if this new technique is applied to PGD. The protocol is otherwise useful for blastocyst transfer. On the other hand, for routine clinical use for in vitro fertilization, there are many parameters that still need to be optimized. When only one or two blastomeres can be analyzed, potential mosaicism in embryos becomes a significant problem which should be addressed by subsequent amniocentesis or chorionic villus sampling. Therefore, this new technique will be more useful and reliable in prenatal diagnosis rather than preimplantation genetic diagnosis. In conclusion, while further improvements in fixation, probe selection and fluorochrome technology remain to be accomplished, the results shown here demonstrate the utility of spectral imaging for evaluating numerical chromosomal anomalies in interphase cells. In addition to expanding the number of chromosomes that can be analyzed, this approach could facilitate the accuracy of FISH analysis in interphase cells by allowing multiple probes to be used for a subset of chromosomes in the complement. Acknowledgements Supported by grants from the U.C. Energy Institute, the U.C. BioSTAR Program and Geron Corporation (to R.A.P.). We gratefully acknowledge the technical support from Applied Spectral Imaging, Inc., Carlsbad, California. J.F. was supported in part by a NIEHS training grant 5-T32-ES References 621 Bruchez M, Moronne M, Gin P, Weiss S, Alivisatos AP (1998) Semiconductor nanocrystals as fluorescent biological labels. Science 281: Carter N P (1996) Fluorescence in situ hybridization-state of the art. Bioimaging 4:41 51 Cassel M, Munné S, Fung J, Weier H-UG (1997) Carrier-specific breakpoint-spanning DNA probes: an approach to preimplantation genetic diagnosis in interphase cells. Hum Reprod 12: Chan WC, Nie S (1998) Quantum dot bioconjugates for ultrasensitive nonisotopic. Science 281: Cheung MC, Goldberg JD, Kan YW (1996) Prenatal diagnosis of sickle cell anemia and thalassaemia by analysis of fetal cells in maternal blood. Nat Genet 14: Conn CM, Harper JC, Winston RML, Delhanty JDA (1998) Infertility couples with Robertsonian translocations: preimplantation genetic analysis of embryos reveals chaotic cleavage divisions. Hum Genet 102: Dailey T, Dale B, Cohen J, MunnÈ S (1996) Association between non-disjunction and maternal age in meiosis-ii human oocytes detected by FISH analysis. Am J Hum Genet 59: Eiben B, Trawicki W, Hammans W, Goebel R, Pruggmayer M, Epplen JT (1999) Rapid prenatal diagnosis of aneuploidies in uncultured amniocytes by fluorescence in situ hybridization. Evaluation of >3,000 cases. Fetal Diagn Ther 14: Feldman B, Ebrahim SA, Hazan SL, Gyi K, Johnson MP, Johnson A, Evans MI (2000) Routine prenatal diagnosis of aneuploidy by FISH studies in high-risk pregnancies. Am J Med Genet 90: Fung J, Hyun W, Dandekar P, Pedersen RA, Weier H-UG (1998a) Spectral imaging in preconception/preimplantation genetic diagnosis (PGD) of aneuploidy: multi-colour, multi-chromosome screening of single cells. J Assist Reprod Genet 15: Fung J, Munné S, Duell T, Weier, H-UG (1998b) Rapid cloning of translocation breakpoints: from blood to YAC in 50 days. J Biochem Molec Biol Biophys 1: Fung J, Munné S, Garcia J, Kim UJ, Weier H-UG (1999) Molecular cloning of translocation breakpoints in a case of constitutional t(11;22)(q23;q11) and preparation of probes for preimplantation genetic diagnosis (PGD). Reprod Fertil Develop 11:17 23 Garini Y, Macville M, du Manoir S, Buckwald RA, Lavi M, Katzir N, Wine D, Bar-Am I, Schröck E, Cabib D, Ried T (1996) Spectral Karyotyping. Bioimaging 4:65 72 Gersen SL Carelli MP, Klinger KW, Ward BE (1995) Rapid prenatal diagnosis of 14 cases of triploidy using FISH multiple probes. Prenat Diagnosis 15:1 5 Grifo JA (1992) Preconception and preimplantation genetic diagnosis: polar body, blastomere, and trophectoderm biopsy. In: Cohen J., Malter HE, Talansky BE, Grifo J (eds) Micromanipulation of gametes and embryos. Raven, New York, pp

8 622 Handyside AH, Kontogianni EH, Hardy K, Winston RM (1990) Pregnancies from biopsied human preimplantation embryos sexed by Y-specific DNA amplification. Nature 344: Handyside AH, Scriven PN, Ogilvie CM (1998) The future of preimplantation genetic diagnosis. Hum Reprod Suppl 4: Hardy K, Martin KL, Leese HJ, Winston RM, Handyside AH (1990) Human preimplantation development in vitro is not adversely affected by biopsy at the 8-cell stage. Hum Reprod 5: Harper M, Saunders G (1981) Localization of single copy DNA sequences on G-banded human chromosomes by in situ hybridization. Chromosoma 83: Hassold TJ, Jacobs PA (1984) Trisomy in man. Ann Rev Genetics 18:69 97 Hassold T, Chen N, Funkhouser J, Jooss T, Manuel B, Matsuura J, Matsuyama A, Wilson C, Yamane JA, Jacobs PA (1980) A cytogenetic study of 1000 spontaneous abortions. Ann Hum Genet 44: Márquez C, Cohen J, Munné S (1998) Chromosome identification in human oocytes and polar bodies by spectral karyotyping. Cytogenet Cell Genet 81: Moyzis RK, Albright KL, Bartholdi MF, Cram LS, Deaven LL, Hildebrand CE, Joste NE, Longmire JL, Meyne J, Schwarzacher-Robinson T (1987) Human chromosome-specific repetitive DNA sequences: novel markers for genetic analysis. Chromosoma 95: Munné S, Cohen J (1998) Chromosome abnormalities in human embryos. Hum Reprod Update 4: Munné S, Alikani M, Tomkin G, Grifo J, Cohen J (1995) Embryo morphology, developmental rates and maternal age are correlated with chromosome abnormalities. Fertil Steril 64: Munné S, Fung J, Cassel MJ, Márquez C, Weier H-UG (1998a) Preimplantation genetic analysis of translocations: case-specific probes for interphase cell analysis. Hum Genet 102: Munné S, Magli C, Bahce M, Fung J, Legator M, Morrison L, Cohen J, Gianaroli L (1998b) Preimplantation diagnosis of the aneuploidies most commonly found in spontaneous abortions and live births: XY, 13, 14, 15, 16, 18, 21, 22. Prenat Diagn 18: Munné S, Marquez C, Reing A, Garrisi J, Alikani, M (1998c) Chromosome abnormalities in embryos obtained after conventional in vitro fertilization and intracytoplasmic sperm injection. Fertil Steril 69: Munné S, Magli C, Cohen J, Morton P, Sadowy S, Gianaroli L, Tucker M, Marquez C, Sable D, Ferraretti AP, Massey JB, Scott R (1999) Positive outcome after preimplantation diagnosis of aneuploidy in human embryos. Hum Reprod 14: Ning Y, Laundon CH, Schrock E, Buchanan P, Ried T (1999) Prenatal diagnosis of a mosaic extra structurally abnormal chromosome by spectral karyotyping. Prenat Diagn 19: Pergament E, Chen PX, Thangavelu M, Fiddler M (200) The clinical application of interphase FISH in prenatal diagnosis. Prenat Diagn 20: Sadler T W (1995) Langman s medical embryology, 7th edn. Williams and Wilkins, Baltimore, p. 134 Schröck E, du Manoir S, Veldman T, Schoell B, Wienberg J, Fergueson-Smith M, Ning Y, Ledbetter D, Bar-Am I, Soenksen D, Garini Y, Ried T (1996) Multicolor spectral karyotyping of human chromosomes. Science 273: Tarkowski AK (1966) An air drying method for chromosome preparation from mouse eggs. Cytogenetics 5: Tkachuk DC, Pinkel D, Kuo WL, Weier H-UG, Gray JW (1991) Clinical applications of fluorescence in situ hybridization. Genet Anal Tech Appl 8:, Verlinsky Y, Evsikov S (1999) Karyotyping of human oocytes by chromosomal analysis of the second polar body. Molec Hum Reprod 5:89 95 Verlinsky Y, Dozortzev D, Evsikov S (1994) Visualization and cytogenetic analysis of second polar body chromosomes following its fusion with one-cell mouse embryos. J Assist Reprod Genet 11: Ward BE, Gersen SL, Carelli MP, McGuire NM, Dackowski WR, Weinstein M, Sandlin C, Warren R, Klinger KW (1993) Rapid prenatal diagnosis of chromosomal aneuploidies by fluorescence in situ hybridization: clinical experience with 4,500 specimens. Am J Genet 52: Weier H-UG, Kleine HD, Gray JW (1991) Labeling of centromeric region on human chromosome 8 by in situ hybridization. Hum Genet 87: Weier H-UG, Polikoff D, Fawcett JJ, Greulich KM, Lee KH, Cram S, Chapman VM, Gray JW (1994) Generation of five high complexity painting probe libraries from flow sorted mouse chromosomes. Genomics 24: Weissenbach J, Gyapay G, Dib C, Vignal A, Morissette J, Millasseau P, Vaysseix G, Lathrop M (1992) A second-generation linkage map of the human genome. Nature 359: Wells D, Sherlock J K (1998) Strategies for preimplantation genetic diagnosis of single gene disorders by DNA amplification. Prenat Diagn 18: Willadsen S, Levronm J, MunnÈ S, Schimmel T, M rquez C, Scott R, Cohen J (1999) Rapid visualization of metaphase chromosomes in single human blastomeres after fusion with in vitro matured bovine eggs. Hum Reprod 2: Wyrobek AJ, Robbins WA, Mehraein Y, Pinkel D, Weier H-UG (1994) Detection of sex chromosomal aneuploidies X-X, Y-Y, and X-Y in human sperm using two-chromosome fluorescence in situ hybridization. Am J Med Genet 53:1 7 Zheng YL, Carter NP, Price CM, Colman SM, Milton PJ, Hackett GA, Greaves MF, Ferguson-Smith MA (1993) Prenatal diagnosis from maternal blood: simultaneous immunophenotyping and FISH of fetal nucleated erythrocytes isolated by negative magnetic cell sorting. J Med Genet 30: Zitzelsberger H, Lehmann L, Hieber L, Weier, H-UG, Janish C, Fung J, Negele T, Spelsberg F, Lengfelder E, Demidchik E, Salassidis K, Kellerer AM, Werner M, Bauchinger M (1999) Cytogenetic changes in radiation-induced tumors of the thyroid. Cancer Res 59:

Incidence of Chromosomal Abnormalities from a Morphologically Normal Cohort of Embryos in Poor- Prognosis Patients

Incidence of Chromosomal Abnormalities from a Morphologically Normal Cohort of Embryos in Poor- Prognosis Patients Incidence of Chromosomal Abnormalities from a Morphologically Normal Cohort of Embryos in Poor- Prognosis Patients M. C. MAGLI,1 L. GIANAROLI,1,3 S. MUNNE,2 and A. P. FERRARETTI1 Submitted: December 29,

More information

Preimplantation genetic diagnosis: polar body and embryo biopsy

Preimplantation genetic diagnosis: polar body and embryo biopsy Human Reproduction, Vol. 15, (Suppl. 4), pp. 69-75, 2000 Preimplantation genetic diagnosis: polar body and embryo biopsy Luca Gianaroli SISMER, Via Mazzini 12, 40138 Bologna, Italy Scientific Director

More information

Effect of chromosomal translocations on the development of preimplantation human embryos in vitro

Effect of chromosomal translocations on the development of preimplantation human embryos in vitro FERTILITY AND STERILITY VOL. 74, NO. 4, OCTOBER 2000 Copyright 2000 American Society for Reproductive Medicine Published by Elsevier Science Inc. Printed on acid-free paper in U.S.A.,2 Effect of chromosomal

More information

Articles Impact of parental gonosomal mosaicism detected in peripheral blood on preimplantation embryos

Articles Impact of parental gonosomal mosaicism detected in peripheral blood on preimplantation embryos RBMOnline - Vol 5. No 3. 306 312 Reproductive BioMedicine Online; www.rbmonline.com/article/699 on web 12 September Articles Impact of parental gonosomal mosaicism detected in peripheral blood on preimplantation

More information

Article Preimplantation genetic diagnosis of numerical abnormalities for 13 chromosomes

Article Preimplantation genetic diagnosis of numerical abnormalities for 13 chromosomes RBMOnline - Vol 6. No 2. 226 231 Reproductive BioMedicine Online; www.rbmonline.com/article/794 on web 28 January 2003 Article Preimplantation genetic diagnosis of numerical abnormalities for 13 chromosomes

More information

at least 5 probes standard 8 probes (13, 15, 16, 18, 21, 22, 15, X, Y) at least 5 probes standard 8 probes (13, 15, 16, 18, 21, 22, X, Y)

at least 5 probes standard 8 probes (13, 15, 16, 18, 21, 22, 15, X, Y) at least 5 probes standard 8 probes (13, 15, 16, 18, 21, 22, X, Y) Management of FISH probe testing Petra Musilová et al. Repromeda, Brno, Czech Rep. Veterinary Research Institute, Brno Genprogress, Brno, Czech Rep. Aneuploidy screening at least 5 probes standard 8 probes

More information

Understanding the Human Karyotype Colleen Jackson Cook, Ph.D.

Understanding the Human Karyotype Colleen Jackson Cook, Ph.D. Understanding the Human Karyotype Colleen Jackson Cook, Ph.D. SUPPLEMENTAL READING Nussbaum, RL, McInnes, RR, and Willard HF (2007) Thompson and Thompson Genetics in Medicine, 7th edition. Saunders: Philadelphia.

More information

CYTOGENETICS Dr. Mary Ann Perle

CYTOGENETICS Dr. Mary Ann Perle CYTOGENETICS Dr. Mary Ann Perle I) Mitosis and metaphase chromosomes A) Chromosomes are most fully condensed and clearly distinguishable during mitosis. B) Mitosis (M phase) takes 1 to 2 hrs and is divided

More information

Identification of embryonic chromosomal abnormality using FISH-based preimplantaion genetic diagnosis

Identification of embryonic chromosomal abnormality using FISH-based preimplantaion genetic diagnosis Ye et al. / J Zhejiang Univ SCI 2004 5(10):1249-1254 1249 Journal of Zhejiang University SCIENCE ISSN 1009-3095 http://www.zju.edu.cn/jzus E-mail: jzus@zju.edu.cn Identification of embryonic chromosomal

More information

Canadian College of Medical Geneticists (CCMG) Cytogenetics Examination. May 4, 2010

Canadian College of Medical Geneticists (CCMG) Cytogenetics Examination. May 4, 2010 Canadian College of Medical Geneticists (CCMG) Cytogenetics Examination May 4, 2010 Examination Length = 3 hours Total Marks = 100 (7 questions) Total Pages = 8 (including cover sheet and 2 pages of prints)

More information

Luca Gianaroli, M.D.,* M. Cristina Magli, M.Sc.,* Anna P. Ferraretti, Ph.D.,* and Santiago Munné, Ph.D.

Luca Gianaroli, M.D.,* M. Cristina Magli, M.Sc.,* Anna P. Ferraretti, Ph.D.,* and Santiago Munné, Ph.D. FERTILITY AND STERILITY VOL. 72, NO. 5, NOVEMBER 1999 Copyright 1999 American Society for Reproductive Medicine Published by Elsevier Science Inc. Printed on acid-free paper in U.S.A. Preimplantation diagnosis

More information

An Overview of Cytogenetics. Bridget Herschap, M.D. 9/23/2013

An Overview of Cytogenetics. Bridget Herschap, M.D. 9/23/2013 An Overview of Cytogenetics Bridget Herschap, M.D. 9/23/2013 Objectives } History and Introduction of Cytogenetics } Overview of Current Techniques } Common cytogenetic tests and their clinical application

More information

S.Kahraman 1,4, M.Bahçe 2,H.Şamlı 3, N.İmirzalıoğlu 2, K.Yakısn 1, G.Cengiz 1 and E.Dönmez 1

S.Kahraman 1,4, M.Bahçe 2,H.Şamlı 3, N.İmirzalıoğlu 2, K.Yakısn 1, G.Cengiz 1 and E.Dönmez 1 Human Reproduction vol.15 no.9 pp.2003 2007, 2000 Healthy births and ongoing pregnancies obtained by preimplantation genetic diagnosis in patients with advanced maternal age and recurrent implantation

More information

Karyology. Preparation and study of karyotypes is part of Cytogenetics.

Karyology. Preparation and study of karyotypes is part of Cytogenetics. Chromosomal Karyotyping Karyology Karyotyping - process of pairing and ordering all chromosomes of an organism, thus providing a genome-wide snapshot of an individual's chromosomes. Karyotypes describe

More information

Embryo morphology, developmental rates, and maternal age are correlated with chromosome abnormalities*

Embryo morphology, developmental rates, and maternal age are correlated with chromosome abnormalities* FERTILITY AND STERILITY Copyright {j 1995 American Society for Reproductive Medicine Printed on acid-free paper in U. S. A. Embryo morphology, developmental rates, and maternal age are correlated with

More information

Dako IT S ABOUT TIME. Interpretation Guide. Agilent Pathology Solutions. ALK, ROS1 and RET IQFISH probes (Dako Omnis) MET IQFISH probe (Dako Omnis)

Dako IT S ABOUT TIME. Interpretation Guide. Agilent Pathology Solutions. ALK, ROS1 and RET IQFISH probes (Dako Omnis) MET IQFISH probe (Dako Omnis) INTERPRETATION Dako Agilent Pathology Solutions IQFISH Interpretation Guide ALK, ROS1 and RET IQFISH probes (Dako Omnis) MET IQFISH probe (Dako Omnis) IT S ABOUT TIME For In Vitro Diagnostic Use ALK, ROS1,

More information

Comprehensive Chromosome Screening Is NextGen Likely to be the Final Best Platform and What are its Advantages and Quirks?

Comprehensive Chromosome Screening Is NextGen Likely to be the Final Best Platform and What are its Advantages and Quirks? Comprehensive Chromosome Screening Is NextGen Likely to be the Final Best Platform and What are its Advantages and Quirks? Embryo 1 Embryo 2 combine samples for a single sequencing chip Barcode 1 CTAAGGTAAC

More information

Comprehensive molecular cytogenetic analysis of the human blastocyst stage

Comprehensive molecular cytogenetic analysis of the human blastocyst stage Human Reproduction Vol.23, No.11 pp. 2596 2608, 2008 Advance Access publication on July 29, 2008 doi:10.1093/humrep/den287 Comprehensive molecular cytogenetic analysis of the human blastocyst stage E.

More information

Article Differences in chromosome susceptibility to aneuploidy and survival to first trimester

Article Differences in chromosome susceptibility to aneuploidy and survival to first trimester RBMOnline - Vol 8. No 1. 81-90 Reproductive BioMedicine Online; www.rbmonline.com/article/1058 on web 4 November 2003 Article Differences in chromosome susceptibility to aneuploidy and survival to first

More information

Indications for chromosome screening Dagan Wells, PhD, FRCPath dagan.wells@obs-gyn.ox.ac.ukgyn.ox.ac.uk Chromosome imbalance (aneuploidy) Uncontroversial data The incidence of aneuploidy Aneuploidy is

More information

Preimplantation Genetic Testing

Preimplantation Genetic Testing Protocol Preimplantation Genetic Testing (40205) Medical Benefit Effective Date: 01/01/14 Next Review Date: 09/14 Preauthorization No Review Dates: 09/11, 09/12, 09/13 The following Protocol contains medical

More information

Problem Challenge Need. Solution Innovation Invention

Problem Challenge Need. Solution Innovation Invention Problem Challenge Need Solution Innovation Invention Tubal Infertility In-vitro Fertilisation Steptoe and Edwards Birth after the reimplantation of a human embryo. Lancet 1978 Louise Brown, 25. Juli 1978

More information

Oncology Genetics: Cytogenetics and FISH 17/09/2014

Oncology Genetics: Cytogenetics and FISH 17/09/2014 Oncology Genetics: Cytogenetics and FISH 17/09/2014 Chris Wragg Head of Oncology Genomics, BGL BGL Bristol Genetics Laboratory (BGL) CPA accredited Genetics laboratory serving a core population of 4-5million

More information

Instructions for Use. APO-AB Annexin V-Biotin Apoptosis Detection Kit 100 tests

Instructions for Use. APO-AB Annexin V-Biotin Apoptosis Detection Kit 100 tests 3URGXFW,QIRUPDWLRQ Sigma TACS Annexin V Apoptosis Detection Kits Instructions for Use APO-AB Annexin V-Biotin Apoptosis Detection Kit 100 tests For Research Use Only. Not for use in diagnostic procedures.

More information

Chromosome Abnormalities

Chromosome Abnormalities Chromosome Abnormalities Chromosomal abnormalities vs. molecular mutations Simply a matter of size Chromosomal abnormalities are big errors Two types of abnormalities 1. Constitutional problem present

More information

Article Non-informative results and monosomies in PGD: the importance of a third round of re-hybridization

Article Non-informative results and monosomies in PGD: the importance of a third round of re-hybridization RBMOnline - Vol 19. No 4. 2009 539 546 Reproductive BioMedicine Online; www.rbmonline.com/article/4053 on web 12 August 2009 Article Non-informative results and monosomies in PGD: the importance of a third

More information

Embryo morphology and development are dependent on the chromosomal complement

Embryo morphology and development are dependent on the chromosomal complement Embryo morphology and development are dependent on the chromosomal complement M. Cristina Magli, M.Sc., Luca Gianaroli, M.D., Anna Pia Ferraretti, M.D., Ph.D., Michela Lappi, B.Sc., Alessandra Ruberti,

More information

Chapter 15 Notes 15.1: Mendelian inheritance chromosome theory of inheritance wild type 15.2: Sex-linked genes

Chapter 15 Notes 15.1: Mendelian inheritance chromosome theory of inheritance wild type 15.2: Sex-linked genes Chapter 15 Notes The Chromosomal Basis of Inheritance Mendel s hereditary factors were genes, though this wasn t known at the time Now we know that genes are located on The location of a particular gene

More information

Article Obtaining metaphase spreads from single blastomeres for PGD of chromosomal rearrangements

Article Obtaining metaphase spreads from single blastomeres for PGD of chromosomal rearrangements RBMOnline - Vol 14. No 4. 2007 498-503 Reproductive BioMedicine Online; www.rbmonline.com/article/2639 on web 6 February 2007 Article Obtaining metaphase spreads from single blastomeres for PGD of chromosomal

More information

Blastomere transplantation in human embryos may be a treatment for single gene diseases

Blastomere transplantation in human embryos may be a treatment for single gene diseases FERTILITY AND STERILITY VOL. 81, NO. 4, APRIL 2004 Copyright 2004 American Society for Reproductive Medicine Published by Elsevier Inc. Printed on acid-free paper in U.S.A. Blastomere transplantation in

More information

Supplementary Appendix

Supplementary Appendix Supplementary Appendix This appendix has been provided by the authors to give readers additional information about their work. Supplement to: Greco E, Minasi MG, Fiorentino F. Healthy babies after intrauterine

More information

Superior Fluorescent Labeling Dyes Spanning the Full Visible Spectrum...1. Trademarks: HiLyte Fluor (AnaSpec, Inc.)

Superior Fluorescent Labeling Dyes Spanning the Full Visible Spectrum...1. Trademarks: HiLyte Fluor (AnaSpec, Inc.) Table of Contents Fluor TM Labeling Dyes Superior Fluorescent Labeling Dyes Spanning the Full Visible Spectrum....1 Fluor TM 405 Dye, an Excellent Alternative to Alexa Fluor 405 & DyLight 405....2 Fluor

More information

Accuracy of FISH analysis in predicting chromosomal status in patients undergoing preimplantation genetic diagnosis

Accuracy of FISH analysis in predicting chromosomal status in patients undergoing preimplantation genetic diagnosis Accuracy of FISH analysis in predicting chromosomal status in patients undergoing preimplantation genetic diagnosis Catherine M. DeUgarte, M.D., a Man Li, M.D., Ph.D., b Mark Surrey, M.D., c Hal Danzer,

More information

Detection of aneuploidy in a single cell using the Ion ReproSeq PGS View Kit

Detection of aneuploidy in a single cell using the Ion ReproSeq PGS View Kit APPLICATION NOTE Ion PGM System Detection of aneuploidy in a single cell using the Ion ReproSeq PGS View Kit Key findings The Ion PGM System, in concert with the Ion ReproSeq PGS View Kit and Ion Reporter

More information

Validation of Next-Generation Sequencer for 24-Chromosome Aneuploidy Screening in Human Embryos

Validation of Next-Generation Sequencer for 24-Chromosome Aneuploidy Screening in Human Embryos GENETIC TESTING AND MOLECULAR BIOMARKERS Volume 21, Number 11, 2017 ª Mary Ann Liebert, Inc. Pp. 1 7 DOI: 10.1089/gtmb.2017.0108 ORIGINAL ARTICLE Validation of Next-Generation Sequencer for 24-Chromosome

More information

Meiotic outcomes in reciprocal translocation carriers ascertained in 3-day human embryos

Meiotic outcomes in reciprocal translocation carriers ascertained in 3-day human embryos (2002) 10, 801 806 ª 2002 Nature Publishing Group All rights reserved 1018 4813/02 $25.00 www.nature.com/ejhg ARTICLE ascertained in 3-day human embryos Caroline Mackie Ogilvie*,1 and Paul N Scriven 1

More information

Chromosomal Aneuploidy

Chromosomal Aneuploidy The Many Advantages of Trophectoderm Biopsy Compared to Day 3 Biopsy for Pre- Implantation Genetic Screening (PGS) Mandy Katz-Jaffe, PhD Chromosomal Aneuploidy Trisomy 21 Fetus Aneuploidy is the most common

More information

Detection of abl/bcr Fusion Gene in Patients Affected by Chronic Myeloid Leukaemia by Dual-Colour Interphase Fluorescence in situ Hybridisation

Detection of abl/bcr Fusion Gene in Patients Affected by Chronic Myeloid Leukaemia by Dual-Colour Interphase Fluorescence in situ Hybridisation Journal of Sciences, Islamic Republic of Iran 15(4): 321-325 (2004) University of Tehran, ISSN 1016-1104 Detection of abl/bcr Fusion Gene in Patients Affected by Chronic Myeloid Leukaemia by Dual-Colour

More information

Zygotes showing a single pronucleus

Zygotes showing a single pronucleus In vitro development and chromosome constitution of embryos derived from monopronucleated zygotes after intracytoplasmic sperm injection Sílvia Mateo, M.Sc., a Monica Parriego, M.Sc., a Montserrat Boada,

More information

Abstract. Introduction

Abstract. Introduction RBMOnline - Vol 13 No 6. 2006 869-874 Reproductive BioMedicine Online; www.rbmonline.com/article/2507 on web 18 October 2006 Article Preimplantation genetic diagnosis significantly improves the pregnancy

More information

Article Negligible interchromosomal effect in embryos of Robertsonian translocation carriers

Article Negligible interchromosomal effect in embryos of Robertsonian translocation carriers RBMOnline - Vol 10. No 3. 2005 363-369 Reproductive BioMedicine Online; www.rbmonline.com/article/1630 on web 17 January 2005 Article Negligible interchromosomal effect in embryos of Robertsonian translocation

More information

Overripeness and the Mammalian Ova

Overripeness and the Mammalian Ova Overripeness and the Mammalian Ova II. Delayed Ovulation and Chromosome Anomalies ROY L. BUTCHER, PH.D., and N. W. FUGO, PH.D., M.D. THE CAUSES of abortion and birth defects are undoubtedly multiple and

More information

Blastocentesis: innovation in embryo biopsy

Blastocentesis: innovation in embryo biopsy Blastocentesis: innovation in embryo biopsy L. Gianaroli, MC Magli, A. Pomante, AP Ferraretti S.I.S.Me.R. Reproductive Medicine Unit, Bologna, Italy Bologna, 8-11 May 2016 www.iiarg.com www.sismer.it 2013

More information

Preimplantation genetic diagnosis for couples at high risk of Down syndrome pregnancy owing to parental translocation or mosaicism

Preimplantation genetic diagnosis for couples at high risk of Down syndrome pregnancy owing to parental translocation or mosaicism J Med Genet 1999;36:45 50 45 Human Genetics Group, The Galton Laboratory, University College London, 4 Stephenson Way, London NW1 2HE, UK C M Conn J Cozzi* J C Harper J D A Delhanty Human Genetics and

More information

Articles Diagnosis of trisomy 21 in preimplantation embryos by single-cell DNA fingerprinting

Articles Diagnosis of trisomy 21 in preimplantation embryos by single-cell DNA fingerprinting RBMOnline - Vol 4. No 1. 43 50 Reproductive BioMedicine Online; www.rbmonline.com/article/394 on web 6 December 2001 Articles Diagnosis of trisomy 21 in preimplantation embryos by single-cell DNA fingerprinting

More information

Medical Genetics. Nondisjunction Definition and Examples. Basic Structure of Chromosomes. See online here

Medical Genetics. Nondisjunction Definition and Examples. Basic Structure of Chromosomes. See online here Medical Genetics Nondisjunction Definition and Examples See online here Nondisjunction connotes failure of separation of homologous chromosomes during cell division. It has significant repercussions and

More information

RayBio Annexin V-Cy5 Apoptosis Detection Kit

RayBio Annexin V-Cy5 Apoptosis Detection Kit RayBio Annexin V-Cy5 Apoptosis Detection Kit User Manual Version 1.0 Mar 20, 2014 (Cat#: 68C5-AnnV-S) RayBiotech, Inc. We Provide You With Excellent Support And Service Tel:(Toll Free)1-888-494-8555 or

More information

Article Pre-embryonic diagnosis for Sandhoff disease

Article Pre-embryonic diagnosis for Sandhoff disease RBMOnline - Vol 12. No 3. 2006 328-333 Reproductive BioMedicine Online; www.rbmonline.com/article/2100 on web 9 January 2006 Article Pre-embryonic diagnosis for Sandhoff disease Dr Anver Kuliev received

More information

A Stepwise Approach to Embryo Selection and Implantation Success

A Stepwise Approach to Embryo Selection and Implantation Success Precise Genetic Carrier Screening An Overview A Stepwise Approach to Embryo Selection and Implantation Success Put today s most advanced genetic screening technology to work for you and your family s future.

More information

EmbryoCellect TM. Pre-implantation Genetic Screening Kit TECHNICAL INFORMATION

EmbryoCellect TM. Pre-implantation Genetic Screening Kit TECHNICAL INFORMATION EmbryoCellect TM Pre-implantation Genetic Screening Kit TECHNICAL INFORMATION Aneuploidy Whole chromosome aneuploidy has been shown to affect all chromosomes in IVF embryos. Aneuploidy is a significant

More information

Comparative genomic hybridization of primary skeletal Ewing's sarcoma

Comparative genomic hybridization of primary skeletal Ewing's sarcoma Turkish Journal of Cancer Vol.31/ No. 1/2001 Comparative genomic hybridization of primary skeletal Ewing's sarcoma İBRAHİM KESER 1, ELISABETH BURCKHARDT 2, NURDAN TUNALI 3, MUALLA ALKAN 2 1 Department

More information

A comparison of the effects of estrus cow. nuclear maturation of bovine oocytes

A comparison of the effects of estrus cow. nuclear maturation of bovine oocytes A comparison of the effects of estrus cow serum and fetal calf serum on in vitro nuclear maturation of bovine oocytes J Spiropoulos, SE Long University of Bristol, School of Veterinary Science, Department

More information

Dual color fluorescence in situ hybridization to investigate aneuploidy in sperm from 33 normal males and a man with a t(2;4;8)(q23;q27; p21)*

Dual color fluorescence in situ hybridization to investigate aneuploidy in sperm from 33 normal males and a man with a t(2;4;8)(q23;q27; p21)* FERTILITY AND STERILITY Copyright" 1994 The American Fertility Society Printed on acid-free paper in U. S. A. Dual color fluorescence in situ hybridization to investigate aneuploidy in sperm from 33 normal

More information

Articles Polar body-based preimplantation diagnosis for X-linked disorders

Articles Polar body-based preimplantation diagnosis for X-linked disorders RBMOnline - Vol 4. No 1. 38 42 Reproductive BioMedicine Online; www.rbmonline.com/article/384 on web 20 November 2001 Articles Polar body-based preimplantation diagnosis for X-linked disorders Dr Yury

More information

The form of cell division by which gametes, with half the number of chromosomes, are produced. Chromosomes

The form of cell division by which gametes, with half the number of chromosomes, are produced. Chromosomes & Karyotypes The form of cell division by which gametes, with half the number of chromosomes, are produced. Homologous Chromosomes Pair of chromosomes (maternal and paternal) that are similar in shape,

More information

Same Day, Cost-Effective Aneuploidy Detection with Agilent Oligonucleotide array CGH and MDA Single Cell Amplification Method

Same Day, Cost-Effective Aneuploidy Detection with Agilent Oligonucleotide array CGH and MDA Single Cell Amplification Method Same Day, Cost-Effective Aneuploidy Detection with Agilent Oligonucleotide array CGH and MDA Single Cell Amplification Method Presenter: Dr. Ali Hellani, Founder, Viafet Genomic Center, Dubai Wednesday,

More information

A. Incorrect! All the cells have the same set of genes. (D)Because different types of cells have different types of transcriptional factors.

A. Incorrect! All the cells have the same set of genes. (D)Because different types of cells have different types of transcriptional factors. Genetics - Problem Drill 21: Cytogenetics and Chromosomal Mutation No. 1 of 10 1. Why do some cells express one set of genes while other cells express a different set of genes during development? (A) Because

More information

Structural Variation and Medical Genomics

Structural Variation and Medical Genomics Structural Variation and Medical Genomics Andrew King Department of Biomedical Informatics July 8, 2014 You already know about small scale genetic mutations Single nucleotide polymorphism (SNPs) Deletions,

More information

Breast Cancer Interpretation Guide

Breast Cancer Interpretation Guide Breast Cancer Interpretation Guide UCT D O R P NEW ERBB2/ C E P S ht e ZytoLig lor Prob o C l a u 2D D17S12 ng to the i d r o c c a ting for re-tes idelines 2013 ASCO Gu Breast Cancer Interpretation Guide

More information

Chromosome pathology

Chromosome pathology Chromosome pathology S. Dahoun Department of Gynecology and Obstetrics, University Hospital of Geneva Cytogenetics is the study of chromosomes and the related disease states caused by abnormal chromosome

More information

The Chromosomal Basis Of Inheritance

The Chromosomal Basis Of Inheritance The Chromosomal Basis Of Inheritance Chapter 15 Objectives Explain the chromosomal theory of inheritance and its discovery. Explain why sex-linked diseases are more common in human males than females.

More information

Chromosomal Aberrations

Chromosomal Aberrations Chromosomal Aberrations Chromosomal Aberrations Abnormalities of chromosomes may be either numerical or structural and may involve one or more autosomes, sex chromosomes, or both simultaneously. Numerical

More information

Prenatal Diagnosis: Are There Microarrays in Your Future?

Prenatal Diagnosis: Are There Microarrays in Your Future? Financial Disclosure UCSF Antepartum Intrapartum Management Course June 8 I have no financial relationship with any aspect of private industry Prenatal Diagnosis: Are There Microarrays in Your Future?

More information

SHOULD WE TEST THE FIRST POLAR BODY OR THE EMBRYO

SHOULD WE TEST THE FIRST POLAR BODY OR THE EMBRYO SHOULD WE TEST THE FIRST POLAR BODY OR THE EMBRYO L. Gianaroli, C.M. Magli, A.P. Ferraretti Reproductive Medicine Unit - Via Mazzini, 12-40138 Bologna sismer@sismer.it WOMEN S REPRODUCTIVE HEALTH IN THE

More information

HER2 FISH pharmdx TM Interpretation Guide - Breast Cancer

HER2 FISH pharmdx TM Interpretation Guide - Breast Cancer P A T H O L O G Y HER2 FISH pharmdx TM Interpretation Guide - Breast Cancer For In Vitro Diagnostic Use FDA approved as an aid in the assessment of patients for whom Herceptin TM (trastuzumab) treatment

More information

IT S ABOUT TIME. IQFISH pharmdx Interpretation Guide THREEHOURSTHIRTYMINUTES. HER2 IQFISH pharmdxtm. TOP2A IQFISH pharmdxtm

IT S ABOUT TIME. IQFISH pharmdx Interpretation Guide THREEHOURSTHIRTYMINUTES. HER2 IQFISH pharmdxtm. TOP2A IQFISH pharmdxtm I N T E R P R E TAT I O N IQFISH pharmdx Interpretation Guide TM HER2 IQFISH pharmdxtm TOP2A IQFISH pharmdxtm Breast carcinoma (FFPE) stained with HER2 IQFISH pharmdx Breast carcinoma (FFPE) stained with

More information

ab CytoPainter Golgi/ER Staining Kit

ab CytoPainter Golgi/ER Staining Kit ab139485 CytoPainter Golgi/ER Staining Kit Instructions for Use Designed to detect Golgi bodies and endoplasmic reticulum by microscopy This product is for research use only and is not intended for diagnostic

More information

Cytogenetics 101: Clinical Research and Molecular Genetic Technologies

Cytogenetics 101: Clinical Research and Molecular Genetic Technologies Cytogenetics 101: Clinical Research and Molecular Genetic Technologies Topics for Today s Presentation 1 Classical vs Molecular Cytogenetics 2 What acgh? 3 What is FISH? 4 What is NGS? 5 How can these

More information

IVF AND PREIMPLANTATION GENETIC TESTING FOR ANEUPLOIDY (PGT-A) WHAT THE COMMUNITY PHYSICIAN NEEDS TO KNOW

IVF AND PREIMPLANTATION GENETIC TESTING FOR ANEUPLOIDY (PGT-A) WHAT THE COMMUNITY PHYSICIAN NEEDS TO KNOW IVF AND PREIMPLANTATION GENETIC TESTING FOR ANEUPLOIDY (PGT-A) WHAT THE COMMUNITY PHYSICIAN NEEDS TO KNOW Jon Havelock, MD, FRCSC, FACOG Co-Director - PCRM Disclosure No conflict of interest in relation

More information

PGS & PGD. Preimplantation Genetic Screening Preimplantation Genetic Diagnosis

PGS & PGD. Preimplantation Genetic Screening Preimplantation Genetic Diagnosis 1 PGS & PGD Preimplantation Genetic Screening Preimplantation Genetic Diagnosis OUR MISSION OUR MISSION CooperGenomics unites pioneering leaders in reproductive genetics, Reprogenetics, Recombine, and

More information

Chromosomes and Human Inheritance. Chapter 11

Chromosomes and Human Inheritance. Chapter 11 Chromosomes and Human Inheritance Chapter 11 11.1 Human Chromosomes Human body cells have 23 pairs of homologous chromosomes 22 pairs of autosomes 1 pair of sex chromosomes Autosomes and Sex Chromosomes

More information

SNP array-based analyses of unbalanced embryos as a reference to distinguish between balanced translocation carrier and normal blastocysts

SNP array-based analyses of unbalanced embryos as a reference to distinguish between balanced translocation carrier and normal blastocysts J Assist Reprod Genet (2016) 33:1115 1119 DOI 10.1007/s10815-016-0734-0 TECHNOLOGICAL INNOVATIONS SNP array-based analyses of unbalanced embryos as a reference to distinguish between balanced translocation

More information

Three Hours Thirty Minutes

Three Hours Thirty Minutes INTERPRETATION HER2 IQFISH pharmdx TM Interpretation Guide Three Hours Thirty Minutes it s about time Breast carcinoma (FFPE) stained with HER2 IQFISH pharmdx Gastric cancer (FFPE) stained with HER2 IQFISH

More information

Original Policy Date

Original Policy Date MP 2.04.77 Preimplantation Genetic Testing Medical Policy Section OB/Gyn/Reproduction Issue 12:2013 Original Policy Date 12:2013 Last Review Status/Date Reviewed with literature search/12:2013 Return to

More information

Article Preimplantation diagnosis and HLA typing for haemoglobin disorders

Article Preimplantation diagnosis and HLA typing for haemoglobin disorders RBMOnline - Vol 11. No 3. 2005 362-370 Reproductive BioMedicine Online; www.rbmonline.com/article/1853 on web 20 July 2005 Article Preimplantation diagnosis and HLA typing for haemoglobin disorders Dr

More information

PG-Seq NGS Kit for Preimplantation Genetic Screening

PG-Seq NGS Kit for Preimplantation Genetic Screening Application Note: PG-Seq Validation Study PG-Seq NGS Kit for Preimplantation Genetic Screening Validation using Multi (5-10) Cells and Single Cells from euploid and aneuploid cell lines Introduction Advances

More information

Polar Body Approach to PGD. Anver KULIEV. Reproductive Genetics Institute

Polar Body Approach to PGD. Anver KULIEV. Reproductive Genetics Institute Polar Body Approach to PGD Anver KULIEV Reproductive Genetics Institute DISCLOSURE othing to disclose 14 History of Polar Body Approach 14 First proposed in World Health Organization s Document Perspectives

More information

Article Impact of meiotic and mitotic non-disjunction on generation of human embryonic stem cell lines

Article Impact of meiotic and mitotic non-disjunction on generation of human embryonic stem cell lines RBMOn - Vol 18. No 1. 2009 120-126 Reproductive BioMedicine On; www.rbmon.com/article/3656 on web 21 November 2008 Article Impact of meiotic and mitotic non-disjunction on generation of human embryonic

More information

Article Which patients with recurrent implantation failure after IVF benefit from PGD for aneuploidy screening?

Article Which patients with recurrent implantation failure after IVF benefit from PGD for aneuploidy screening? RBMOnline - Vol 12. No 3. 2006 334-339 Reproductive BioMedicine Online; www.rbmonline.com/article/1947 on web 25 January 2006 Article Which patients with recurrent implantation failure after IVF benefit

More information

USA: Livingston, NJ. PGD for infertility. Europe: Barcelona, Spain Oxford, UK Hamburg, Germany. Asia: Kobe, Japan. South America: Lima, Peru

USA: Livingston, NJ. PGD for infertility. Europe: Barcelona, Spain Oxford, UK Hamburg, Germany. Asia: Kobe, Japan. South America: Lima, Peru PGD for infertility Santiago Munné USA: Livingston, NJ Europe: Barcelona, Spain Oxford, UK Hamburg, Germany Asia: Kobe, Japan South America: Lima, Peru The majority of embryos with good morphology are

More information

Abstract. Introduction. RBMOnline - Vol 8. No Reproductive BioMedicine Online; on web 19 April 2004

Abstract. Introduction. RBMOnline - Vol 8. No Reproductive BioMedicine Online;  on web 19 April 2004 RBMOnline - Vol 8. No 6. 2004 695-700 Reproductive BioMedicine Online; www.rbmonline.com/article/1296 on web 19 April 2004 Article Pronuclear morphology predicts embryo development and chromosome constitution

More information

MULTIPLE CHOICE QUESTIONS

MULTIPLE CHOICE QUESTIONS SHORT ANSWER QUESTIONS-Please type your awesome answers on a separate sheet of paper. 1. What is an X-linked inheritance pattern? Use a specific example to explain the role of the father and mother in

More information

Cri du chat syndrome after preimplantation genetic diagnosis for reciprocal translocation

Cri du chat syndrome after preimplantation genetic diagnosis for reciprocal translocation CASE REPORT Cri du chat syndrome after preimplantation genetic diagnosis for reciprocal translocation Yinghui Ye, M.D., Ph.D., Yuqin Luo, B.Sc., Yuli Qian, B.Sc., Chenming Xu, Ph.D., and Fan Jin, M.D.

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Exam Chapter 15 Chromosomal Basis for Inheritance AP Biology Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) When Thomas Hunt Morgan crossed

More information

SHORT COMMUNICATION CHICAGO, ILLINOIS. Visualization of Chromosomes in Single Human Blastomeres

SHORT COMMUNICATION CHICAGO, ILLINOIS. Visualization of Chromosomes in Single Human Blastomeres Journal of Assisted Reproduction and Genetics, Vol. 16, No. 3, 1999 SHORT COMMUNICATION CHICAGO, ILLINOIS Visualization of Chromosomes in Single Human Blastomeres The present work describes our results

More information

(FITC) or rhodamine blue isothiocyanate (RBITC) for use in mixed egg-transfer experiments. Both FITC and RBITC bind to the zona pellucida

(FITC) or rhodamine blue isothiocyanate (RBITC) for use in mixed egg-transfer experiments. Both FITC and RBITC bind to the zona pellucida THE LABELLING OF LIVING RABBIT OVA WITH FLUORESCENT DYES J. W. OVERSTREET Department of Anatomy and International Institute for the Study of Human Reproduction, Columbia University, College of Physicians

More information

Chromosomes, Mapping, and the Meiosis-Inheritance Connection. Chapter 13

Chromosomes, Mapping, and the Meiosis-Inheritance Connection. Chapter 13 Chromosomes, Mapping, and the Meiosis-Inheritance Connection Chapter 13 Chromosome Theory Chromosomal theory of inheritance - developed in 1902 by Walter Sutton - proposed that genes are present on chromosomes

More information

TITLE: Identification of Chromosomes Alterations in Primary Breast Cancer Using Premature Chromosome Condensation

TITLE: Identification of Chromosomes Alterations in Primary Breast Cancer Using Premature Chromosome Condensation AD Award Number: DAMD17-99-1-9237 TITLE: Identification of Chromosomes Alterations in Primary Breast Cancer Using Premature Chromosome Condensation PRINCIPAL INVESTIGATOR: Constance A. Griffin, M.D. CONTRACTING

More information

Clinical Genomics. Ina E. Amarillo, PhD FACMGG

Clinical Genomics. Ina E. Amarillo, PhD FACMGG Clinical Genomics Ina E. Amarillo, PhD FACMGG Associate Medical Director, Cytogenetics Lab (CaTG), Lab and Genomic Medicine Assistant Professor, Pathology and Immunology Outline Clinical Genomics Testing

More information

INDICATIONS OF IVF/ICSI

INDICATIONS OF IVF/ICSI PROCESS OF IVF/ICSI INDICATIONS OF IVF/ICSI IVF is most clearly indicated when infertility results from one or more causes having no other effective treatment; Tubal disease. In women with blocked fallopian

More information

Comprehensive chromosome screening is highly predictive of the reproductive potential of human embryos: a prospective, blinded, nonselection study

Comprehensive chromosome screening is highly predictive of the reproductive potential of human embryos: a prospective, blinded, nonselection study ORIGINAL ARTICLES: ASSISTED REPRODUCTION Comprehensive chromosome screening is highly predictive of the reproductive potential of human embryos: a prospective, blinded, nonselection study Richard T. Scott

More information

Karyotype = a test to identify and evaluate the size, shape, and number of chromosomes in a sample of body cells.

Karyotype = a test to identify and evaluate the size, shape, and number of chromosomes in a sample of body cells. Karyotype = a test to identify and evaluate the size, shape, and number of chromosomes in a sample of body cells. Homologous chromosomes are arranged by size, banding patterns, and centromere placement.

More information

An Update on PGD: Where we are today

An Update on PGD: Where we are today An Update on PGD: Where we are today Joyce Harper UCL Centre for PG&D and CRGH Institute for Womens Health University College London Overview What is PGD/PGS How we do it Disadvantages and advantages Future

More information

Preimplantation Diagnosis for Sonic Hedgehog Mutation Causing Familial Holoprosencephaly

Preimplantation Diagnosis for Sonic Hedgehog Mutation Causing Familial Holoprosencephaly The new england journal of medicine brief report Preimplantation Diagnosis for Sonic Hedgehog Mutation Causing Familial Holoprosencephaly Yury Verlinsky, Ph.D., Svetlana Rechitsky, Ph.D., Oleg Verlinsky,

More information

NEW YORK STATE DEPARTMENT OF HEALTH CLINICAL LABORATORY EVALUATION PROGRAM. Crosswalk of Proposed Revisions to Cytogenetics Standards

NEW YORK STATE DEPARTMENT OF HEALTH CLINICAL LABORATORY EVALUATION PROGRAM. Crosswalk of Proposed Revisions to Cytogenetics Standards 2014 Standard 2014 Guidance 2016 Standard 2016 Guidance Cytogenetics Standard 1 (CG S1) The laboratory shall request clinical information necessary for proper initiation of test procedures and interpretation

More information

Abstract. Introduction. RBMOnline - Vol 11. No Reproductive BioMedicine Online; on web 11 August 2005

Abstract. Introduction. RBMOnline - Vol 11. No Reproductive BioMedicine Online;  on web 11 August 2005 RBMOnline - Vol 11. No 4. 2005 497 506 Reproductive BioMedicine Online; www.rbmonline.com/article/1712 on web 11 August 2005 Article FISH screening of aneuploidies in preimplantation embryos to improve

More information

American Society of Cytopathology Core Curriculum in Molecular Biology

American Society of Cytopathology Core Curriculum in Molecular Biology American Society of Cytopathology Core Curriculum in Molecular Biology American Society of Cytopathology Core Curriculum in Molecular Biology Chapter 6 Fluorescence in situ Hybridization (FISH) Principles

More information

The Impact of ESHRE 2017 on Japanese Fertility Practice

The Impact of ESHRE 2017 on Japanese Fertility Practice The Impact of ESHRE 2017 on Japanese Fertility Practice This resource is supported by an educational grant from Merck KGaA, Darmstadt, Germany. The GWHA was interested in the opinions of practicing clinicians

More information

Vysis ALK Break Apart FISH Probe Kit

Vysis ALK Break Apart FISH Probe Kit Vysis ALK Break Apart FISH Probe Kit 06N38 30-608521/R1 Key to Symbols Used Global Trade Item Number Manufacturer Reference Number Lot Number In Vitro Diagnostic Medical Device Contains sufficient for

More information