Module C CHEMISTRY & CELL BIOLOGY REVIEW

Size: px
Start display at page:

Download "Module C CHEMISTRY & CELL BIOLOGY REVIEW"

Transcription

1 Module C CHEMISTRY & CELL BIOLOGY REVIEW Note: This module is provided for A&P courses that do not have a prerequisite class which includes chemistry and cell biology. Content covered by required prerequisite courses does not need to be repeated in Anatomy & Physiology. Topic from Atoms & molecules Chemical bonding Inorganic compounds & solutions Organic compounds 1. With respect to the structure of an atom: a. Describe the charge, mass, and relative location of electrons, protons and neutrons. 1 b. Relate the number of electrons in an electron shell to an atom s chemical stability and its ability to form chemical bonds c. Explain how ions and isotopes are produced by changing the relative number of specific subatomic 1 particles. d. Distinguish among the terms atomic number, mass number and atomic weight. 2. Compare and contrast the terms ions, electrolytes, free radicals, isotopes and radioisotopes 3. Compare and contrast the terms atoms, molecules, elements, and compounds. With respect to non-polar covalent, polar covalent, ionic, and hydrogen bonds: a. List each type of bond in order by relative strength. b. Explain the mechanism of each type of bond. 1 c. Provide biologically significant examples of each. Application 1 1. Discuss the physiologically important properties of water. 2. Distinguish among the terms solution, solute, solvent, colloid suspension, and emulsion. 3. Define the term salt and give examples of Knowledge & physiological significance. Application 1 4. Define the terms ph, acid, base, and buffer and give Knowledge & examples of physiological significance. Application 1 5. State acidic, neutral, and alkaline ph values. 1. Define the term organic molecule. 2. Explain the relationship between monomers and polymers Define and give examples of dehydration synthesis Knowledge & and hydrolysis reactions. Application 1 4. With respect to carbohydrates, proteins, lipids and nucleic acids: a. Identify the monomers and polymers. b. Compare and contrast general molecular structure. c. Provide specific examples. Application 1 Module C March 2010

2 Energy transfer using ATP Intracellular organization of nucleus & cytoplasm Membrane structure & function Mechanisms for movement of materials across cell membranes Organelles Protein synthesis d. Identify dietary sources.,6 e. Discuss physiological and structural roles in the human body. 5. Describe the four levels of protein structure and discuss the importance of protein shape for protein function. 6. Demonstrate factors that affect enzyme activity, including denaturation, and interpret graphs showing the effects of various factors on the rate of enzymecatalyzed reactions. Describe the generalized reversible reaction for release of energy from ATP and explain the role of ATP in the cell. 1. Identify the three main parts of a cell, and list the general functions of each. 1,4 Application 7, 8 Knowledge 2. Explain how cytoplasm and cytosol are different. 1, 2 1. Describe how lipids are distributed in a cell membrane, and explain their functions. 2. Describe how carbohydrates are distributed in a cell membrane, and explain their functions. 3. Describe how proteins are distributed in a cell membrane, and explain their functions. 1. With respect to the following membrane transport processes simple diffusion, facilitated diffusion, osmosis, active transport, exocytosis, endocytosis, phagocytosis, pinocytosis, & filtration: a. State the type of material moving in each process. Knowledge b. Describe the mechanism by which movement of material occurs in each process. c. Discuss the energy requirements and, if applicable, the sources of energy for each process. d. Give examples of each process in the human body. Application 2. Describe the effects of hypertonic, isotonic, and hypotonic conditions on cells. 1,3,6 3. Demonstrate various cell transport processes and, Application & given appropriate information, predict the outcomes Synthesis of these demonstrations. 6,7 1. Define the term organelle. 2. For each different type of organelle associated with human cells: a. Identify the organelle. Knowledge,7 b. Describe the structure of the organelle. c. Describe the function of the organelle 1. Define the terms genetic code, transcription and translation. 2. Explain how and why RNA is synthesized. 3. Explain the roles of trna, mrna, and rrna in protein synthesis. & Application 2,4 2 Module C March

3 Cellular respiration (introduction) Somatic cell division Reproductive cell division Application of homeostatic mechanisms Predictions related to homeostatic imbalance, including disease states & disorders 1. Define the term cellular respiration. 2. With respect to glycolysis, the Krebs (citric acid or TCA) cycle, and the electron transport chain: compare and contrast energy input, efficiency of energy production, oxygen use, by-products and cellular location.,2 1. Referring to a generalized cell cycle, including interphase and the stages of mitosis: a. Describe the events that take place in each stage. 1 b. Identify cells that are in each stage. Knowledge 7 c. Analyze the functional significance of each stage.,2 2. Distinguish between mitosis and cytokinesis.,5 3. Describe DNA replication. 1,5 4. Analyze the interrelationships among chromatin, chromosomes and chromatids.,5 5. Give examples of cell types in the body that divide by mitosis and examples of circumstances in the body Application 1,5 that require mitotic cell division. 1. Describe the events that take place in each stage of meiosis I and meiosis II. 2. Identify cells that are in each stage of meiosis I and meiosis II. 3. Compare and contrast the general features of meiosis I and meiosis II. 4. Compare and contrast the processes of mitosis and meiosis. 4. Give examples of cell types in the body that divide by meiosis and examples of circumstances in the body that require meiotic cell division. Provide specific examples to demonstrate how individual cells respond to their environment (e.g., in terms of organelle function, transport processes, protein synthesis, or regulation of cell cycle) in order to maintain homeostasis in the body. 1. Predict factors or situations that could disrupt organelle function, transport processes, protein synthesis, or the cell cycle. 2. Predict the types of problems that would occur if the cells could not maintain homeostasis due to abnormalities in organelle function, transport processes, protein synthesis, or the cell cycle. 1 Knowledge 7,5,5 Application 1,5 Application,3,4,5,6 Copyright Human Anatomy and Physiology Society (HAPS) Module C March

4 Module S INTRODUCTION TO HEREDITY Note: This module is provided for A&P courses that do not have a prerequisite class which includes information about heredity. Content covered by required prerequisite courses does not need to be repeated in Anatomy & Physiology. Topic from Genetic variability Gene inheritance & expression Genetic testing Predictions related to homeostatic imbalance, including disease states & disorders Describe events that lead to genetic variability of gametes. 1. Define the terms chromosome, gene, allele, homologous, homozygous, heterozygous, genotype and phenotype. 2. Analyze genetics problems involving dominant and recessive alleles, incomplete dominance, codominance, and multiple alleles. 3. Explain how polygenic inheritance differs from inheritance that is controlled by only one gene. 4. Explain how environmental factors can modify gene expression. 5. Discuss the role of sex chromosomes in sex determination and sex-linked inheritance. Describe examples of prenatal and postnatal genetic testing. 1. Predict factors or situations affecting gene inheritance that could disrupt homeostasis. 2. Predict the types of problems that would occur in the body if gene structure or chromosome number were altered.,4,5,5 1,5 1,5 1,5 1,6 Copyright Human Anatomy and Physiology Society (HAPS) Module C March

5 Module O METABOLISM Topic from Nutrition Introduction to metabolism Cellular respiration & the catabolism & anabolism of carbohydrates, lipids, & proteins 1. With respect to nutrients: a. Define nutrient, essential nutrient and nonessential nutrient. b. List the six main classes of nutrients. c. For carbohydrates, fats, and proteins - list their dietary sources, state their energy yields per gram, and discuss their common uses in the body. d. Classify vitamins as either fat-soluble or watersoluble and discuss the major uses of each vitamin in the body. e. List the important dietary minerals and describe the major uses of each mineral in the body. 2. Describe the components of a balanced diet including the concept of recommended daily amounts. 3. Discuss appetite control, including its regulation by hormones. 4. Explain the significance of nitrogen balance in a healthy diet. Knowledge & Knowledge &,3,6,3,5,3,5,6 1. Define metabolism, anabolism and catabolism Knowledge 2. Provide examples of anabolic and catabolic reactions. 3. Compare and contrast the roles of enzymes and coenzymes in metabolism. 4. Explain the roles of coenzyme A, NAD, and FAD in metabolism. 5. Describe the processes of oxidation, reduction, decarboxylation, and phosphorylation. 1. With respect to carbohydrate metabolism: Application Analysis a. State the overall reaction for glucose catabolism. b. Describe the processes of glycolysis, formation of acetyl CoA, the Kreb s (TCA) cycle, and the electron transport chain, including the substrates and products of each, their locations within the cell and the energy yield of each process. c. Describe the process of chemiosmosis and its role in ATP production. d. Describe the anaerobic process for generating ATP, including conditions under which it occurs,6 Module C March

6 and its products and their functions. e. Describe the processes of glycogenesis, glycogenolysis, and gluconeogenesis, including the substrates and products of each. f. Describe the role of hormones (such as cortisol, growth hormone, thyroid hormone, insulin, glucagon and norepinephrine) in regulation of carbohydrate catabolism and anabolism. g. Predict the metabolic conditions that would favor each of the following processes: glycogenesis, glycogenolysis and gluconeogenesis.,3,3,5,6 Synthesis 3,5,6 Metabolic roles of body organs Energy balance & thermoregulation 2. With respect to protein and amino acid metabolism: a. Describe the basic process of protein synthesis. b. Describe the process of deamination and its importance in gluconeogenesis and the interconversion of nutrients. c. Describe the process of transamination in the interconversion of nutrients. d. Explain how protein catabolism leads to ATP production. e. Describe the effect of protein metabolism on ammonia and urea production. f. Describe the role of hormones (such as cortisol, human growth hormone and insulin) in regulation of protein catabolism and anabolism. 3. With respect to fat metabolism:,5,5,2,5,5,6 a. Name essential fatty acids and their functions. b. Describe the basic process of lipogenesis and lipolysis. c. Describe the role of hormones (such as cortisol, human growth hormone and thyroid hormone) in regulation of lipogenesis and lypolysis, d. Summarize the overall process of the beta oxidation of fatty acids and explain how it relates to ketogenesis & ketoacidosis. e. Describe the nutrient interconversion pathways that involve fats. f. Compare and contrast the structure and function of different types of lipoproteins in the body.,5 &,2,5,5,2,5,6 1. Describe the role of the liver in metabolism.,3,5,6 2. Explain the role of adipose tissue in metabolism.,3,5,6 3. Describe the role of skeletal muscle in metabolism.,3,5,6 1. Compare and contrast the processes that occur in the absorptive and post-absorptive states.,2,3,6 Module C March

7 Application of homeostatic mechanisms Predictions related to homeostatic imbalance, including disease states & disorders 2. Explain the role of cortisol, human growth hormone, thyroid hormone, insulin and glucagon in the absorptive and post-absorptive states. 3. Explain the significance of glucose-sparing for neural tissue in the post-absorptive state.,3,5,6,3,5,6 4. Define calorie and kilocalorie. 5. Discuss the importance of energy (caloric) balance in maintaining healthy body weight.,3,5,6 6. Define metabolic rate and basal metabolic rate. Knowledge 7. Describe factors that affect metabolic rate.,3,5,6 8. Explain the importance of thermoregulation in the body. 9. Differentiate between radiation, conduction, evaporation and convection and explain the role of each in thermoregulation. 1. Provide specific examples to demonstrate how metabolic processes respond to maintain homeostasis in the body. 2. Explain the role of metabolism as it relates to other body systems to maintain homeostasis. 1. Predict factors or situations affecting metabolism that could disrupt homeostasis. 2. Predict the types of problems that would occur in the body metabolic processes could not maintain homeostasis.,3,2,3,5,6 Application,3,4,5,6,2,3,4,5,6 Copyright Human Anatomy and Physiology Society (HAPS) Module C March

Nutrients. Chapter 25 Nutrition, Metabolism, Temperature Regulation

Nutrients. Chapter 25 Nutrition, Metabolism, Temperature Regulation Chapter 25 Nutrition, Metabolism, Temperature Regulation 25-1 Nutrients Chemicals used by body to produce energy, provide building blocks or function in other chemical reactions Classes Carbohydrates,

More information

Principles of Anatomy and Physiology

Principles of Anatomy and Physiology Principles of Anatomy and Physiology 14 th Edition CHAPTER 25 Metabolism and Nutrition Metabolic Reactions Metabolism refers to all of the chemical reactions taking place in the body. Reactions that break

More information

SPRINGFIELD TECHNICAL COMMUNITY COLLEGE ACADEMIC AFFAIRS

SPRINGFIELD TECHNICAL COMMUNITY COLLEGE ACADEMIC AFFAIRS SPRINGFIELD TECHNICAL COMMUNITY COLLEGE ACADEMIC AFFAIRS Course Number: BIOL 140 Department: Biology Course Title: Biochemistry/Health Sciences Semester: Spring Year: 1997 Objectives/ Course Number: BIOL

More information

Biochemistry 7/11/ Bio-Energetics & ATP. 5.1) ADP, ATP and Cellular Respiration OVERVIEW OF ENERGY AND METABOLISM

Biochemistry 7/11/ Bio-Energetics & ATP. 5.1) ADP, ATP and Cellular Respiration OVERVIEW OF ENERGY AND METABOLISM Biochemistry 5. Bio-Energetics & ATP 5.1) ADP, ATP and Cellular Respiration Prof. Dr. Klaus Heese OVERVIEW OF ENERGY AND METABOLISM 1. The food we eat, (carbohydrates/ glucose /sugar, lipids/fat, proteins),

More information

OVERVIEW OF ENERGY AND METABOLISM

OVERVIEW OF ENERGY AND METABOLISM Biochemistry 5. Bio-Energetics & ATP 5.1) ADP, ATP and Cellular Respiration OVERVIEW OF ENERGY AND METABOLISM 1. The food we eat, (carbohydrates/ glucose /sugar, lipids/fat, proteins), are our only source

More information

Lecture 5: Cell Metabolism. Biology 219 Dr. Adam Ross

Lecture 5: Cell Metabolism. Biology 219 Dr. Adam Ross Lecture 5: Cell Metabolism Biology 219 Dr. Adam Ross Cellular Respiration Set of reactions that take place during the conversion of nutrients into ATP Intricate regulatory relationship between several

More information

Energy Production In A Cell (Chapter 25 Metabolism)

Energy Production In A Cell (Chapter 25 Metabolism) Energy Production In A Cell (Chapter 25 Metabolism) Large food molecules contain a lot of potential energy in the form of chemical bonds but it requires a lot of work to liberate the energy. Cells need

More information

Protein & Amino Acid Metabolism

Protein & Amino Acid Metabolism Pathophysiology 101-823 Unit 4 Metabolism & Metabolic Disease Protein & Amino Acid Metabolism Paul Anderson FALL 2008 Learning Objectives 1. List the metabolic functions of proteins & amino acids. 2. Explain

More information

Biol 219 Lec 7 Fall 2016

Biol 219 Lec 7 Fall 2016 Cellular Respiration: Harvesting Energy to form ATP Cellular Respiration and Metabolism Glucose ATP Pyruvate Lactate Acetyl CoA NAD + Introducing The Players primary substrate for cellular respiration

More information

Metabolism. Chapter 5. Catabolism Drives Anabolism 8/29/11. Complete Catabolism of Glucose

Metabolism. Chapter 5. Catabolism Drives Anabolism 8/29/11. Complete Catabolism of Glucose 8/29/11 Metabolism Chapter 5 All of the reactions in the body that require energy transfer. Can be divided into: Cell Respiration and Metabolism Anabolism: requires the input of energy to synthesize large

More information

BIOLOGICAL MOLECULES REVIEW-UNIT 1 1. The factor being tested in an experiment is the A. data. B. variable. C. conclusion. D. observation. 2.

BIOLOGICAL MOLECULES REVIEW-UNIT 1 1. The factor being tested in an experiment is the A. data. B. variable. C. conclusion. D. observation. 2. BIOLOGICAL MOLECULES REVIEW-UNIT 1 1. The factor being tested in an experiment is the A. data. B. variable. C. conclusion. D. observation. 2. A possible explanation for an event that occurs in nature is

More information

1) Describe the difference between a theory and a hypothesis.

1) Describe the difference between a theory and a hypothesis. 1 st Semester Review 1) Describe the difference between a theory and a hypothesis. 2) Define: a. Independent variable b. Dependent variable c. Control 3) List the characteristics of living organisms. 4)

More information

Name: Date: Block: Biology 12

Name: Date: Block: Biology 12 Name: Date: Block: Biology 12 Provincial Exam Review: Cell Processes and Applications January 2003 Use the following diagram to answer questions 1 and 2. 1. Which labelled organelle produces most of the

More information

Chemistry 1120 Exam 4 Study Guide

Chemistry 1120 Exam 4 Study Guide Chemistry 1120 Exam 4 Study Guide Chapter 12 12.1 Identify and differentiate between macronutrients (lipids, amino acids and saccharides) and micronutrients (vitamins and minerals). Master Tutor Section

More information

Transfer of food energy to chemical energy. Includes anabolic and catabolic reactions. The cell is the metabolic processing center

Transfer of food energy to chemical energy. Includes anabolic and catabolic reactions. The cell is the metabolic processing center Metabolism There are a lot of diagrams here. DO NOT, I repeat, DO NOT get overly anxious or excited about them. We will go through them again slowly!! Read the slides, read the book, DO NOT TAKE NOTES.

More information

Nutrition, Metabolism, and Body Temperature Regulation Outline PART 1: NUTRIENTS (pp ; Figs ; Table 24.1) 24.

Nutrition, Metabolism, and Body Temperature Regulation Outline PART 1: NUTRIENTS (pp ; Figs ; Table 24.1) 24. Nutrition, Metabolism, and Body Temperature Regulation Outline PART 1: NUTRIENTS (pp. 915 922; Figs. 24.1 24.3; Table 24.1) 24.1 Carbohydrates, lipids, and proteins supply energy and are used as building

More information

1. Cyanide is introduced into a culture of cells and is observed binding to a mitochondrion, as shown in the diagram below.

1. Cyanide is introduced into a culture of cells and is observed binding to a mitochondrion, as shown in the diagram below. 1. Cyanide is introduced into a culture of cells and is observed binding to a mitochondrion, as shown in the diagram below. The following observations are made: Cyanide binds to and inhibits an enzyme

More information

Energy metabolism - the overview

Energy metabolism - the overview Energy metabolism - the overview Josef Fontana EC - 40 Overview of the lecture Important terms of the energy metabolism The overview of the energy metabolism The main pathways of the energy metabolism

More information

Org Biochem Final Test Student Section Ch Samples Page 1 of 5

Org Biochem Final Test Student Section Ch Samples Page 1 of 5 Ch 31-35 Samples Page 1 of 5 13. Which of the following is a purine? a) guanine b) cytosine c) thymine d) uracil 20. The three components of a nucleotide are a) glucose, a phosphate group, and choline.

More information

Metabolism and Energetics

Metabolism and Energetics PowerPoint Lecture Slides prepared by Meg Flemming Austin Community College C H A P T E R 17 Metabolism and Energetics Chapter 17 Learning Outcomes 17-1 17-2 17-3 17-4 Define metabolism and energetics,

More information

Biology Final Exam Review. SI Leader Taylor (Yeargain, MWF 1:30-2:20)

Biology Final Exam Review. SI Leader Taylor (Yeargain, MWF 1:30-2:20) Biology Final Exam Review SI Leader Taylor (Yeargain, MWF 1:30-2:20) General Information Review Session Please fill in any available space, and move to the front of the room! Thank you for coming Exam

More information

Energy Transformation: Cellular Respiration Outline 1. Sources of cellular ATP 2. Turning chemical energy of covalent bonds between C-C into energy

Energy Transformation: Cellular Respiration Outline 1. Sources of cellular ATP 2. Turning chemical energy of covalent bonds between C-C into energy Energy Transformation: Cellular Respiration Outline 1. Sources of cellular ATP 2. Turning chemical energy of covalent bonds between C-C into energy for cellular work (ATP) 3. Importance of electrons and

More information

Chapter 8. Metabolism. Topics in lectures 15 and 16. Chemical foundations Catabolism Biosynthesis

Chapter 8. Metabolism. Topics in lectures 15 and 16. Chemical foundations Catabolism Biosynthesis Chapter 8 Topics in lectures 15 and 16 Metabolism Chemical foundations Catabolism Biosynthesis 1 Metabolism Chemical Foundations Enzymes REDOX Catabolism Pathways Anabolism Principles and pathways 2 Enzymes

More information

BIOCHEMISTRY. There are 4 major types of organic compounds each with unique characteristics: A. CARBOHYDRATES Contain,, and. Ratio of H:O is always

BIOCHEMISTRY. There are 4 major types of organic compounds each with unique characteristics: A. CARBOHYDRATES Contain,, and. Ratio of H:O is always BIOCHEMISTRY All organic compounds must contain and Are the following organic? Why or why not? H2O CO2 CH4 There are 4 major types of organic compounds each with unique characteristics: A. CARBOHYDRATES

More information

Overview of Metabolism and provision of metabolic fuel. Dr. Uzma Nasib

Overview of Metabolism and provision of metabolic fuel. Dr. Uzma Nasib Overview of Metabolism and provision of metabolic fuel Dr. Uzma Nasib Metabolism The Transformation of Energy Cells Can t Eat Hamburgers How Does the Body Fuel Metabolism Metabolism (from Greek: metabolē,

More information

MULTIPLE CHOICE QUESTIONS

MULTIPLE CHOICE QUESTIONS MULTIPLE CHOICE QUESTIONS 1. Which of the following statements concerning anabolic reactions is FALSE? A. They are generally endergonic. B. They usually require ATP. C. They are part of metabolism. D.

More information

Polar Density (solid vs. liquid water) Cohesion Surface tension Adhesion Capillary Action

Polar Density (solid vs. liquid water) Cohesion Surface tension Adhesion Capillary Action GT Biology Midterm Study Guide Make sure that you are familiar with the following. You do not need to write notes for bold items: I. Scientific method Independent variable vs. Dependent variable Experimental

More information

A cell has enough ATP to last for about three seconds.

A cell has enough ATP to last for about three seconds. Energy Transformation: Cellular Respiration Outline 1. Energy and carbon sources in living cells 2. Sources of cellular ATP 3. Turning chemical energy of covalent bonds between C-C into energy for cellular

More information

Review Session 1. Control Systems and Homeostasis. Figure 1.8 A simple control system. Biol 219 Review Sessiono 1 Fall 2016

Review Session 1. Control Systems and Homeostasis. Figure 1.8 A simple control system. Biol 219 Review Sessiono 1 Fall 2016 Control Systems and Homeostasis Review Session 1 Regulated variables are kept within normal range by control mechanisms Keeps near set point, or optimum value Control systems local and reflex Input signal

More information

The molecule that serves as the major source of readily available body fuel is: a. fat. b. glucose. c. acetyl CoA. d. cellulose.

The molecule that serves as the major source of readily available body fuel is: a. fat. b. glucose. c. acetyl CoA. d. cellulose. The molecule that serves as the major source of readily available body fuel is: a. fat. b. glucose. c. acetyl CoA. d. cellulose. Dietary fats are important because: a. they keep blood pressure normal.

More information

Will s Pre-Test. (4) A collection of cells that work together to perform a function is termed a(n): a) Organelle b) Organ c) Cell d) Tissue e) Prison

Will s Pre-Test. (4) A collection of cells that work together to perform a function is termed a(n): a) Organelle b) Organ c) Cell d) Tissue e) Prison Will s Pre-Test This is a representative of Exam I that you will take Tuesday September 18, 2007. The actual exam will be 50 multiple choice questions. (1) The basic structural and functional unit of the

More information

Chemical Energy. Valencia College

Chemical Energy. Valencia College 9 Pathways that Harvest Chemical Energy Valencia College 9 Pathways that Harvest Chemical Energy Chapter objectives: How Does Glucose Oxidation Release Chemical Energy? What Are the Aerobic Pathways of

More information

3. Describe the study in mimicry, using king snakes and coral snakes. Identify the control in the experiment.

3. Describe the study in mimicry, using king snakes and coral snakes. Identify the control in the experiment. Biology Semester 1 Exam Review Guide Chapter 1 Biology in the 21 st Century 1. Distinguish between the following key terms: Biology Name : Pd: Hypothesis Variable Controlled experiment Theory Model Technology

More information

Metabolism Energy Pathways Biosynthesis. Catabolism Anabolism Enzymes

Metabolism Energy Pathways Biosynthesis. Catabolism Anabolism Enzymes Topics Microbial Metabolism Metabolism Energy Pathways Biosynthesis 2 Metabolism Catabolism Catabolism Anabolism Enzymes Breakdown of complex organic molecules in order to extract energy and dform simpler

More information

Do Now Makeups. 4. In which organelle would water and dissolved materials be stored? A. 1 B. 2 C. 3 D. 5. A. mitochondria B.

Do Now Makeups. 4. In which organelle would water and dissolved materials be stored? A. 1 B. 2 C. 3 D. 5. A. mitochondria B. Do Now Makeups Name: Date: 1. Which organelle is primarily concerned with the conversion of potential energy of organic compounds into suitable form for immediate use by the cell? A. mitochondria B. centrosomes

More information

Unit 2: Metabolic Processes

Unit 2: Metabolic Processes How is energy obtained biologically? Recall: Red Ox Reactions Unit 2: Metabolic Processes Oxidation Is the chief mechanism by which chemical potential energy is released This energy comes from reduced

More information

Introduction to Metabolism Cell Structure and Function

Introduction to Metabolism Cell Structure and Function Introduction to Metabolism Cell Structure and Function Cells can be divided into two primary types prokaryotes - Almost all prokaryotes are bacteria eukaryotes - Eukaryotes include all cells of multicellular

More information

1. (a. Homeostasis / b. Feedback) is a state of constancy of conditions inside the human body

1. (a. Homeostasis / b. Feedback) is a state of constancy of conditions inside the human body PLEASE BE AWARE CONTENT COVERED ON EXAMS VARIES FROM ONE SEMESTER TO ANOTHER. THIS EXAM MAY NOT CONTAIN MATERIAL THAT WILL BE ON YOUR EXAM THIS SEMESTER, AND/OR MAY CONTAIN MATERIAL THAT WILL NOT BE COVERED

More information

1. Cyanide is introduced into a culture of cells and is observed binding to a mitochondrion, as shown in the diagram below.

1. Cyanide is introduced into a culture of cells and is observed binding to a mitochondrion, as shown in the diagram below. 1. Cyanide is introduced into a culture of cells and is observed binding to a mitochondrion, as shown in the diagram below. The following observations are made: Cyanide binds to and inhibits an enzyme

More information

Standard 2 Exam Biology. 2. This macromolecule is responsible for short term energy storage and structural support in plants

Standard 2 Exam Biology. 2. This macromolecule is responsible for short term energy storage and structural support in plants 1. This macromolecule is responsible for structural support, movement, enzymatic activity, cell communication, and is made of amino acids. a. Lipids b. Carbohydrates c. Proteins d. Nucleic Acids e. ATP

More information

Respiration. Respiration. Respiration. How Cells Harvest Energy. Chapter 7

Respiration. Respiration. Respiration. How Cells Harvest Energy. Chapter 7 How Cells Harvest Energy Chapter 7 Organisms can be classified based on how they obtain energy: autotrophs: are able to produce their own organic molecules through photosynthesis heterotrophs: live on

More information

Biology 12 - Biochemistry Practice Exam

Biology 12 - Biochemistry Practice Exam Biology 12 - Biochemistry Practice Exam Name: Water: 1. The bond between water molecules is a (n) a. ionic bond b. covalent bond c. polar covalent bond d. hydrogen bond 2. The water properties: good solvent,

More information

Enzymes and Metabolism

Enzymes and Metabolism PowerPoint Lecture Slides prepared by Vince Austin, University of Kentucky Enzymes and Metabolism Human Anatomy & Physiology, Sixth Edition Elaine N. Marieb 1 Protein Macromolecules composed of combinations

More information

3.7 CELLULAR RESPIRATION. How are these two images related?

3.7 CELLULAR RESPIRATION. How are these two images related? 3.7 CELLULAR RESPIRATION How are these two images related? CELLULAR RESPIRATION Cellular respiration is the process whereby the body converts the energy that we get from food (glucose) into an energy form

More information

Chemistry 107 Exam 4 Study Guide

Chemistry 107 Exam 4 Study Guide Chemistry 107 Exam 4 Study Guide Chapter 10 10.1 Recognize that enzyme catalyze reactions by lowering activation energies. Know the definition of a catalyst. Differentiate between absolute, relative and

More information

Table of Contents. Section 1 Glycolysis and Fermentation. Section 2 Aerobic Respiration

Table of Contents. Section 1 Glycolysis and Fermentation. Section 2 Aerobic Respiration Table of Contents Section 1 Glycolysis and Fermentation Section 2 Aerobic Respiration Objectives Identify the two major steps of cellular respiration. Describe the major events in glycolysis. Compare lactic

More information

Chapter 25 Nutrition, Metabolism & Temperature Regulation

Chapter 25 Nutrition, Metabolism & Temperature Regulation Chapter 25 Nutrition, Metabolism & Temperature Regulation I. Nutrition: a. Is the process by which certain components of food are obtained & used by the body. b. The process includes: 1. digestion 2. absorption

More information

Chapter 8 Mitochondria and Cellular Respiration

Chapter 8 Mitochondria and Cellular Respiration Chapter 8 Mitochondria and Cellular Respiration Cellular respiration is the process of oxidizing food molecules, like glucose, to carbon dioxide and water. The energy released is trapped in the form of

More information

Principles of Anatomy and Physiology

Principles of Anatomy and Physiology Principles of Anatomy and Physiology 14 th Edition CHAPTER 3 The Cellular Level of Organization Introduction The purpose of the chapter is to: 1. Introduce the parts of a cell 2. Discuss the importance

More information

Metabolism. Metabolism. Energy. Metabolism. Energy. Energy 5/22/2016

Metabolism. Metabolism. Energy. Metabolism. Energy. Energy 5/22/2016 5//016 Metabolism Metabolism All the biochemical reactions occurring in the body Generating, storing and expending energy ATP Supports body activities Assists in constructing new tissue Metabolism Two

More information

DR. PHILLIP SWARTZ A&P II METABOLISM Page 144

DR. PHILLIP SWARTZ A&P II METABOLISM Page 144 DR. PHILLIP SWARTZ A&P II METABOLISM Page 144 Nutrients are chemical substances in food that provide energy, form new body components, or assist in the functioning of various body processes. There are

More information

Respiration. Respiration. How Cells Harvest Energy. Chapter 7

Respiration. Respiration. How Cells Harvest Energy. Chapter 7 How Cells Harvest Energy Chapter 7 Respiration Organisms can be classified based on how they obtain energy: autotrophs: are able to produce their own organic molecules through photosynthesis heterotrophs:

More information

BIOLOGY - CLUTCH CH.9 - RESPIRATION.

BIOLOGY - CLUTCH CH.9 - RESPIRATION. !! www.clutchprep.com CONCEPT: REDOX REACTIONS Redox reaction a chemical reaction that involves the transfer of electrons from one atom to another Oxidation loss of electrons Reduction gain of electrons

More information

In glycolysis, glucose is converted to pyruvate. If the pyruvate is reduced to lactate, the pathway does not require O 2 and is called anaerobic

In glycolysis, glucose is converted to pyruvate. If the pyruvate is reduced to lactate, the pathway does not require O 2 and is called anaerobic Glycolysis 1 In glycolysis, glucose is converted to pyruvate. If the pyruvate is reduced to lactate, the pathway does not require O 2 and is called anaerobic glycolysis. If this pyruvate is converted instead

More information

7 Pathways That Harvest Chemical Energy

7 Pathways That Harvest Chemical Energy 7 Pathways That Harvest Chemical Energy Pathways That Harvest Chemical Energy How Does Glucose Oxidation Release Chemical Energy? What Are the Aerobic Pathways of Glucose Metabolism? How Is Energy Harvested

More information

What s the point? The point is to make ATP! ATP

What s the point? The point is to make ATP! ATP 2006-2007 What s the point? The point is to make ATP! ATP Glycolysis 2 ATP Kreb s cycle 2 ATP Life takes a lot of energy to run, need to extract more energy than 4 ATP! There s got to be a better way!

More information

B.4B Cellular Processes

B.4B Cellular Processes B.4B Cellular Processes Picture Vocabulary homeostasis The process of maintaining a constant state of balance cell membrane Cell part surrounding the cytoplasm and is also a barrier between the inside

More information

7 Cellular Respiration and Fermentation

7 Cellular Respiration and Fermentation CAMPBELL BIOLOGY IN FOCUS URRY CAIN WASSERMAN MINORSKY REECE 7 Cellular Respiration and Fermentation Lecture Presentations by Kathleen Fitzpatrick and Nicole Tunbridge, Simon Fraser University SECOND EDITION

More information

Chapter 7 Cellular Respiration and Fermentation*

Chapter 7 Cellular Respiration and Fermentation* Chapter 7 Cellular Respiration and Fermentation* *Lecture notes are to be used as a study guide only and do not represent the comprehensive information you will need to know for the exams. Life Is Work

More information

Module J ENDOCRINE SYSTEM. Learning Outcome

Module J ENDOCRINE SYSTEM. Learning Outcome Module J ENDOCRINE SYSTEM Topic from HAPS Guidelines General functions of the endocrine system Chemical classification of hormones & mechanism of hormone actions at receptors. Control of hormone secretion

More information

ENERGY FROM INGESTED NUTREINTS MAY BE USED IMMEDIATELY OR STORED

ENERGY FROM INGESTED NUTREINTS MAY BE USED IMMEDIATELY OR STORED QUIZ/TEST REVIEW NOTES SECTION 1 SHORT TERM METABOLISM [METABOLISM] Learning Objectives: Identify primary energy stores of the body Differentiate the metabolic processes of the fed and fasted states Explain

More information

Enzymes what are they?

Enzymes what are they? Topic 11 (ch8) Microbial Metabolism Topics Metabolism Energy Pathways Biosynthesis 1 Catabolism Anabolism Enzymes Metabolism 2 Metabolic balancing act Catabolism Enzymes involved in breakdown of complex

More information

2.2 Properties of Water

2.2 Properties of Water 2.2 Properties of Water I. Water s unique properties allow life to exist on Earth. A. Life depends on hydrogen bonds in water. B. Water is a polar molecule. 1. Polar molecules have slightly charged regions

More information

Overview. Chapter 3: Cells and Their Functions. The Cell. Key Terms. Microscopes. Microscopes. Cytology The study of cells

Overview. Chapter 3: Cells and Their Functions. The Cell. Key Terms. Microscopes. Microscopes. Cytology The study of cells Overview Chapter 3: Cells and Their Functions Key Terms The Cell active transport filtration mitochondria cancer gene mitosis carcinogen hemolysis mutation chromosome hypertonic nucleus cytology hypotonic

More information

anabolic pathways- Catabolic Amphibolic

anabolic pathways- Catabolic Amphibolic METABOLISM Introduction The fate of dietary components after digestion and absorption constitute metabolism regulated by metabolic pathway 3 types: anabolic pathways- Synthesis of compound e.g. synthesis

More information

(impermeable; freely permeable; selectively permeable)

(impermeable; freely permeable; selectively permeable) BIOL 2457 CHAPTER 3 Part 1 SI 1 1. A is the basic structure of life. 2. The gelatinous inside of the cell is called the. 3. Name the structure that increases the cell s surface area? 4. Name the structure

More information

The Cell and Cellular transport

The Cell and Cellular transport Cell theory (1838): The Cell 1. All organisms are composed of one or more cells, and the life processes of metabolism and heredity occur within these cells. 2. Cells are the smallest living things, the

More information

1- Which of the following statements is TRUE in regards to eukaryotic and prokaryotic cells?

1- Which of the following statements is TRUE in regards to eukaryotic and prokaryotic cells? Name: NetID: Exam 3 - Version 1 October 23, 2017 Dr. A. Pimentel Each question has a value of 4 points and there are a total of 160 points in the exam. However, the maximum score of this exam will be capped

More information

Integrative Metabolism: Significance

Integrative Metabolism: Significance Integrative Metabolism: Significance Energy Containing Nutrients Carbohydrates Fats Proteins Catabolism Energy Depleted End Products H 2 O NH 3 ADP + Pi NAD + NADP + FAD + Pi NADH+H + NADPH+H + FADH2 Cell

More information

Cellular Pathways That Harvest Chemical Energy. Cellular Pathways That Harvest Chemical Energy. Cellular Pathways In General

Cellular Pathways That Harvest Chemical Energy. Cellular Pathways That Harvest Chemical Energy. Cellular Pathways In General Cellular Pathways That Harvest Chemical Energy A. Obtaining Energy and Electrons from Glucose Lecture Series 12 Cellular Pathways That Harvest Chemical Energy B. An Overview: Releasing Energy from Glucose

More information

C) amount of carbon dioxide absorbed by the animal B) rate of respiration of the animal

C) amount of carbon dioxide absorbed by the animal B) rate of respiration of the animal Name: 1) A model of a section of a cell membrane is represented below. 4034-1 - Page 1 Which type of molecule is indicated by the arrow? A) carbohydrate B) protein C) lipid D) nucleotide 2) The movement

More information

Chapter 3 Review Assignment

Chapter 3 Review Assignment Class: Date: Chapter 3 Review Assignment Multiple Choice 40 MC = 40 Marks Identify the choice that best completes the statement or answers the question. 1. Which of the following organelles produces transport

More information

The Digestive System and Body Metabolism

The Digestive System and Body Metabolism PowerPoint Lecture Slide Presentation by Patty Bostwick-Taylor, Florence-Darlington Technical College The Digestive System and Body Metabolism 14PART D Metabolism Chemical reactions necessary to maintain

More information

Module 1: Chapter 1 - The Human Organism

Module 1: Chapter 1 - The Human Organism Module 1: Chapter 1 - The Human Organism How are the terms CGW & S: begin organ system *Communication; ability to anatomy & physiology and worksheet critically read text, & think their subcategories defined

More information

EH1008 Biomolecules. Inorganic & Organic Chemistry. Water. Lecture 2: Inorganic and organic chemistry.

EH1008 Biomolecules. Inorganic & Organic Chemistry. Water. Lecture 2: Inorganic and organic chemistry. EH1008 Biomolecules Lecture 2: Inorganic and organic chemistry limian.zheng@ucc.ie 1 Inorganic & Organic Chemistry Inorganic Chemistry: generally, substances that do not contain carbon Inorganic molecules:

More information

1. Prokaryotic (Bacteria) Eukaryotic (all other living things)

1. Prokaryotic (Bacteria) Eukaryotic (all other living things) AP BIOLOGY CONCEPT 2 CELLS (Review for Exam 3 on Nov. 30) 1. Prokaryotic (Bacteria) Eukaryotic (all other living things) no membrane-bound organelles m.b.o, ex. Chloroplasts and nucleus no nucleus(single;

More information

UNIT 2 DIABETES REVIEW

UNIT 2 DIABETES REVIEW UNIT 2 DIABETES REVIEW Pancreas is unable to make insulin. Therefore, glucose cannot get into the cells for energy. Insulin is made, but cell receptors do not work at getting recognizing that insulin.

More information

Inorganic compounds: Usually do not contain carbon H 2 O Ca 3 (PO 4 ) 2 NaCl Carbon containing molecules not considered organic: CO 2

Inorganic compounds: Usually do not contain carbon H 2 O Ca 3 (PO 4 ) 2 NaCl Carbon containing molecules not considered organic: CO 2 Organic Chemistry The study of carbon-containing compounds and their properties. Biochemistry: Made by living things All contain the elements carbon and hydrogen Inorganic: Inorganic compounds: All other

More information

Metabolism: From Food to Life

Metabolism: From Food to Life CHAPTER 7 Metabolism: From Food to Life Chapter Summary Metabolism is the sum total of all chemical and physical processes by which the body catabolizes and anabolizes molecules. Metabolic pathways are

More information

Human Anatomy & Physiology

Human Anatomy & Physiology PowerPoint Lecture Slides prepared by Barbara Heard, Atlantic Cape Community College Ninth Edition Human Anatomy & Physiology C H A P T E R 3 Annie Leibovitz/Contact Press Images 2013 Pearson Education,

More information

Org/Biochem Final Lec Form, Spring 2012 Page 1 of 6

Org/Biochem Final Lec Form, Spring 2012 Page 1 of 6 Page 1 of 6 Missing Complete Protein and Question #45 Key Terms: Fill in the blank in the following 25 statements with one of the key terms in the table. Each key term may only be used once. Print legibly.

More information

Chapter 8. An Introduction to Microbial Metabolism

Chapter 8. An Introduction to Microbial Metabolism Chapter 8 An Introduction to Microbial Metabolism The metabolism of microbes Metabolism sum of all chemical reactions that help cells function Two types of chemical reactions: Catabolism -degradative;

More information

Assignment #1: Biological Molecules & the Chemistry of Life

Assignment #1: Biological Molecules & the Chemistry of Life Assignment #1: Biological Molecules & the Chemistry of Life A. Important Inorganic Molecules Water 1. Explain why water is considered a polar molecule. The partial negative charge of the oxygen and the

More information

How Cells Harvest Energy. Chapter 7. Respiration

How Cells Harvest Energy. Chapter 7. Respiration How Cells Harvest Energy Chapter 7 Respiration Organisms classified on how they obtain energy: autotrophs: produce their own organic molecules through photosynthesis heterotrophs: live on organic compounds

More information

Multiple choice: Circle the best answer for each of the following questions. There is only one correct answer for each question.

Multiple choice: Circle the best answer for each of the following questions. There is only one correct answer for each question. Page 1 of 6 Multiple choice: Circle the best answer for each of the following questions. There is only one correct answer for each question. (3 points each) 1. The number of dichloroisomers that can be

More information

WHY IS THIS IMPORTANT?

WHY IS THIS IMPORTANT? CHAPTER 3 ESSENTIALS OF METABOLISM WHY IS THIS IMPORTANT? It is important to have a basic understanding of metabolism because it governs the survival and growth of microorganisms The growth of microorganisms

More information

23.1 Lipid Metabolism in Animals. Chapter 23. Micelles Lipid Metabolism in. Animals. Overview of Digestion Lipid Metabolism in

23.1 Lipid Metabolism in Animals. Chapter 23. Micelles Lipid Metabolism in. Animals. Overview of Digestion Lipid Metabolism in Denniston Topping Caret Copyright! The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Chapter 23 Fatty Acid Metabolism Triglycerides (Tgl) are emulsified into fat droplets

More information

Biomolecules. Unit 3

Biomolecules. Unit 3 Biomolecules Unit 3 Atoms Elements Compounds Periodic Table What are biomolecules? Monomers vs Polymers Carbohydrates Lipids Proteins Nucleic Acids Minerals Vitamins Enzymes Triglycerides Chemical Reactions

More information

Cell Respiration - 1

Cell Respiration - 1 Cell Respiration - 1 All cells must do work to stay alive and maintain their cellular environment. The energy needed for cell work comes from the bonds of ATP. Cells obtain their ATP by oxidizing organic

More information

Carbohydrate Metabolism

Carbohydrate Metabolism Chapter 34 Carbohydrate Metabolism Carbohydrate metabolism is important for both plants and animals. Introduction to General, Organic, and Biochemistry, 10e John Wiley & Sons, Inc Morris Hein, Scott Pattison,

More information

CHY2026: General Biochemistry UNIT 7& 8: CARBOHYDRATE METABOLISM

CHY2026: General Biochemistry UNIT 7& 8: CARBOHYDRATE METABOLISM CHY2026: General Biochemistry UNIT 7& 8: CARBOHYDRATE METABOLISM Metabolism Bioenergetics is the transfer and utilization of energy in biological systems The direction and extent to which a chemical reaction

More information

Copyright 2014 Edmentum - All rights reserved.

Copyright 2014 Edmentum - All rights reserved. Study Island Copyright 2014 Edmentum - All rights reserved. Generation Date: 04/01/2014 Generated By: Cheryl Shelton Title: Science- biology Cells 1. Below is an image of a plant cell. What processes require

More information

1. Adaptation 2. Reproduce 3. Growth 4. Organization 5. Metabolism 6. Irritability 7. Contractility. List the seven activities of all living cells

1. Adaptation 2. Reproduce 3. Growth 4. Organization 5. Metabolism 6. Irritability 7. Contractility. List the seven activities of all living cells List the seven activities of all living cells 1. Adaptation 2. Reproduce 3. Growth 4. Organization 5. Metabolism 6. Irritability 7. Contractility What is anabolism? Joining small molecules (amino acids)

More information

Biochemistry Name: Practice Questions

Biochemistry Name: Practice Questions Name: Practice Questions 1. Carbohydrate molecules A and B come in contact with the cell membrane of the same cell. Molecule A passes through the membrane readily, but molecule B does not. It is most likely

More information

The citric acid cycle Sitruunahappokierto Citronsyracykeln

The citric acid cycle Sitruunahappokierto Citronsyracykeln The citric acid cycle Sitruunahappokierto Citronsyracykeln Ove Eriksson BLL/Biokemia ove.eriksson@helsinki.fi Metabolome: The complete set of small-molecule metabolites to be found in a cell or an organism.

More information

Releasing Chemical Energy

Releasing Chemical Energy Releasing Chemical Energy Ø Energy From Carbohydrates Ø Aerobic Respiration/ Stages Ø Fermentation Ø Food as a Source of Energy How Do Cells Access the Chemical Energy in Carbohydrayes? Aerobic Respiration

More information

Objectives. Carbon Bonding. Carbon Bonding, continued. Carbon Bonding

Objectives. Carbon Bonding. Carbon Bonding, continued. Carbon Bonding Biochemistry Table of Contents Objectives Distinguish between organic and inorganic compounds. Explain the importance of carbon bonding in biological molecules. Identify functional groups in biological

More information

Water: 1. The bond between water molecules is a(n) a. ionic bond b. covalent bond c. polar covalent bond d. hydrogen bond

Water: 1. The bond between water molecules is a(n) a. ionic bond b. covalent bond c. polar covalent bond d. hydrogen bond Biology 12 - Biochemistry Practice Exam KEY Water: 1. The bond between water molecules is a(n) a. ionic bond b. covalent bond c. polar covalent bond d. hydrogen bond 2. The water properties: good solvent,

More information

Physiology 12. Metabolism. Metabolism. Cellular metabolism. The synthesis and Breakdown of organic molecules required for cell structure and function

Physiology 12. Metabolism. Metabolism. Cellular metabolism. The synthesis and Breakdown of organic molecules required for cell structure and function Physiology 12 Cellular metabolism Germann Ch3 Metabolism The synthesis and Breakdown of organic molecules required for cell structure and function Metabolism Anabolism = Synthesis Catabolism = Breaking

More information

Bioenergetics. Chapter 3. Objectives. Objectives. Introduction. Photosynthesis. Energy Forms

Bioenergetics. Chapter 3. Objectives. Objectives. Introduction. Photosynthesis. Energy Forms Objectives Chapter 3 Bioenergetics Discuss the function of cell membrane, nucleus, & mitochondria Define: endergonic, exergonic, coupled reactions & bioenergetics Describe how enzymes work Discuss nutrients

More information