Graphical Abstract. Final Step. Iwao et al. First Step Disintegrant. Second Step. Available surface area (St) using the data of dissolution study

Size: px
Start display at page:

Download "Graphical Abstract. Final Step. Iwao et al. First Step Disintegrant. Second Step. Available surface area (St) using the data of dissolution study"

Transcription

1 Graphical Abstract First Step Disintegrant Iwao et al. Second Step Available surface area (St) using the data of dissolution study t b F( t) 1 exp ( t / a) C /( C W / V ) df( t) dt S( t) V / k ln s s 0 / 1/ b max ( a( b 1)/ b) 1. C Cs 1 exp ln Cs /( Cs W0 / V ) F( t) 2. S max V / k lnc /( C W / V ) df( t max) dt s s 0 / Final Step Δ tmax t max, 1% t max, 5% ΔS max S max, 5% S max, 1%

2 5 6 An easy-to-use approach for determining the disintegration ability of disintegrants by analysis of available surface area 7 8 Yasunori Iwao a, Shoko Tanaka a, Takeaki Uchimoto a, Shuji Noguchi a, Shigeru Itai a,* a Department of Pharmaceutical Engineering, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka , Japan * Corresponding author: Shigeru Itai, Ph.D., Professor Department of Pharmaceutical Engineering, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka , Japan. Tel.: , Fax: , s-itai@u-shizuoka-ken.ac.jp. 21 2

3 22 Abstract 23 With the aim of directly predicting the functionality and mechanism of 24 disintegrants during the disintegration and dissolution of tablets, we investigated an 25 analysis method based on available surface area, which is the surface area of a drug in a 26 formulation in direct contact with the external solvent during dissolution. We evaluated 27 the following disintegrants in this study: sodium starch glycolate (Glycolys), 28 crospovidone (Kollidon CL), carboxymethylcellulose calcium (CMC-Ca), 29 low-substituted hydroxypropylcellulose (L-HPC), and croscarmellose sodium 30 (Ac-Di-Sol). When disintegrant was added to a 50% ethenzamide tablet formulation, an 31 increase in the dissolution rate dependent on disintegrant concentration was observed, 32 according to the type of disintegrant. In addition, the available surface area also differed 33 between disintegrants. For Glycolys, CMC-Ca, and Ac-Di-Sol, a rapid increase in 34 available surface area and a large increase in maximum available surface area (S max ) 35 were observed due to high swellability and wicking, even when the disintegrant 36 concentration was only 1.0%. In contrast, for Kollidon CL and LH-21, a gradual 37 increase in available surface area was observed, depending on the disintegrant 38 concentration. To evaluate the disintegrant ability, Δt max and ΔS max were calculated by 39 subtracting peak time (t max ) at 5.0% from that at 1.0% and subtracting S max at 1.0% from 40 that at 5.0%, respectively, and it was found that the water absorption ratio had strong 3

4 41 negative correlations with Δt max and ΔS max. Therefore, this study demonstrates that 42 analysis of only available surface area and parameters thereby obtained can directly 43 provide useful information, especially about the disintegration ability of disintegrants Keywords: disintegrant, available surface area, disintegration mechanism Abbreviation: ETZ, Ethenzamide; Glycolys, Sodium starch glycolate; K-CL, Kollidon CL; CMC-Ca, carboxymethylcellulose calcium; L-HPC, low-substituted hydroxypropylcellulose; Ac-Di-Sol, croscarmellose sodium; Mg-St, magnesium stearate. 50 4

5 51 1. Introduction 52 The disintegration of a tablet can be regarded as the first step toward the bioavailability 53 and pharmaceutical action of an active ingredient. To achieve sufficient disintegration, a 54 disintegrant must normally be added to the tablet formulation. Traditional tablet 55 disintegrants can be classified as starches (e.g., corn, wheat, potato, rice, and 56 pregelatinized starches), macromolecules (e.g., alginic acid, sodium alginate, polacrilin 57 potassium, and guar gum), finely divided solids (e.g., colloidal silicon dioxide and 58 magnesium aluminum silicate), and celluloses (e.g., powdered cellulose, 59 microcrystalline cellulose, carboxymethylcellulose, cross-linked sodium 60 carboxymethylcellulose, methylcellulose, and low-substituted hydroxypropylcellulose). 61 Swelling and wicking are the primary mechanisms of action for tablet disintegrants, but 62 other mechanisms such as deformation recovery, particle repulsion, heat of wetting, and 63 gas evolution, may play a role in the disintegration of particular tablet formulations 64 (Kanig and Rudnic, 1984). Another possibility is that several of these mechanisms act 65 simultaneously. 66 Respective of the mechanism of action, water uptake has been identified as the 67 necessary first step in any disintegration process (Van Kamp et al., 1986; Caramella et 68 al., 1986). In addition, Colombo et al. (1981, 1988) and Caramella et al. (1986, 1988) 69 have related the disintegration process to the development of a disintegrating force 5

6 70 inside the tablet. They concluded that water penetration into an insoluble tablet is 71 accompanied by the development of a proportional force, indicating the relevance of 72 disintegration mechanisms that are capable of force development (Caramella et al., ). 74 At present, a disintegration test is the standard method for evaluating 75 disintegrant functionality. However, this method provides only limited information 76 about disintegration behavior, but no information about drug dissolution from a tablet. 77 Although water uptake into disintegrants is also measured in combination with the 78 disintegration test, the disintegration mechanism cannot be ascertained with certainty 79 from the results. Therefore, to accurately evaluate the functionality and mechanism of 80 disintegrants in the disintegration of tablets, as well as the dissolution behavior of drugs, 81 an alternative method to reflect both in vitro disintegration and dissolution is needed. 82 Against this background, available surface area (S(t)), which is a 83 physicochemical property that a drug in a formulation directly contacts with the external 84 solvent, has attracted attention and can be estimated by using dissolution test results 85 only, as we have reported previously (Kouchiwa et al., 1985). In general, dissolution of 86 solid dosage forms includes disintegration and deaggregation process. Although these 87 processes are further complicated, the use of S(t) can directly represent the drug 88 dissolution from the tablets including the disintegration process. Using the time course 6

7 89 of S(t), we elucidated the effect of differences in pharmaceutical processing, such as 90 compression force and formulation, on the dissolution of flufenamic acid (Itai et al., ). We also reported that when determining whether a lubricant retards the 92 dissolution of a drug, analysis of S(t) enabled prediction of the dissolution and 93 disintegration behavior of acetaminophen tablets formulated using various lubricants 94 (Uchimoto et al., 2011), suggesting that this analysis can allow precise prediction of the 95 disintegration, dispersion and dissolution of the tablet. Therefore, this analysis is also 96 considered to have a potential to evaluate the disintegration ability of disintegrants. 97 In the present study, we used five commercially available disintegrants to 98 evaluate a method for analyzing disintegrant behavior on the basis of available surface 99 area, as an alternative to traditional disintegration tests and water uptake measurements. 7

8 Materials and methods Materials 102 Ethenzamide (ETZ; listed in the Japanese Pharmacopeia 16th Edition (JP16), 103 which was used as the active pharmaceutical ingredient), was kindly provided by Iwaki 104 Pharmaceutical Co., Ltd. (Shizuoka, Japan). Lactose monohydrate (Pharmatose 200M, 105 listed in JP16, used as filler) and microcrystalline cellulose (Avicel PH-102, listed in 106 JP16, used as filler) were kindly provided by DFE Pharmaceutical Co., Ltd. (Tokyo, 107 Japan) and Asahi Kasei Co., Ltd. (Tokyo, Japan), respectively. Hydroxypropylcellulose 108 (HPC-L, listed in JP16, used as binder) was kindly provided by Nippon Soda Co., Ltd. 109 (Tokyo, Japan). Sodium starch glycolate (Glycolys, listed in JP16, Roquette Japan K. K. 110 (Tokyo, Japan)), crospovidone (Kollidon CL (K-CL), listed in JP16, BASF Japan Co., 111 Ltd. (Tokyo, Japan)), carboxymethylcellulose calcium (E.C.G-505 (CMC-Ca), listed in 112 JP16, Gotoku Chemical Co., Ltd. (Tokyo, Japan)), low-substituted 113 hydroxypropylcellulose (LH-21 (L-HPC), listed in JP16, Shin-Etsu Chemical Co., Ltd. 114 (Tokyo, Japan)), and croscarmellose sodium (Ac-Di-Sol, listed in JP16, Dainippon 115 Sumitomo Pharma, Co., Ltd. (Osaka, Japan)) were used as disintegrants. All other 116 reagents used were of the highest grade available from commercial sources, and all 117 solutions were prepared with deionized water

9 Granulation 120 Lactose monohydrate (140 g) and microcrystalline cellulose (60 g) were mixed 121 for 15 min in a mixer (Fuji Medical Equipment Co., Ltd.). ETZ (200 g) was added to 122 this powder and mixed for an additional 15 min. A total of 150 g of 5.0% w/v aqueous 123 solution of HPC-L was then added via a syringe (ss-10sz, Terumo Corporation, Tokyo, 124 Japan), and the mixture was subsequently kneaded for 15 min. Granulation was 125 performed in a rotating squeeze-type granulator with a sieve size of 0.8 mm (Hata Iron 126 Work Co., Ltd. Kyoto, Japan). The granules were dried in an oven at 50 C for h. 127 After drying, the granules were sieved through a 1680 µm sieve, and the granules that 128 did not pass through a 350 µm sieve were collected. This process was repeated several 129 times, and the resultant granules were then mixed uniformly and subjected to 130 experimental analysis Tablet preparation 133 A total of 8 g of mixture composed of granules, magnesium stearate (Mg-St; 134 specified as a lubricant, listed in JP16), and each disintegrant was manually mixed in a 135 polyethylene bag at a rate of 120 times/min for 2 min. The disintegrant concentrations 136 were 1.0%, 3.0% and 5.0%, and the Mg-St concentration was 0.5%. Tablets were 137 prepared with an oil press (JASCO Co., Tokyo, Japan) using a flat-faced punch of 13 9

10 138 mm in diameter. The tableting force was 10 kn, which was applied for 30 s Determination of apparent solubility 141 ETZ (1g) was added to ph 6.8 phosphate buffer (200 ml) at 37 C, and the 142 mixture was agitated for 10 h. A 2 ml aliquot of this mixture was withdrawn and 143 filtered through a membrane filter (0.45 m) immediately. The filtered solution was 144 volumetrically diluted, the absorbance at 290 nm was measured on a spectrophotometer 145 (UV-mini, Shimadzu Corporation, Kyoto, Japan), and the concentration of dissolved 146 ETZ was calculated from a calibration curve prepared from standard solutions Determination of the dissolution rate constant per unit area 149 To determine the dissolution rate constant k, the stationary disk method was 150 used (Agata et al, 2010). An ETZ disk with a diameter of 1.3 cm (surface area: cm 2 ) was prepared by compressing 400 mg of the drug powder at 10 kn. The disk was 152 placed in a JP16 dissolution test apparatus and rotated at 50 rpm in phosphate buffer at 153 ph 6.8 and 37 ± 0.5 C. Solution (5 ml) was withdrawn at appropriate intervals, and 154 after adequate dilution, the ETZ concentration was determined in the same manner as 155 described in Section 2.4. When the ETZ concentration (C) (mg/l) was plotted versus 156 time (t) (min) and fitted to the experimental data by the least-squares method, the 10

11 157 following equation was obtained: 158 C = t (R 2 =0.9961). (1) 159 From the Noyes Whitney equation, the following equation was derived when the 160 surface area was fixed under sink conditions: 161 k S Cs C t V, (2) 162 where k is the dissolution rate constant per unit area, S is surface area, V is the medium 163 volume, and Cs is the apparent solubility. By comparing the slope between Eqs. (1) and 164 (2), k was then estimated Dissolution test 167 The dissolution of ETZ from tablets was measured by the paddle method listed 168 in JP16. The test medium was 900 ml phosphate buffer (ph 6.8) at 37.0 ± 0.5 C, and 169 the paddle rotation speed was 50 rpm. At 1.0, 2.5, 5.0, 7.5, 10, 15, 20, 30, 40, 50, 60, 70, , 90, 100, 120, 140, 160, 180, 200, 240, 280, 320 and 400 min, samples (3 ml) were 171 withdrawn, and 3 ml of fresh medium was added after collecting each sample. The 172 solution was then filtered through a membrane filter (0.45 μm). The ETZ concentration 173 was determined in the same manner as described in Section

12 Determination of time course of the available surface area during dissolution 176 To determine the time course of the available surface area S(t) as well as the 177 corresponding dissolution rate (C), the following equations reported by Kouchiwa et al. 178 (Kouchiwa et al., 1985), were used: C /( C W / V) df( t) dt S( t) V / k ln 0 s s / C C 1 exp ln C /( C W0 / V) F( t) s s s,, (3) (4) 181 where V is the medium volume, Cs is the apparent solubility, W 0 is the initial amount of 182 the drug in solid dosage forms, and F(t) is the ratio of the cumulative surface area that 183 has been made available for dissolution up to time t to the total surface area that is made 184 available during the entire dissolution process. This ratio can be calculated from the 185 experimental dissolution test data by using 186 C /( C C) /lnc /( C W / ) F( t) ln 0 V s s s s. (5) 187 Furthermore, because F(0) = 0 and F( ) = 1, F(t) can be described by a cumulative 188 probability distribution: 189 F( t) ( t) dt 0. t (6) 190 If the Weibull distribution is selected, Eq. (6) can be rearranged to 191 b F( t) 1 exp ( t / a), (7) 192 where a is the scale parameter and b is the shape parameter. 193 By using these equations, both S(t) throughout dissolution and the 12

13 194 corresponding theoretical dissolution rate (C) of a tablet can be determined. In this 195 study, the best-fitting parameters for the probability distribution of F(t) values for Eq. 196 (7) were found by nonlinear regression with statistical software (Origin 8, Lightstone 197 Corp., Tokyo, Japan), and the fit to the experimental data was estimated in terms of the 198 residual sum of squares. The peak time (t max ) when S(t) was a maximum value (S max ) 199 was determined as 200 t 1/ b max ( a( b 1)/ b), (8) 201 In addition, differences in S max (ΔS max ) and in t max (Δt max ) between tablets 202 containing 5.0% and 1.0% disintegrant were determined as follows: 203 S max S max, 5% S max,1%, (9) 204 t max t max,1% t max, 5%. (10) Determination of tablet disintegration time 207 Six tablets prepared as described for Section 2.3 were selected at random, and 208 disintegration tests were performed in accordance with the protocol set out in JP using a disintegration tester (Miyamoto Riken Ind. Co., Ltd., Osaka, Japan). Distilled 210 water at 37.0 ± 0.5 C was used as the test fluid

14 Determination of tablet hardness 213 Ten tablets prepared as described for Section 2.3 were selected at random, and 214 compression tests were performed using a hardness meter with a 300 N load cell 215 (precision of 1 N, PC-30, Okada Seiko Co., Ltd., Tokyo, Japan) Determination of water absorption ability of disintegrants 218 To determine the water absorption capacity of disintegrants as previously 219 described (Bi et al, 1996; Fukami et al, 2006), tablets consisting of 100% disintegrant 220 (400 mg) were prepared with an oil press using a flat-faced punch of 13 mm in diameter. 221 The tableting force was 10 kn, which was applied for 30 s. The tablets were placed on 222 filter paper wetted with 6 ml of water, and the appearance of the tablets was observed 223 as water penetrated into them. The water absorption ratio (R w ) was calculated as 224 R w ( Wb Wa ) / Wa. (11) 225 Here, W a is the initial tablet weight and W b is the weight of the tablet after completely 226 wetting. Thus R w is an indicator of swelling

15 Results and discussion Effect of disintegrants on the dissolution and S(t) profiles of ETZ tablets 230 Figures 1 and 2 show ETZ release behavior from tablets (weight, 400 mg; 231 thickness, 2.5 mm) containing various disintegrants at concentrations of 0%, 1.0%, %, and 5.0%, and the time courses of S(t), respectively. The disintegrants used in this 233 study are as follows: Glycolys, as a representative of starches; K-CL, as a representative 234 of the cross-linked macromolecules; CMC-Ca and L-HPC, as representatives of 235 celluloses, and Ac-Di-Sol, as a representative of finely divided solids. In addition, the 236 apparent solubility Cs and dissolution rate constant k of ETZ were determined and 237 found to be mg/l and cm/min, respectively. The symbols represent the 238 experimental results, and the curves represent the theoretical dissolution profiles 239 obtained from Eq. (4) (Fig. 1). Good agreement was found between the experimental 240 data (symbols) and the theoretical profile (curves) for dissolution, because each residual 241 sum of squares had a low value (data not shown). Therefore, the time courses of S(t) 242 (Fig. 2) were also deemed to be reasonable Effect of Glycolys 245 When Glycolys was mixed with ETZ granules, faster dissolution of ETZ from 246 the tablets was observed as the Glycolys concentration was increased from 1.0% to 15

16 %; the dissolution of ETZ from the tablets containing 1.0% Glycolys was 248 significantly faster than from tablets containing no disintegrant (Fig. 1A). Although no 249 significant improvement in the dissolution of ETZ was observed when Glycolys 250 concentration was increased from 1.0% and 3.0%, the dissolution of ETZ from tablets 251 containing 5.0% Glycolys was significantly faster. As shown in Fig. 2A, substantial 252 differences in the S(t) profiles were observed in tablets containing various 253 concentrations of Glycolys. Table 1 lists the parameters a, b, S max, and t max, which can 254 be determined for Glycolys by using Eqs. (7) and (8). Generally, when the value of b is 255 less than 1, the Weibull distribution follows a monotonous decreasing curve, where the 256 maximum value is at the start of each experiment, suggesting that, in such a case, a slow 257 decrease in the available surface area occurs because tablets themselves do not 258 disintegrate and instead gradually become smaller. On the other hand, when the value of 259 b is greater than 1, the Weibull distribution has a distinct maximum value, suggesting 260 that tablets disintegrate into granules, and thus that available surface area sharply 261 increases, and then decreases (Itai et al, 1986; Uchimoto et al, 2011). When no 262 disintegrant was used (0%), b was less than 1 (Table 1) and S(t) followed a monotonous 263 decreasing curve (Fig. 2A). At 0% disintegrant, S max and t max were respectively found to 264 be 5.0 cm 2 /tablet and 1.0 min, which was the first sampling time of the dissolution test, 265 because t max could not be calculated by using Eq. (8). From tablet dimensions such as 16

17 266 the thickness (2.5 mm) and diameter (13.0 mm), the value of the actual tablet surface 267 area (S initial ) was calculated to be 12.9 cm 2 /tablet. Because the tablets contained less than % ETZ, the surface area of ETZ on the tablet was less than 12.9 cm 2 /tablet (S initial ). 269 S max was slightly smaller than S initial, and thus the tablets did not completely disintegrate. 270 However, at every Glycolys concentration from 1 5.0%, a shape parameter of b > 1 was 271 observed (Table 1) and S(t) initially increased, reached a maximum, and then decreased 272 (Fig. 2A). This result thus suggests that the disintegration and disaggregation of the 273 tablet was induced by Glycolys, which subsequently allowed for rapid dissolution of 274 ETZ into the solvent. At Glycolys concentrations of 1.0% and 3.0%, S max was and cm 2 /tablet, which were about 5- to 6-fold larger than in the case without 276 disintegrant. In contrast, t max was shortened from min to 6.20 min, indicating that 277 the practical disintegration of tablets occurred and the speed that Glycolys incorporated 278 water into a tablet would increase as the Glycolys concentration was increased. 279 Interestingly, at a Glycolys concentration of 5.0%, S max was cm 2 /tablet (Table 1), 280 more than 12-fold that when no disintegrant was used, and t max was 8.43 min, nearly 281 equal to that when 3.0% Glycolys was used. Taken together, these results indicate that 282 the increase in ETZ dissolution might be attributable to tablet disintegration although 283 the rate of water penetration did not differ between Glycolys concentrations of 3.0% and %. 17

18 Effect of K-CL 287 When K-CL was mixed with ETZ granules at a concentration of 1.0%, 3.0%, or %, the rate of ETZ dissolution increased depending on K-CL concentration (Fig. 1B). 289 In addition, substantial differences in the S(t) profiles were also observed in tablets 290 containing the various concentrations of K-CL (Fig. 2B). At 1.0% K-CL, b was greater 291 than 1 (Table 1), but S max was 5.82 cm 2 /tablet, which was almost same as in tablets 292 containing no disintegrant. Furthermore, t max was min, which was a much longer 293 peak time than in other formulations. At this concentration, the scale parameter a was 294 considerably higher at ; in other words, K-CL could not sufficiently interact with 295 the external solution and the tablet consequently did not disintegrate. When 3.0% K-CL 296 was added, b was greater than 1 (Table 1) and S(t) initially increased, then reached a 297 maximum, and finally decreased (Fig. 2B). At this concentration, S max was cm 2 /tablet, which was more than 7-fold that for 1.0% K-CL, and t max was 3.13 min, 299 suggesting that a disintegration property of K-CL was observed. At the K-CL 300 concentration of 5.0%, however, t max could not be calculated by Eq. (8), because b was 301 less than 1 (Table 1). This might be explained by the high disintegration performance of 302 K-CL: because K-CL, unlike the other disintegrants, is considered not to form a gel 303 structure, the tablet disintegration and drug dissolution occurred much more rapidly 18

19 304 when 5.0% K-CL was added. Therefore, we calculated S max assuming that t max was min as well as the case of a tablet containing no disintegrant, and S max was found to be cm 2 /tablet. Therefore, the analysis of S(t) can also reflect the characteristics of K-CL 307 that there is a K-CL concentration which optimizes disintegration Effect of CMC-Ca and L-HPC 310 Figs. 1C-D and 2C-D respectively show the ETZ release behavior from tablets 311 containing CMC-Ca and L-HPC, which are cellulose disintegrants, at concentrations of %, 3.0%, and 5.0%, and the time courses of S(t). When either disintegrant was added, 313 the dissolution of ETZ from the tablets increased with increasing disintegrant 314 concentration. In particular, even when CMC-Ca was added at only 1.0%, a remarkable 315 increase in S(t) was observed in comparison with K-CL (Fig. 2C). At this concentration, 316 S max was cm 2 /tablet, which was larger than that of 1.0% Glycolys or K-CL, and 317 t max was min (Table 1). In addition, when CMC-Ca was added at 3.0% and 5.0%, 318 S max was cm 2 /tablet and cm 2 /tablet, respectively (Table 1), suggesting that 319 CMC-Ca is a superior disintegrant. Generally, since the recommended concentration 320 range of CMC-Ca in pharmaceutical formulations is 1 15%, tablets containing over % CMC-Ca would exhibit stronger disintegration behavior. In addition, CMC-Ca is a 322 swelling-type disintegrant, and its capacity to absorb the external solution is high. 19

20 323 Therefore, although the value of t max was almost the same for 3.0% and 5.0% CMC-Ca 324 (because the speed that CMC-Ca absorbs water was unchanged), the tablet rapidly 325 disintegrated due to the characteristics of CMC-Ca. 326 In the case of 1.0% LH-21, although b was greater than 1 (Table 1), S max was cm 2 /tablet, almost the same as in tablets containing no disintegrant, and t max was min. A previous report has shown that among cellulose disintegrants, LH-21 has 329 the lowest water absorption and swelling ability (Abdelbary et al, 2009); when a low 330 amount of LH-21 was added, it could not sufficiently interact with the external solution, 331 and consequently the tablets did not disintegrate as when K-CL was used. However, as 332 the LH-21 concentration was increased, the dissolution of ETZ significantly improved, 333 and an increase in S max and a decrease in t max were observed. When 5.0% LH-21 was 334 added, the scale and shape parameters were similar to those when CMC-Ca was used. 335 Therefore, an LH-21 concentration greater than 3.0% might provide a formulation with 336 superior disintegration properties Effect of Ac-Di-Sol 339 When Ac-Di-Sol was mixed with ETZ granules at concentrations of 1.0%, % and 5.0%, faster ETZ dissolution from the tablets was observed in a 341 concentration-dependent manner; even when only 1.0% Ac-Di-Sol was added, S max was cm 2 /tablet, which is the largest value of S max observed in this concentration, and 20

21 343 t max was 9.18 min. In addition, when Ac-Di-Sol was added at 3.0% and 5.0%, S max was cm 2 /tablet and cm 2 /tablet, respectively, suggesting that Ac-Di-Sol has the 345 highest water absorption and swelling abilities since it is a well-known swelling-type 346 disintegrant similar to CMC-Ca Physicochemical properties of tablets containing various disintegrants and 349 relationships between tablet properties and dissolution parameters 350 Table 2 shows the physicochemical properties such as disintegration time and 351 tablet hardness for the prepared tablets. A series of experimental results revealed that as 352 disintegrant concentration was increased, disintegration time decreased, whereas tablet 353 hardness remained over 150 N except for the tablet containing 5.0% K-CL (119 N), 354 which was clearly low compared to the values for the other tablets. Previous studies 355 have reported that incorporation of high amount of K-CL diminished the pressure 356 transmission ratio in tableting (Caramella et al., 1984; Schiermeier and Schmidt., 2002.), 357 and therefore this low compressibility might result in the low tablet hardness for 5.0% 358 K-CL. 359 The relationships between these physicochemical characteristics of tablets and 360 S max and t max obtained by dissolution tests are shown in Fig. 3. Tablet hardness was not 361 significantly related to t max or S max. On the other hand, a strong positive correlation was 21

22 362 found between disintegration time and t max and a strong negative correlation was found 363 between disintegration time and S max ; that is, as the disintegration time decreased, the 364 values of t max decreased and S max increased accordingly. Therefore, S max and t max 365 obtained through a dissolution test can be directly related to tablet disintegration Evaluation of disintegrant performance through water absorption experiment 368 To determine the disintegration ability of disintegrants, the time course of the 369 water absorption ratio for each disintegrant was evaluated, as shown in Fig. 4. Glycolys 370 showed good water absorption (R w ) and a fast water absorption rate, which peaked at min. In addition, Ac-Di-Sol and CMC-Ca showed moderate water absorption, with R w 372 increasing gradually up to values around 6. On the other hand, LH-21 showed the 373 lowest R w ; when this experiment was continued to 120 min, R w slowly increased to (data not shown), indicating that LH-21 absorbs water slowly. In addition, the 375 differences in the water absorption ratio among disintegrants might be attributable to the 376 hydrophilicity derived from the substituents of the disintegrants, such as the 377 hydroxypropyl group of LH-21, and the carboxymethyl groups of CMC-Ca and 378 Ac-Di-Sol Relationship between disintegration ability of disintegrants and available surface 22

23 381 area 382 To evaluate the dependence of disintegrant concentration on the dissolution 383 parameters, t max and S max, Δt max was calculated by subtracting t max at 5.0% from that at %, and ΔS max was calculated by subtracting S max at 1.0% from that at 5.0%. The 385 results for ΔS max and Δt max are shown in Table 3, together with the R w values from Fig As mentioned above, except for LH-21, R w was measured at 60 min because, in almost 387 all cases, its value plateaued with that time; however, R w for LH-21 is listed as 5.21 at min because the value continued to increase up to 120 min. The relationship of the 389 water absorption ratio with Δt max and ΔS max was evaluated as shown in Fig. 5. Glycolys 390 and Ac-Di-Sol, which exhibit high swellability, have low Δt max and ΔS max, indicating that 391 even if small amounts of these disintegrants are used in the formulation, high tablet 392 disintegration might be observed since these disintegrants have high water absorption 393 ratios. On the other hand, high Δt max and ΔS max values were observed for disintegrants 394 such as K-CL and LH-21 which have a low water absorption ratio, indicating that 395 although these disintegrants exhibit low disintegration performance, high tablet 396 disintegration is possible if a sufficient concentration of the disintegrant is used. In both 397 cases, strong negative correlations of the water absorption ratio with Δt max and ΔS max 398 were found, suggesting that only analysis of available surface area and the parameters 399 thereby obtained can directly provide useful information about the disintegration ability 23

24 400 of disintegrants. 401 Therefore, this analysis should be a convenient method for predicting the 402 ability of disintegrants as well as other pharmaceutical excipients, without the need to 403 conduct other in vitro experiment for determining the physicochemical properties of 404 tablets Conclusions 407 To date, there have been no reports that tablet disintegration due to 408 disintegrants can satisfactorily reflected in the dissolution behavior of a drug. Therefore, 409 to accurately evaluate the functionality and mechanism of disintegrants in relation to the 410 dissolution behavior of drugs, a new method that reflects both in vitro disintegration and 411 dissolution is desirable. Accordingly, in this study we investigated whether the 412 parameters t max and S max obtained by an analysis of available surface area can directly 413 provide useful information about the disintegration functionality of disintegrants. 414 When various types of disintegrants were added to a 50% ETZ formulation, an 415 increase in the dissolution rate was observed depending on the disintegrant 416 concentration. In addition, available surface area differed by disintegrant type. For 417 Glycolys, CMC-CA, and Ac-Di-Sol, a rapid increase in available surface area and the 418 largest increase in S max were observed, owing to swelling and wicking, even when only % disintegrant was added. In contrast, for K-CL and LH-21, a gradual increase in 24

25 420 available surface area was observed depending on disintegrant concentration. In 421 addition neither t max nor S max were affected by physicochemical properties such as tablet 422 hardness, while these parameters exhibited strong positive correlations with 423 disintegration time. Furthermore, to evaluate the dependence of disintegrant 424 concentration on the dissolution parameters t max and S max, Δt max and ΔS max were 425 calculated. The water absorption ratio was found to have strong negative correlations 426 with Δt max and ΔS max. Therefore, this study demonstrated that analysis of only available 427 surface area and parameters thereby obtained can directly provide useful information 428 about the disintegration ability of disintegrants Acknowledgments 431 The authors sincere thanks are due to the following companies; DFE 432 Pharmaceutical Co., Ltd., Asahi Kasei Co., Ltd., Shin-Etsu Chemical Co., Ltd., Nippon 433 Soda Co., Ltd., Roquette Japan K. K., BASF Japan Co., Ltd., Gotoku Chemical Co., 434 Ltd., Dainippon Sumitomo Pharma, Co., Ltd., and Iwaki Seiyaku Co., Ltd. for kindly 435 providing reagents for this study. 25

26 References Abdelbary, A., Elshafeey, A.H., Zidan, G., Comparative effects of different cellulosic based directly compressed orodispersable tablets on oral bioavailability of famotidine. Carbohydr. Polym. 77, Agata, Y., Iwao, Y., Miyagishima, A., Itai, S., Novel mathematical model for predicting the dissolution profile of spherical particles under non-sink conditions. Chem. Pharm. Bull. 58, Bi, Y., Sunada, H., Yonezawa, Y., Danjo, K., Otsuka, A., Iida, K., Preparation and evaluation of a compressed tablet rapidly disintegrating in the oral cavity. Chem. Pharm. Bull. 44, Caramella, C., Colombo, P., Conte, U., Gazzaniga, A., La Manna, A., The role of swelling in the disintegration process. Int. J. Pharm. Technol. Prod. Manuf. 5, 1 5. Caramella, C., Colombo, P., Conte, U., Ferrari, F., La Manna, A., Van Kamp, H.V., Bolhuis, G.K., Water uptake and disintegrating force measurements: towards a general understanding of disintegration mechanisms. Drug Dev. Ind. Pharm. 12, Caramella, C., Colombo, P., Conte, U., Ferrari, F., Gazzaniga, A., La Manna, A., Peppas, N.A., A physical analysis of the phenomenon of tablet disintegration. Int. J. Pharm. 44, Colombo, P., Caramella, C., Conte, U., La Manna, A., Guyot Hermann, A.M., Ringard, J., Disintegrating force and tablet properties. Drug Dev. Ind. Pharm. 7,

27 Colombo, P., Caramella, C., Conte, U., Peppas, N.A., Tablet disintegration: a physical model. Proceedings book of the 7th Pharmaceutical Technology Conference, London. vol. 3, pp Fukami, J., Yonemochi, E., Yoshihashi, Y., Terada, K., Evaluation of rapidly disintegrating tablets containing glycine and carboxymethylcellulose. Int. J. Pharm. 310, Itai, S., Kouchiwa, S., Nemoto, M., Murayama, H., Nagai, T., Effect of compression pressure and formulation on the available surface area of flufenamic acid in tablets. Chem. Pharm. Bull. 34(3), Kanig, J.L., Rudnic, E.M., The mechanism of disintegrant action. Pharm. Technol. 8, Kouchiwa, S., Nemoto, M., Itai, S., Murayama, H., Nagai, T., Prediction of available surface area of powdered particles of flufenamic acid in tablets. Chem. Pharm. Bull. 33(4), Schiermeier, S., Schmidt P.C., Fast dispersible ibuprofen tablets. Eur. J. Pharm. Sci. 15, Uchimoto, T., Iwao, Y., Takahashi, K., Tanaka, S., Agata, Y., Iwamura, T., Miyagishima, A., Itai, S., A comparative study of glycerin fatty acid ester and magnesium stearate on the dissolution of acetaminophen tablets using the analysis of available surface area. Eur. J. Pharm. Biopharm. 72(3), Van Kamp, H.V., Bolhuis, G.K., De Boer, A.H., Lerk, C.F., Lie-A-Huen, L., The role of water uptake on tablet disintegration. Pharm. Acta Helv. 61,

28 482 Figure legends 483 Figure 1. Effects of disintegrant concentration on the dissolution behavior of ETZ for (A) Glycolys, (B) K-CL, (C) CMC-Ca, (D) LH-21, and (E) Ac-Di-Sol. Each point represents the mean ± S.D. of three determinations. Cs= mg/l, W 0 =200 mg, V=900 ml, k= cm/min Figure 2. Effects of disintegrant concentration on the available surface area of ETZ for (A) Glycolys, (B) K-CL, (C) CMC-Ca, (D) LH-21, and (E) Ac-Di-Sol. Each point represents the mean ± S.D. of three determinations. Cs= mg/l, W 0 =200 mg, V=900 ml, k= cm/min Figure 3. Relationship between dissolution parameters t max and S max and tablet properties (hardness and disintegration time). Each point represents the mean ± S.D. of (a), (b) five and (c), (d) six determinations Figure 4. Measurement of water absorption ratio for various disintegrants. Each point represents the mean ± S.D. of three determinations Figure 5. Relationships of dissolution parameters Δt max and ΔS max with water 501 absorption ratio

29 % Dissolved % Dissolved % Dissolved Fig. 1 Iwao et al A) Glycolys B) K-CL Time(min) Time (min) C) CMC-Ca D) LH Time (min) Time (min) E) Ac-Di-Sol Time (min) 0% 1% 3% 5% Experimental data Theoretical curve 29

30 S(t) (cm 2 /tablet) S(t) (cm 2 /tablet) S(t) (cm 2 /tablet) Fig. 2 Iwao et al. 160 A) Glycolys B) K-CL Time (min) Time (min) C) CMc-Ca D) LH Time (min) Time (min) E) Ac-Di-Sol Time (min) 0% 1% 3% 5% Theoretical curve 30

31 Disintegration time (min) Disintegration time (min) Fig. 3 Iwao et al. (A) Disintegration time (min) 40 Hardness (N) R² = Hardness (N) 10 R² = t max (min) 0 (B) Disintegration time (min) 40 Hardness (N) R² = Hardness (N) 10 R² = S max (cm 2 /tablet) 0 31

32 Water absorption ratio (Rw) Fig. 4 Iwao et al Glycolys Ac-Di-Sol CMC-Ca K-CL LH Time (min) 32

33 ΔS max (cm 2 /tablet) Δt max (min) Fig. 5 Iwao et al. (A) 60 K-CL LH R² = Ac-Di-Sol CMC-Ca Glycolys Water absorption ratio (Rw) (B) 160 K-CL R² = Ac-Di-Sol LH-21 Glycolys CMC-Ca Water absorption ratio (Rw) 33

DESIGN AND EVALUATION OF CONTROLLED RELEASE MATRIX TABLETS OF FLURBIPROFEN

DESIGN AND EVALUATION OF CONTROLLED RELEASE MATRIX TABLETS OF FLURBIPROFEN Int. J. Chem. Sci.: 10(4), 2012, 2199-2208 ISSN 0972-768X www.sadgurupublications.com DESIGN AND EVALUATION OF CONTROLLED RELEASE MATRIX TABLETS OF FLURBIPROFEN K. V. R. N. S. RAMESH *, B. HEMA KIRNAMAYI

More information

Studies of Rapidly Disintegrating Tablets in the Oral Cavity Using Co-ground Mixtures of Mannitol with Crospovidone

Studies of Rapidly Disintegrating Tablets in the Oral Cavity Using Co-ground Mixtures of Mannitol with Crospovidone February 2002 Chem. Pharm. Bull. 50(2) 193 198 (2002) 193 Studies of Rapidly Disintegrating Tablets in the Oral Cavity Using Co-ground Mixtures of Mannitol with Crospovidone Toshifusa SHU,* Hideshi SUZUKI,

More information

Dissolution control of direct compression tablets in different test media using novel pregelatinized starch, Swelstar TM MX-1

Dissolution control of direct compression tablets in different test media using novel pregelatinized starch, Swelstar TM MX-1 Dissolution control of direct compression tablets in different test media using novel pregelatinized starch, Swelstar TM MX-1 ASAHI KASEI CHEMICALS CORPORATION CEOLUS R&D DEPARTMENT 1 CONTENTS General

More information

Investigation of physicochemical drug properties to prepare fine globular. granules composed of only drug substance in fluidized bed rotor granulation

Investigation of physicochemical drug properties to prepare fine globular. granules composed of only drug substance in fluidized bed rotor granulation Mise R. et al., Page 1 1 2 Chem. Pharm. Bull. Note 3 4 5 Investigation of physicochemical drug properties to prepare fine globular granules composed of only drug substance in fluidized bed rotor granulation

More information

Research Paper The Effect of Different Superdisintegrants and their Concentrations on the Dissolution of Topiramate Immediate Release Tablets

Research Paper The Effect of Different Superdisintegrants and their Concentrations on the Dissolution of Topiramate Immediate Release Tablets International Journal of Pharmaceutical Sciences and Nanotechnology Volume 2 Issue 2 July September 2009 Research Paper The Effect of Different Superdisintegrants and their Concentrations on the Dissolution

More information

FORMULATION AND EVALUATION OF PIROXICAM AND CELECOXIB TABLETS EMPLOYING PROSOLVE BY DIRECT COMPRESSION METHOD

FORMULATION AND EVALUATION OF PIROXICAM AND CELECOXIB TABLETS EMPLOYING PROSOLVE BY DIRECT COMPRESSION METHOD Int. J. Chem. Sci.: 6(3), 2008, 1270-1275 FORMULATION AND EVALUATION OF PIROXICAM AND CELECOXIB TABLETS EMPLOYING PROSOLVE BY DIRECT COMPRESSION METHOD K. P. R. CHOWDARY, P. TRIPURA SUNDARI and K. SURYA

More information

A Comparative Evaluation of Cross Linked Starch Urea-A New Polymer and Other Known Polymers for Controlled Release of Diclofenac

A Comparative Evaluation of Cross Linked Starch Urea-A New Polymer and Other Known Polymers for Controlled Release of Diclofenac Asian Journal of Chemistry Vol. 22, No. 6 (2010), 4239-4244 A Comparative Evaluation of Cross Linked Starch Urea-A New Polymer and Other Known Polymers for Controlled Release of Diclofenac K.P.R. CHOWDARY*

More information

Formulation and Evaluation

Formulation and Evaluation Chapter-5 Formulation and Evaluation 5.1 OBJECTIVE After successful taste masking and solubility enhancement of drugs in preliminary studies, by using Mannitol Solid Dispersion, next step includes the

More information

Bani-Jaber et al

Bani-Jaber et al 1 2 1 3 4 A newly developed lubricant, chitosan laurate, in the manufacture of acetaminophen tablets 5 6 7 Ahmad Bani-Jaber 1, Asuka Kobayashi 2, Kyohei Yamada 2, Dana Haj Ali 1, Takeaki Uchimoto 2, Yasunori

More information

FLORITER. New Technology for Innovative Formulation Design.

FLORITER. New Technology for Innovative Formulation Design. FLORITER New Technology for Innovative Formulation Design www.tomitaph.co.jp FLORITE Dramatically Change Your Formulation FLORITE is synthetic Calcium Silicate with exceptional liquid absorbency and excellent

More information

Available Online through

Available Online through ISSN: 0975-766X Available Online through Research Article www.ijptonline.com FORMULATION DESIGN AND OPTIMIZATION OF MOUTH DISSOLVE TABLETS OF GLIPIZIDE R.Shireesh Kiran 1*, B.Chander Shekar 1, Sharadha

More information

Lubrication properties of potential alternative lubricants, glycerin fatty acid esters, to magnesium stearate

Lubrication properties of potential alternative lubricants, glycerin fatty acid esters, to magnesium stearate Lubrication properties of potential alternative lubricants, glycerin fatty acid esters, to magnesium stearate Takeaki Uchimoto #, Yasunori Iwao #, Yuki Ikegami, Takashi Murata, Takashi Sonobe, Atsuo Miyagishima*,

More information

Application of Starches, Modified Starches and Starch Derivatives in Pharmaceutical Products

Application of Starches, Modified Starches and Starch Derivatives in Pharmaceutical Products 57. Starch Convention, Detmold, April 26-28, 2006 K.-J. Steffens Application of Starches, Modified Starches and Starch Derivatives in Pharmaceutical Products Starches, Pharmaceutical Applications _ Starches

More information

Int. Res J Pharm. App Sci., 2014; 4(1):47-51 ISSN:

Int. Res J Pharm. App Sci., 2014; 4(1):47-51 ISSN: International Research Journal of Pharmaceutical and Applied Sciences (IRJPAS) Available online at www.irjpas.com Int. Res J Pharm. App Sci., 2014; 4(1):47-51 Research Article FORMULATION AND EVALUATION

More information

Asian Journal of Pharmacy and Life Science ISSN Vol. 2 (2), July-Sept,2012

Asian Journal of Pharmacy and Life Science ISSN Vol. 2 (2), July-Sept,2012 STUDIES ON EFFECT OF SUPERDISINTEGRANTS ON ETORICOXIB TABLET FORMULATIONS Chowdary K. P. R 1, Venugopal. K *2 1 College of Pharmaceutical Sciences, Andhra University, Vishakapattanam. 2 * Nirmala college

More information

STUDIES ON EFFECT OF BINDERS ON ETORICOXIB TABLET FORMULATIONS

STUDIES ON EFFECT OF BINDERS ON ETORICOXIB TABLET FORMULATIONS Int. J. Chem. Sci.: 10(4), 2012, 1934-1942 ISSN 0972-768X www.sadgurupublications.com STUDIES ON EFFECT OF BINDERS ON ETORICOXIB TABLET FORMULATIONS K. VENUGOPAL * and K. P. R. CHOWDARY a Nirmala College

More information

Formulation and evaluation of fast dissolving tablet of aceclofenac

Formulation and evaluation of fast dissolving tablet of aceclofenac International Journal of Drug Delivery 2 (2010) 93-97 http://www.arjournals.org/ijdd.html Research article ISSN: 0975-0215 Formulation and evaluation of fast dissolving tablet of aceclofenac Sudhir Bhardwaj

More information

FORMULATION AND EVALUATION OF VALSARTAN TABLETS EMPLOYING CYCLODEXTRIN-POLOXAMER 407-PVP K30 INCLUSION COMPLEXES

FORMULATION AND EVALUATION OF VALSARTAN TABLETS EMPLOYING CYCLODEXTRIN-POLOXAMER 407-PVP K30 INCLUSION COMPLEXES Int. J. Chem. Sci.: 10(1), 2012, 297-305 ISSN 0972-768X www.sadgurupublications.com FORMULATION AND EVALUATION OF VALSARTAN TABLETS EMPLOYING CYCLODEXTRIN-POLOXAMER 407-PVP K30 INCLUSION COMPLEXES K. P.

More information

FORMULATION AND DEVELOPMENT OF ER METOPROLAOL SUCCINATE TABLETS

FORMULATION AND DEVELOPMENT OF ER METOPROLAOL SUCCINATE TABLETS International Journal of PharmTech Research CODEN( USA): IJPRIF ISSN : 0974-4304 Vol.1, No.3, pp 634-638, July-Sept 2009 FORMULATION AND DEVELOPMENT OF ER METOPROLAOL SUCCINATE TABLETS K. Reeta Vijaya

More information

DVA Symposium Mexico City Anisul Quadir Ph.D, MBA SE Tylose USA, Inc. (A Shin-Etsu Chemical Group Co.) Totowa, NJ

DVA Symposium Mexico City Anisul Quadir Ph.D, MBA SE Tylose USA, Inc. (A Shin-Etsu Chemical Group Co.) Totowa, NJ QbD Approach to Formulation of Hydrophilic Matrix Using Sample Kit of Hypromellose [Metolose SR] DVA Symposium Mexico City Anisul Quadir Ph.D, MBA SE Tylose USA, Inc. (A Shin-Etsu Chemical Group Co.) Totowa,

More information

STABILITY STUDIES OF FORMULATED CONTROLLED RELEASE ACECLOFENAC TABLETS

STABILITY STUDIES OF FORMULATED CONTROLLED RELEASE ACECLOFENAC TABLETS Int. J. Chem. Sci.: 8(1), 2010, 405-414 STABILITY STUDIES OF FORMULATED CONTROLLED RELEASE ACECLOFENAC TABLETS V. L. NARASAIAH, T. KARTHIK KUMAR, D. SRINIVAS, K. SOWMYA, P. L. PRAVALLIKA and Sk. Md. MOBEEN

More information

Critical material properties for the design of robust drug products : excipient functionality related characteristics

Critical material properties for the design of robust drug products : excipient functionality related characteristics Critical material properties for the design of robust drug products : excipient functionality related characteristics Dr Liz Meehan, Pharmaceutical Development, Macclesfield UK 1 Excipients Definition

More information

FABRICATION AND EVALUATION OF GLIMEPIRIDE CORDIA DICHOTOMA G.FORST FRUIT MUCILAGE SUSTAINED RELEASE MATRIX TABLETS

FABRICATION AND EVALUATION OF GLIMEPIRIDE CORDIA DICHOTOMA G.FORST FRUIT MUCILAGE SUSTAINED RELEASE MATRIX TABLETS Int. J. Chem. Sci.: 7(4), 2009, 2555-2560 FABRICATION AND EVALUATION OF GLIMEPIRIDE CORDIA DICHOTOMA G.FORST FRUIT MUCILAGE SUSTAINED RELEASE MATRIX TABLETS HINDUSTAN ABDUL AHAD *, B. PRADEEP KUMAR, C.

More information

Hydrodynamic Robustness of Hypromellose and Methylcellulose Based Modified Release Matrix Systems D. Tewari, R. K. Lewis, W. W. Harcum and T Dürig

Hydrodynamic Robustness of Hypromellose and Methylcellulose Based Modified Release Matrix Systems D. Tewari, R. K. Lewis, W. W. Harcum and T Dürig PHARMACEUTICAL TECHNOLOGY REPORT Consumer Specialties ashland.com PTR-069-1 (Supersedes PTR-069) Page 1 of 8 Hydrodynamic Robustness of Hypromellose and Methylcellulose Based Modified Release Matrix Systems

More information

Volume: 2: Issue-3: July-Sept ISSN FORMULATION AND EVALUATION OF SUSTAINED RELEASE MATRIX TABLETS OF NICORANDIL

Volume: 2: Issue-3: July-Sept ISSN FORMULATION AND EVALUATION OF SUSTAINED RELEASE MATRIX TABLETS OF NICORANDIL Volume: 2: Issue-3: July-Sept -2011 ISSN 0976-4550 FORMULATION AND EVALUATION OF SUSTAINED RELEASE MATRIX TABLETS OF NICORANDIL Ajaykumar Patil*, Ashish Pohane, Ramya Darbar, Sharanya Koutika, Alekhya

More information

A FACTORIAL STUDY ON THE ENHANCEMENT OF DISSOLUTION RATE OF KETOPROFEN BY SOLID DISPERSION IN COMBINED CARRIERS

A FACTORIAL STUDY ON THE ENHANCEMENT OF DISSOLUTION RATE OF KETOPROFEN BY SOLID DISPERSION IN COMBINED CARRIERS Research Article A FACTORIAL STUDY ON THE ENHANCEMENT OF DISSOLUTION RATE OF KETOPROFEN BY SOLID DISPERSION IN COMBINED CARRIERS K. P. R. Chowdary *, Tanniru Adinarayana, T. Vijay, Mercy. R. Prabhakhar

More information

PREPARATION AND EVALUATION OF STARCH - PEG 1500 CO-PROCESSED EXCIPIENT AS A NEW DIRECTLY COMPRESSIBLE VEHICLE IN TABLET FORMULATIONS

PREPARATION AND EVALUATION OF STARCH - PEG 1500 CO-PROCESSED EXCIPIENT AS A NEW DIRECTLY COMPRESSIBLE VEHICLE IN TABLET FORMULATIONS INTERNATIONAL JOURNAL OF RESEARCH IN PHARMACY AND CHEMISTRY Available online at www.ijrpc.com Research Article PREPARATION AND EVALUATION OF STARCH - PEG 1500 CO-PROCESSED EXCIPIENT AS A NEW DIRECTLY COMPRESSIBLE

More information

Patel Krunal M et al. IRJP 2 (2)

Patel Krunal M et al. IRJP 2 (2) INTERNATIONAL RESEARCH JOURNAL OF PHARMACY ISSN 223 87 Available online http://www.irjponline.com Research Article DESIGN DEVELOPMENT AND EVALUATION OF MODIFIED RELEASE TABLET OF MONTELUKAST SODIUM BY

More information

Formulation and Development of Sustained Release Tablets of Valsartan Sodium

Formulation and Development of Sustained Release Tablets of Valsartan Sodium INTERNATIONAL JOURNAL OF ADVANCES IN PHARMACY, BIOLOGY AND CHEMISTRY Research Article Formulation and Development of Sustained Release Tablets of Valsartan Sodium G. Sandeep * and A. Navya Department of

More information

Biowaiver Study on Prednisolone Tablets 5 mg in Three Different Brands. Marketed in Sudan. Safaa Mohamed *, Tilal Elsaman

Biowaiver Study on Prednisolone Tablets 5 mg in Three Different Brands. Marketed in Sudan. Safaa Mohamed *, Tilal Elsaman Available online at www.scholarsresearchlibrary.com Scholars Research Library Der Pharmacia Lettre, 2017, 9 [4]:8-114 [http://scholarsresearchlibrary.com/archive.html] ISSN 0975-5071 USA CODEN: DPLEB4

More information

STARCH Application Data

STARCH Application Data STARCH 1500 Application Data Partially Pregelatinized Maize Starch Starch 1500, Partially Pregelatinized Maize Starch, Used as a Binder Disintegrant in High Shear Wet Granulation Comparison to Povidone

More information

Optimization of valsartan tablet formulation by 2 3 factorial design

Optimization of valsartan tablet formulation by 2 3 factorial design Research Article ISSN: 0974-6943 K. P. R. Chowdary et al. / Journal of Pharmacy Research 2014,8(9, Available online through http://jprsolutions.info Optimization of valsartan tablet formulation by 2 3

More information

Formulation and In-vitro Evaluation of Chewable Tablets of Montelukast Sodium

Formulation and In-vitro Evaluation of Chewable Tablets of Montelukast Sodium Available online on www.ijddt.com International Journal of Drug Delivery Technology 214; (3); 98-13 Research Article ISSN: 97 441 Formulation and In-vitro Evaluation of Chewable Tablets of Montelukast

More information

Formulation and evaluation of sublingual tablets of lisinopril

Formulation and evaluation of sublingual tablets of lisinopril Journal of GROVER Scientific & Industrial AGARWAL: Research FORMULATION AND EVALUATION OF SUBLINGUAL TABLETS OF LISINOPRIL Vol. 71, June 2012, pp. 413-417 413 Formulation and evaluation of sublingual tablets

More information

DEVELOPMENT AND IN VITRO EVALUATION OF SUSTAINED RELEASE FLOATING MATRIX TABLETS OF METFORMIN HYDROCHLORIDE

DEVELOPMENT AND IN VITRO EVALUATION OF SUSTAINED RELEASE FLOATING MATRIX TABLETS OF METFORMIN HYDROCHLORIDE ISSN: 0975-8232 IJPSR (2010), Vol. 1, Issue 8 (Research article) Received 11 April, 2010; received in revised form 17 June, 2010; accepted 13 July, 2010 DEVELOPMENT AND IN VITRO EVALUATION OF SUSTAINED

More information

CONTENTS PAGE. Please note: Preface Matrix system Selection of METOLOSE grades Specifications

CONTENTS PAGE. Please note: Preface Matrix system Selection of METOLOSE grades Specifications Hypromellose CONTENTS PAGE 2 Preface Matrix system Selection of METOLOSE grades Specifications Properties Powder Solution Application Related Patents 3 4-5 6 8 10 13 14 17 Please note: The information

More information

Formulation and evaluation of immediate release salbutamol sulphate

Formulation and evaluation of immediate release salbutamol sulphate 5 Formulation, optimization and evaluation of immediate release layer of salbutamol sulphate Salbutamol is moderately selective beta (2)-receptor agonist similar in structure to terbutaline and widely

More information

Effect of superdisintegrants and their mode of incorporation on disintegration time and release profile of carbamazepine from immediate release tablet

Effect of superdisintegrants and their mode of incorporation on disintegration time and release profile of carbamazepine from immediate release tablet Journal of Applied Pharmaceutical Science Vol. 3 (5), pp. -84, May, 213 Available online at http://www.japsonline.com DOI: 1.7324/JAPS.213.3515 ISSN 2231-3354 Effect of superdisintegrants and their mode

More information

Available online Research Article

Available online   Research Article Available online www.jocpr.com Journal of Chemical and Pharmaceutical Research, 26, 8(2):7-7 Research Article ISSN : 975-7384 CODEN(USA) : JCPRC5 Optimization of directly compressible mixtures of microcrystalline

More information

Biopharmaceutics Dosage form factors influencing bioavailability Lec:5

Biopharmaceutics Dosage form factors influencing bioavailability Lec:5 Biopharmaceutics Dosage form factors influencing bioavailability Lec:5 Ali Y Ali BSc Pharmacy MSc Industrial Pharmaceutical Sciences Dept. of Pharmaceutics School of Pharmacy University of Sulaimani 09/01/2019

More information

The purpose of the present investigation was to design a formulation of orodispersible tablets of Etoricoxib by adopting

The purpose of the present investigation was to design a formulation of orodispersible tablets of Etoricoxib by adopting Research ARTICLE Formulation design and optimization of orodispersible tablets of etoricoxib by response surface methodology S R Shahi, G R Agrawal, N V Shinde, S A Shaikh 1, S S Shaikh, A N Padalkar 3,

More information

CHAPTER VI FACTORIAL STUDIES ON THE EFFECTS OF CYCLODEXTRINS AND SOLUTOL HS15 ON THE SOLUBILITY AND DISSOLUTION RATE OF EFAVIRENZ AND RITONAVIR

CHAPTER VI FACTORIAL STUDIES ON THE EFFECTS OF CYCLODEXTRINS AND SOLUTOL HS15 ON THE SOLUBILITY AND DISSOLUTION RATE OF EFAVIRENZ AND RITONAVIR CHAPTER VI FACTORIAL STUDIES ON THE EFFECTS OF CYCLODEXTRINS AND SOLUTOL HS15 ON THE SOLUBILITY AND DISSOLUTION RATE OF EFAVIRENZ AND RITONAVIR Efavirenz and ritonavir, two widely prescribed anti retroviral

More information

Pharmaceutical Studies on Formulation and Evaluation of Sustained Release Tablets Containing Certain Drugs

Pharmaceutical Studies on Formulation and Evaluation of Sustained Release Tablets Containing Certain Drugs Mansoura University Faculty of Pharmacy Department of Pharmaceutics Pharmaceutical Studies on Formulation and Evaluation of Sustained Release Tablets Containing Certain Drugs Thesis presented by Ali Saeed

More information

FORMULATION AND EVALUATION OF ETORICOXIB TABLETS EMPLOYING CYCLODEXTRIN- POLOXAMER PVPK30 INCLUSION COMPLEXES

FORMULATION AND EVALUATION OF ETORICOXIB TABLETS EMPLOYING CYCLODEXTRIN- POLOXAMER PVPK30 INCLUSION COMPLEXES Volume: 2: Issue-4: Oct - Dec -2011 ISSN 0976-4550 FORMULATION AND EVALUATION OF ETORICOXIB TABLETS EMPLOYING CYCLODEXTRIN- POLOXAMER 407 - PVPK30 INCLUSION COMPLEXES K.P.R. Chowdary*, K. Surya Prakasa

More information

The Relevance of USP Methodology in the Development of a Verapamil Hydrochloride (240 mg) Extended Release Formulation

The Relevance of USP Methodology in the Development of a Verapamil Hydrochloride (240 mg) Extended Release Formulation METHOCEL Premium Cellulose Ethers Application Data The Relevance of USP Methodology in the Development of a Verapamil Hydrochloride (240 mg) Extended Release Formulation INTRODUCTION Hydrophilic matrices

More information

DESIGN, DEVELOPMENT AND OPTIMIZATION OF FAST DISSOLVING TABLET OF NEBIVOLOL HCL

DESIGN, DEVELOPMENT AND OPTIMIZATION OF FAST DISSOLVING TABLET OF NEBIVOLOL HCL DESIGN, DEVELOPMENT AND OPTIMIZATION OF FAST DISSOLVING TABLET OF NEBIVOLOL HCL Isha Shah, Alpesh Yadav, Shailendra Bhatt Maharishi Arvind Institute of Pharmacy, Mansarovar, Jaipur, India-3000. Abstract

More information

Effect of Common Excipients on the Oral Drug Absorption of Biopharmaceutics Classification System Class 3 Drugs

Effect of Common Excipients on the Oral Drug Absorption of Biopharmaceutics Classification System Class 3 Drugs Effect of Common Excipients on the Oral Drug Absorption of Biopharmaceutics Classification System Class 3 Drugs James E. Polli jpolli@rx.umaryland.edu April 26, 2016 Topics BCS Class 3 excipient study

More information

ENHANCEMENT OF SOLUBILITY AND DISSOLUTION RATE OF NIMESULIDE BY CYCLODEXTRINS, POLOXAMER AND PVP

ENHANCEMENT OF SOLUBILITY AND DISSOLUTION RATE OF NIMESULIDE BY CYCLODEXTRINS, POLOXAMER AND PVP Int. J. Chem. Sci.: 9(2), 20, 637-646 ISSN 0972-768X www.sadgurupublications.com ENHANCEMENT OF SOLUBILITY AND DISSOLUTION RATE OF NIMESULIDE BY CYCLODEXTRINS, POLOXAMER AND PVP K. P. R. CHOWDARY *, K.

More information

International Journal of Pharma Sciences and Scientific Research

International Journal of Pharma Sciences and Scientific Research Research Article International Journal of Pharma Sciences and Scientific Research ISSN 2471-6782 Open Access Formulation, development and evaluation of rivaroxaban tablets by using solubility enhancement

More information

1. Gastric Emptying Time Anatomically, a swallowed drug rapidly reaches the stomach. Eventually, the stomach empties its content in the small

1. Gastric Emptying Time Anatomically, a swallowed drug rapidly reaches the stomach. Eventually, the stomach empties its content in the small Lecture-5 1. Gastric Emptying Time Anatomically, a swallowed drug rapidly reaches the stomach. Eventually, the stomach empties its content in the small intestine. Because the duodenum has the greatest

More information

IMPAIRMENT OF THE IN VITRO RELEASE OF CARBAMAZEPINE FROM TABLETS

IMPAIRMENT OF THE IN VITRO RELEASE OF CARBAMAZEPINE FROM TABLETS & IMPAIRMENT OF THE IN VITRO RELEASE OF CARBAMAZEPINE FROM TABLETS Alija Uzunović 1, Edina Vranić 2, Šeherzada Hadžidedić 1 1 Agency for Medical Products and Medical Devices of Bosnia and Herzegovina,

More information

Int. Res J Pharm. App Sci., 2013; 3(6):42-46 ISSN:

Int. Res J Pharm. App Sci., 2013; 3(6):42-46 ISSN: International Research Journal of Pharmaceutical and Applied Sciences (IRJPAS) Available online at www.irjpas.com Int. Res J Pharm. App Sci., 2013; 3(6):42-46 Research Article ENHANCEMENT OF SOLUBILITY

More information

Available Online through Research Article

Available Online through Research Article ISSN: 0975-766X Available Online through Research Article www.ijptonline.com DESIGN AND EVALUATION OF GASTRORETENTIVE TABLETS FOR CONTROLLED DELIVERY OF NORFLOXOCIN Ganesh Kumar Gudas*, Subal Debnath,

More information

OPTIMIZATION OF CONTROLLED RELEASE GASTRORETENTIVE BUOYANT TABLET WITH XANTHAN GUM AND POLYOX WSR 1105

OPTIMIZATION OF CONTROLLED RELEASE GASTRORETENTIVE BUOYANT TABLET WITH XANTHAN GUM AND POLYOX WSR 1105 Digest Journal of Nanomaterials and Biostructures Vol. 9, No. 3, July September 2014, p. 1077-1084 OPTIMIZATION OF CONTROLLED RELEASE GASTRORETENTIVE BUOYANT TABLET WITH XANTHAN GUM AND POLYOX WSR 1105

More information

Formulation and Evaluation of Oral disintegrated tablets of Alfuzosin Hydrochloride using superdisintegrants

Formulation and Evaluation of Oral disintegrated tablets of Alfuzosin Hydrochloride using superdisintegrants ISSN: 2231-3354 Received on: 13-11-2011 Revised on: 18:11:2011 Accepted on: 22-11-2011 Formulation and Evaluation of Oral disintegrated tablets of Alfuzosin Hydrochloride using superdisintegrants Leela

More information

FACTORIAL STUDIES ON THE EFFECTS OF HYDROXY PROPYL β- CYCLODEXTRIN AND POLOXAMER 407 ON THE SOLUBILITY AND DISSOLUTION RATE OF BCS CLASS II DRUGS

FACTORIAL STUDIES ON THE EFFECTS OF HYDROXY PROPYL β- CYCLODEXTRIN AND POLOXAMER 407 ON THE SOLUBILITY AND DISSOLUTION RATE OF BCS CLASS II DRUGS JChrDD Vol 2 Issue 2 2011: 89-93 ISSN 2249-6785 Journal of Chronotherapy and Drug Delivery Received: August 06, 2011 Accepted: Sep 12, 2011 Original Research Paper FACTORIAL STUDIES ON THE EFFECTS OF HYDROXY

More information

Etat des travaux du GDP

Etat des travaux du GDP Etat des travaux du GDP (Avril 2018) Item General methods relevant to Q6A Dissolution (rev. 3) 4 Disintegration (rev. 1) 4 Uniformity of content/mass (rev. 2, corr. 1) 4 Tests for specified microorganisms

More information

TABLET DESIGN AND FORMULATION

TABLET DESIGN AND FORMULATION TABLET DESIGN AND FORMULATION PART 5 Industrial pharmacy 5th class 1st semester TABLET DESIGN AND FORMULATION Conventional oral tablets for ingestion usually contain the same classes of components in addition

More information

7. SUMMARY, CONCLUSION AND RECOMMENDATIONS

7. SUMMARY, CONCLUSION AND RECOMMENDATIONS 211 7. SUMMARY, CONCLUSION AND RECOMMENDATIONS Drug absorption from the gastro intestinal tract can be limited by various factors with the most common one being poor aqueous solubility and poor permeability

More information

Granulation Aggregation

Granulation Aggregation Granulation Aggregation Wet granulation Solvent granulation (crust granules) Binder granulation (sticked granules) Granulation liquid Water Water + alcohol mixture Macromolecular colloidal solution i.e.:

More information

Design and In-vitro Evaluation of Silymarin Bilayer Tablets

Design and In-vitro Evaluation of Silymarin Bilayer Tablets CODEN (USA)-IJPRUR, e-issn: 2348-6465 International Journal of Pharma Research and Health Sciences Available online at www.pharmahealthsciences.net Original Article Design and In-vitro Evaluation of Silymarin

More information

Formulation Development of Aceclofenac Tablets Employing Starch Phosphate -A New Modified Starch

Formulation Development of Aceclofenac Tablets Employing Starch Phosphate -A New Modified Starch Abstract K.P.R. Chowdary et al. / International Journal of Pharma Sciences and Research (IJPSR) Formulation Development of Aceclofenac Tablets Employing Starch Phosphate -A New Modified Starch K.P.R. Chowdary*,

More information

TECHNICAL INFORMATION RxCIPIENTS FM A versatile excipient for orally disintegrating tablet (ODT) formulations

TECHNICAL INFORMATION RxCIPIENTS FM A versatile excipient for orally disintegrating tablet (ODT) formulations TECHNICAL INFORMATION 1426 RxCIPIENTS FM 1 A versatile excipient for orally disintegrating tablet (ODT) formulations Table of contents 1 Introduction 3 2 Mode of action and advantages of RxCIPIENTS FM

More information

Direct Compression. With the right ingredients it s a simple, cost-effective manufacturing process

Direct Compression. With the right ingredients it s a simple, cost-effective manufacturing process Direct With the right ingredients it s a simple, cost-effective manufacturing process TM Trademark of The Dow Chemical Company ( Dow ) or an affiliated company of Dow Speed and savings sounds good to us

More information

Formulation and evaluation of oro-dispersible tablets of lafutidine

Formulation and evaluation of oro-dispersible tablets of lafutidine Available online at www.scholarsresearchlibrary.com Scholars Research Library Der Pharmacia Lettre, 2015, 7 (5):226-235 (http://scholarsresearchlibrary.com/archive.html) ISSN 0975-5071 USA CODEN: DPLEB4

More information

A FACTORIAL STUDY ON ENHANCEMENT OF SOLUBILITY AND DISSOLUTION RATE OF IBUPROFEN BY β CYCLODEXTRIN AND SOLUTOL HS15

A FACTORIAL STUDY ON ENHANCEMENT OF SOLUBILITY AND DISSOLUTION RATE OF IBUPROFEN BY β CYCLODEXTRIN AND SOLUTOL HS15 INTERNATIONAL JOURNAL OF RESEARCH IN PHARMACY AND CHEMISTRY Available online at www.ijrpc.com Research Article A FACTORIAL STUDY ON ENHANCEMENT OF SOLUBILITY AND DISSOLUTION RATE OF IBUPROFEN BY β CYCLODEXTRIN

More information

Scholars Research Library. Formulation Development of Pioglitazone Tablets Employing β Cyclodextrin- Poloxamer 407- PVP K30: A Factorial Study

Scholars Research Library. Formulation Development of Pioglitazone Tablets Employing β Cyclodextrin- Poloxamer 407- PVP K30: A Factorial Study Available online at www.scholarsresearchlibrary.com Scholars Research Library Der Pharmacia Lettre, 2011, 3 (6):24-30 (http:scholarsresearchlibrary.comarchive.html) ISSN 0974-248X USA CODEN: DPLEB4 Formulation

More information

A study of compressibility and compactibility of directly compressible tableting materials containing tramadol hydrochloride

A study of compressibility and compactibility of directly compressible tableting materials containing tramadol hydrochloride Acta Pharm. 66 (2016) 433 441 DOI: 10.1515/acph-2016-0034 Short communication A study of compressibility and compactibility of directly compressible tableting materials containing tramadol hydrochloride

More information

Journal of Chemical and Pharmaceutical Research

Journal of Chemical and Pharmaceutical Research Available on line www.jocpr.com Journal of Chemical and Pharmaceutical Research ISSN No: 0975-7384 CODEN(USA): JCPRC5 J. Chem. Pharm. Res., 2011, 3(3):159-164 Studies on formulation and in vitro evaluation

More information

FORMULATION AND CHARACTERIZATION OF TELMISATAN SOLID DISPERSIONS

FORMULATION AND CHARACTERIZATION OF TELMISATAN SOLID DISPERSIONS International Journal of PharmTech Research CODEN (USA): IJPRIF ISSN : 974-434 Vol.2, No.1, pp 341-347, Jan-Mar 1 FORMULATION AND CHARACTERIZATION OF TELMISATAN SOLID DISPERSIONS Kothawade S. N. 1 *, Kadam

More information

Re-compaction properties of lactose and microcrystalline cellulose

Re-compaction properties of lactose and microcrystalline cellulose Re-compaction properties of lactose and microcrystalline cellulose Individual excipients MCC Starch Lactose Inhalation Superdisintegrants SuperTab 21AN (anhydrous lactose) is the preferred form of lactose

More information

A FACTORIAL STUDY ON THE ENHANCEMENT OF DISSOLUTION RATE OF ACECLOFENAC BY SOLID DISPERSION IN STARCH PHOSPHATE AND GELUCIRE

A FACTORIAL STUDY ON THE ENHANCEMENT OF DISSOLUTION RATE OF ACECLOFENAC BY SOLID DISPERSION IN STARCH PHOSPHATE AND GELUCIRE INTERNATIONAL JOURNAL OF RESEARCH IN PHARMACY AND CHEMISTRY Available online at www.ijrpc.com Research Article A FACTORIAL STUDY ON THE ENHANCEMENT OF DISSOLUTION RATE OF ACECLOFENAC BY SOLID DISPERSION

More information

Short Communication. Formulation of Furosemide Dispersible Tablets for Use in Paediatrics V. V. ABWOVA, P. N. MBEO, L. J. TIROP AND K. A. M.

Short Communication. Formulation of Furosemide Dispersible Tablets for Use in Paediatrics V. V. ABWOVA, P. N. MBEO, L. J. TIROP AND K. A. M. 61 East and Central African Journal of Pharmaceutical Sciences Vol. 18 (2015) 61-66 Short Communication Formulation of Furosemide Dispersible Tablets for Use in Paediatrics V. V. ABWOVA, P. N. MBEO, L.

More information

Journal of Global Trends in Pharmaceutical Sciences Vol.2, Issue 4, pp , Oct -Dec 2011

Journal of Global Trends in Pharmaceutical Sciences Vol.2, Issue 4, pp , Oct -Dec 2011 ISSN: 223-7346 Research Article Journal of Global Trends in Pharmaceutical Sciences Vol.2, Issue 4, pp -394-43, Oct -Dec 211 FORMULATION AND INVITRO EVALUATION OF SUSTAINED RELEASE MATRIX TABLETS OF GLIMEPIRIDE

More information

FORMULATION DEVELOPMENT AND IN-VITRO EVALUATION OF ORALLY DISINTEGRATING TABLETS OF AMLODIPINE BESYLATE

FORMULATION DEVELOPMENT AND IN-VITRO EVALUATION OF ORALLY DISINTEGRATING TABLETS OF AMLODIPINE BESYLATE INTERNATIONAL JOURNAL OF RESEARCH IN PHARMACY AND CHEMISTRY Available online at www.ijrpc.com Research Article FORMULATION DEVELOPMENT AND IN-VITRO EVALUATION OF ORALLY DISINTEGRATING TABLETS OF AMLODIPINE

More information

EP A1 (19) (11) EP A1 (12) EUROPEAN PATENT APPLICATION. (43) Date of publication: Bulletin 2010/39

EP A1 (19) (11) EP A1 (12) EUROPEAN PATENT APPLICATION. (43) Date of publication: Bulletin 2010/39 (19) (12) EUROPEAN PATENT APPLICATION (11) EP 2 233 131 A1 (43) Date of publication: 29.09. Bulletin /39 (1) Int Cl.: A61K 9/ (06.01) A61K 31/00 (06.01) (21) Application number: 09908.8 (22) Date of filing:

More information

The present study deals with the formulation of fast dissolving tablets of poorly soluble carbamazepine by the direct

The present study deals with the formulation of fast dissolving tablets of poorly soluble carbamazepine by the direct Research ARTICLE Development and evaluation of carbamazepine fast dissolving tablets prepared with a complex by direct compression technique N G Raghavendra Rao, T Patel 1, S Gandhi 1 Department of Pharmaceutics,

More information

Table 1 Hydrophilicity of MC and HPMC Grades. Polymer Cloud Point ( C) Hydrophilicity MC HPMC Type 2910 HPMC Type

Table 1 Hydrophilicity of MC and HPMC Grades. Polymer Cloud Point ( C) Hydrophilicity MC HPMC Type 2910 HPMC Type PHARMACEUTICAL TECHNOLOGY REPORT Consumer Specialties ashland.com PTR-046-1 (Supersedes PTR-046) Page 1 of 6 Effect of Hypromellose and Methylcellulose Substitution Type, Molecular Weight and Drug Solubility

More information

Excipient Quality & Trouble Shooting. By Seema Trivedi GM, Technical

Excipient Quality & Trouble Shooting. By Seema Trivedi GM, Technical Excipient Quality & Trouble Shooting By Seema Trivedi GM, Technical Back Ground The Society for Pharmaceutical Dissolution Science (SPDS) had held its 6th Annual International Convention Disso India -

More information

EFFECT OF PVP ON CYCLODEXTRIN COMPLEXATION OF EFAVIRENZ FOR ENHANCING ITS SOLUBILITY AND DISSOLUTION RATE

EFFECT OF PVP ON CYCLODEXTRIN COMPLEXATION OF EFAVIRENZ FOR ENHANCING ITS SOLUBILITY AND DISSOLUTION RATE INTERNATIONAL JOURNAL OF RESEARCH IN PHARMACY AND CHEMISTRY Available online at www.ijrpc.com Research Article EFFECT OF PVP ON CYCLODEXTRIN COMPLEXATION OF EFAVIRENZ FOR ENHANCING ITS SOLUBILITY AND DISSOLUTION

More information

Int. Res J Pharm. App Sci., 2012; 2(6): ISSN:

Int. Res J Pharm. App Sci., 2012; 2(6): ISSN: International Research Journal of Pharmaceutical and Applied Sciences (IRJPAS) Available online at www.irjpas.com Int. Res J Pharm. App Sci., 2013; 3(1): 269-273 Research Article FORMULATION DEVELOPMENT

More information

372 J App Pharm Vol. 6; Issue 4: ; October, 2014 Moazzem et al, 2014

372 J App Pharm Vol. 6; Issue 4: ; October, 2014 Moazzem et al, 2014 372 J App Pharm Vol. 6; Issue 4: 372-379; October, 2014 Moazzem et al, 2014 Original Research Article EFFECT OF SUPERDISINTEGRATING AGENT ON THE RELEASE OF METFORMIN HCl FROM IMMEDIATE RELEASE TABLETS

More information

(51) Int Cl.: A61K 9/20 ( ) A61K 31/41 ( )

(51) Int Cl.: A61K 9/20 ( ) A61K 31/41 ( ) (19) TEPZZ 94677_A_T (11) (12) EUROPEAN PATENT APPLICATION (43) Date of publication: 2.11.1 Bulletin 1/48 (1) Int Cl.: A61K 9/ (06.01) A61K 31/41 (06.01) (21) Application number: 116790.3 (22) Date of

More information

Formulation Development of Nimesulide Tablets by Wet Granulation and Direct Compression Methods Employing Starch Citrate

Formulation Development of Nimesulide Tablets by Wet Granulation and Direct Compression Methods Employing Starch Citrate Asian Journal of Chemistry; Vol. 24, No. 8 (2012), 3362-3366 Formulation Development of Nimesulide Tablets by Wet Granulation and Direct Compression Methods Employing Starch Citrate K.P.R. CHOWDARY *,

More information

This PDF is available for free download from a site hosted by Medknow Publications

This PDF is available for free download from a site hosted by Medknow Publications 26 CMYK Research Paper Possible Use of Psyllium Husk as a Release Retardant ANGIRA DESAI, SUPRIYA SHIDHAYE*, V. J. KADAM Department of Pharmaceutics, Bharati Vidhyapeeth s College of Pharmacy, Sector-8,

More information

Office europeen des brevets. Publication number: Applicant: Chugai Seiyaku Kabushiki Kaisha 5-1, 5-chome, Ukima Kita-ku Tokyo(JP)

Office europeen des brevets. Publication number: Applicant: Chugai Seiyaku Kabushiki Kaisha 5-1, 5-chome, Ukima Kita-ku Tokyo(JP) J Europaisches Patentamt European Patent Office Publication number: 0 2 932 Office europeen des brevets A2 EUROPEAN PATENT APPLICATION Application number: 87100549.2 Date of filing: 16.01.87 int. Ci.

More information

Muniyandy SARAVANAN,*,a Kalakonda SRI NATARAJ, a and Kettavarampalayam Swaminath GANESH b

Muniyandy SARAVANAN,*,a Kalakonda SRI NATARAJ, a and Kettavarampalayam Swaminath GANESH b 978 Notes Chem. Pharm. Bull. 51(8) 978 983 (2003) Vol. 51, No. 8 Hydroxypropyl Methylcellulose Based Cephalexin Extended Release Tablets: Influence of Tablet Formulation, Hardness and Storage on in Vitro

More information

Evaluation of different binders for roller compaction R. Wang, W. Liu, T. Durig

Evaluation of different binders for roller compaction R. Wang, W. Liu, T. Durig PHARMACEUTICAL THNOLOGY REPORT Consumer Specialties ashland.com PTR 11 Page 1 of 5 Evaluation of different binders for roller compaction R. Wang, W. Liu, T. Durig Objectives When preparing tablets by roller

More information

Kollidon CL Kollidon CL-F Kollidon CL-SF Kollidon CL-M. Super-disintegrants and dissolution enhancers.

Kollidon CL Kollidon CL-F Kollidon CL-SF Kollidon CL-M. Super-disintegrants and dissolution enhancers. Kollidon CL Kollidon CL-F Kollidon CL-SF Kollidon CL-M Super-disintegrants and dissolution enhancers. 2 The Preface New: 4 dimensions of Kollidon CL standard, fine (CL-F), superfine (CL-SF) and micronized

More information

INTERNATIONAL JOURNAL OF PHARMACEUTICAL AND CHEMICAL SCIENCES

INTERNATIONAL JOURNAL OF PHARMACEUTICAL AND CHEMICAL SCIENCES Research Article Formulation, Development and Evaluation of Fast Dissolving Tablet of Salbutamol Sulphate by Using Superdisintegrants of Various Concentrations Santosh K 1 *, Meenakshi B 2 and Jyoti M

More information

Formulation and Optimization of Immediate Release Tablet of Sitagliptin Phosphate using Response Surface Methodology

Formulation and Optimization of Immediate Release Tablet of Sitagliptin Phosphate using Response Surface Methodology Formulation and Optimization of Immediate Release Tablet of Sitagliptin Phosphate using Response Surface Methodology Sunita Shakya Department of Pharmacy, Kathmandu University, Kavre, Nepal. Email: sunita95@gmail.com

More information

EVALUATION OF EFFERVESCENT FLOATING TABLETS. 6.7 Mathematical model fitting of obtained drug release data

EVALUATION OF EFFERVESCENT FLOATING TABLETS. 6.7 Mathematical model fitting of obtained drug release data EVALUATION OF EFFERVESCENT FLOATING TABLETS 6.1 Technological characteristics of floating tablets 6.2 Fourier transform infrared spectroscopy (FT-IR) 6.3 Differential scanning calorimetry (DSC) 6.4 In

More information

To study the effect that hydroxypropylcellulose (HPC) polymer molecular weight (MW) exerts on drug release rates and mechanism from matrix tablets.

To study the effect that hydroxypropylcellulose (HPC) polymer molecular weight (MW) exerts on drug release rates and mechanism from matrix tablets. PHARMACEUTICAL TECHNOLOGY REPORT Consumer Specialties ashland.com PTR-029-1 (Supersedes PTR 029) Page 1 of 7 Hydroxypropylcellulose in Modified Release Matrix Systems: Polymer Molecular Weight Controls

More information

SUSTAINED RELEASE TABLETS USING A PVA DC FORMULATION RESISTANT TO ALCOHOL INDUCED DOSE DUMPING

SUSTAINED RELEASE TABLETS USING A PVA DC FORMULATION RESISTANT TO ALCOHOL INDUCED DOSE DUMPING SUSTAINED RELEASE TABLETS USING A PVA DC FORMULATION RESISTANT TO ALCOHOL INDUCED DOSE DUMPING Dr. Dieter Lubda MilliporeSigma is a business of Merck KGaA, Darmstadt, Germany Agenda: Sustained release

More information

Preformulation Study. CHAPTER 3 Preformulation Study. 3.0 Introduction

Preformulation Study. CHAPTER 3 Preformulation Study. 3.0 Introduction CHAPTER 3 3.0 Introduction As per Sir Arthur Conan Doyle, It is a capital mistake to theorize before one has data. Preformulation work is the foundation for development of any robust formulations (G. Banker

More information

Chemate and Chowdary, IJPSR, 2012; Vol. 3(7): ISSN:

Chemate and Chowdary, IJPSR, 2012; Vol. 3(7): ISSN: IJPSR (2012), Vol. 3, Issue 07 (Research Article) Received on 18 March, 2012; received in revised form 25 April, 2012; accepted 22 June, 2012 A FACTORIAL STUDY ON ENHANCEMENT OF SOLUBILITY AND DISSOLUTION

More information

5.1 STANDARD CURVES OF DRUGS USED

5.1 STANDARD CURVES OF DRUGS USED 223 Glipizide and Glimepiride matrix tablets were prepared by using Aloe barbadensis miller leaves mucilage, Guar gum, Povidone and were evaluated. Similarly Glipizide and Glimepiride transdermal patches

More information

Scholars Research Library. Formulation and evaluation of buccoadhesive tablet of Atenolol

Scholars Research Library. Formulation and evaluation of buccoadhesive tablet of Atenolol Available online at www.scholarsresearchlibrary.com Scholars Research Library Der Pharmacia Lettre, 2011, 3(2): 34-38 (http://scholarsresearchlibrary.com/archive.html) ISSN 0975-5071 USA CODEN: DPLEB4

More information

CHAPTER 8 HYDROGEL PLUG FORMULATION AND EVAUATION

CHAPTER 8 HYDROGEL PLUG FORMULATION AND EVAUATION CHAPTER 8 HYDROGEL PLUG FORMULATION AND EVAUATION 8.1 Preparation of erodible tablet plug (Hydrogel Plug) Direct compression method was used to prepare the erodible tablet plug. The compositions of different

More information

Compression and Mechanical Properties of Tablet Formulations

Compression and Mechanical Properties of Tablet Formulations Compression and Mechanical Properties of Tablet Formulations Containing Corn, Sweet, and Starches as Binders O.A. Odeku*, O.O. Awe, B. Popoola, M.A. Odeniyi, and O.A. Itiola The authors study the effects

More information