Sections 11 & 12: Isolation and Identification of Enterobacteriaceae

Size: px
Start display at page:

Download "Sections 11 & 12: Isolation and Identification of Enterobacteriaceae"

Transcription

1 Sections 11 & 12: Isolation and Identification of Enterobacteriaceae The family Enterobacteriaceae includes many genera and species. The last edition of Bergey s Manual of Systematic Bacteriology (Vol. 2) describes 176 named species among 44 different genera; however, clinical isolates in general acute care facilities consist primarily of Escherichia coli, Klebsiella pneumoniae, and Proteus mirabilis. General Characteristics The family Enterobacteriaceae, often referred to as enterics, consists of numerous diverse organisms. They are Gram-negative bacilli and coccobacilli. They do not produce cytochrome oxidase. They all ferment glucose and reduce nitrate to nitrite. They are motile at body temperatures except for Klebsiella, Shigella, and Yersinia. Except for Klebsiella, Proteus, and some Enterobacter isolates, none has remarkable colony morphology on laboratory media. They appear large, moist, and gray on sheep blood agar (SBA), chocolate (CHOC) agar, and most nonselective media. Classification Members of the family are also subcategorized into numerous tribes based on biochemical characteristics. The use of tribes in classifying the members in this family was proposed by Ewing in 1963 and has been continued and extended. In classifying species into tribes, Ewing grouped bacterial species with similar biochemical characteristics. Within the tribes, organisms are classified further into genera and species. Differentiation of each genus and definitive identification of species are based on biochemical characteristics and DNA homology. Table 1 lists the bacterial species in the family Enterobacteriaceae and their respective tribes; Table 2 shows the biochemical features that differentiate the tribes. The concept of using tribes in the classification of bacteria has been an effective way of placing species in groups based on similar biochemical features and is employed throughout this chapter. 1

2 Table 1 Classification of Selected Species within the Family Enterobacteriaceae Table 2 Biochemical Characteristics of Tribes of Enterobacteriaceae 2

3 Laboratory Diagnosis of Enterobacteriaceae The identification of members of the family Enterobacteriaceae can be accomplished in several ways. Certain laboratories choose to use conventional biochemical tests in tubes, whereas others may prefer miniaturized or automated commercial identification systems. The use of conventional biochemical tests in tubes is cumbersome to test isolates with all the biochemical tests available. Most clinical laboratories develop identification tables and protocols using a limited number of tests that suit their needs and capabilities. These tables are based on the key features necessary to identify each particular genus and clinically relevant species. Figure 1 shows an example of a schematic diagram for the identification of commonly isolated enterics using conventional biochemical tests. Figure 1 Flow chart for the presumptive identification of commonly encountered Enterobacteriaceae on triple sugar iron (TSI) agar. A, acid; IMViC, indole, methyl red, Voges-Proskauer, citrate; K, alkaline; NLF, nonlactose fermenter; PAD, phenylalanine deaminase. 3

4 The traditional biochemical tests to perform for identification include the following: Triple Sugar Iron (TSI) Agar or Kligler iron agar (KIA) [To determine glucose and lactose or sucrose utilization (sucrose in TSI only) and H2S production] TSI agar and KIA are useful in the presumptive identification of Gram-negative enteric bacteria, particularly in screening for intestinal pathogens. The formulas for TSI agar and KIA are identical except that TSI agar contains sucrose in addition to glucose and lactose. Lactose is present in a concentration 10 times that of glucose (1% lactose and 0.1% glucose). In TSI agar, sucrose is also present in a 1% concentration. Ferrous sulfate and sodium thiosulfate are added to detect the production of hydrogen sulfide gas (H2S). Phenol red is used as the ph indicator, which is yellow below the ph of 6.8. Uninoculated medium is red because the ph is buffered at 7.4. Both TSI agar and KIA are useful in detecting the ability of the microorganism to ferment carbohydrates, glucose and lactose in KIA and glucose, lactose, or sucrose in TSI agar; to produce gas from the fermentation of sugars; and to detect the production of H2S. Both TSI agar and KIA are poured on a slant. The slant portion is aerobic; the butt, or deep portion, is anaerobic. To inoculate TSI agar or KIA, the laboratory scientist should pick a well isolated colony with an inoculating needle and stab the butt almost all the way to the bottom of the tube. The laboratory scientist moves the needle back and forth, known as fish tailing, across the surface of the slant. The cap is replaced loosely to allow oxygen to enter the tube, and the medium is incubated in a non-co2 incubator for 18 to 24 hours. The reaction patterns are written with the slant results first, followed by the butt reaction, separated by a slash (slant reaction/butt reaction). It is important that the reactions be read within an 18- to 24-hour incubation period; otherwise, erroneous results are possible. Reactions on TSI Agar or KIA Figure 2 illustrates the reactions on TSI agar. 1. No fermentation: Alkaline slant/alkaline butt (ALK/ALK or K/K) or alkaline slant/no change (ALK/no change or K/NC). Although unable to ferment either lactose or glucose, these organisms can degrade the peptones present in the medium aerobically or anaerobically, resulting in the production of alkaline by-products in the slant or deep, respectively, changing the indicator to a deep red color. These reactions are typical of organisms that are not members of the family Enterobacteriaceae. 4

5 2. Glucose fermentation only, no lactose (or sucrose in TSI) fermentation: Alkaline slant/acid butt (K/A). TSI agar and KIA contain glucose in a 0.1% concentration. The acid produced from this concentration of glucose is enough to change the indicator to yellow initially throughout the medium. However, after about 12 hours, the glucose is consumed, and bacteria on the slant utilize the peptones aerobically, producing an alkaline reaction, which changes the indicator to a deep red color. Fermentation of glucose (anaerobic) in the butt produces larger amounts of acid, overcoming the alkaline effects of peptone degradation; therefore, the butt remains acidic (yellow). Reading the results after less than 12 hours of incubation (acid/acid) gives the false appearance of an organism capable of fermenting glucose and lactose (or sucrose in the case of TSI agar). For this reason, TSI agar or KIA must be incubated for 18 to 24 hours. 3. Lactose (or sucrose or both) fermentation: Acid/acid (A/A). Glucose fermenters attack the simple sugar glucose first and then lactose or sucrose. The acid production from the fermentation of the additional sugar is sufficient to keep both the slant and the butt acidic (yellow) when examined at the end of 18 to 24 hours of incubation. If the medium is incubated beyond 24 hours, however, it is possible that the lactose or sucrose could be consumed, and an alkaline slant could be formed. It is important that the TSI agar and KIA tests are not read after 24 hours of incubation. 4. H2S production: Alkaline slant/acid butt, H2S in butt (K/A, H2S) or acid slant/acid butt, H2S in butt (A/A H2S). H2S production is a two-step process. In the first step, H2S is formed from sodium thiosulfate. Because H2S is a colorless gas, the indicator, ferrous sulfate, is necessary to detect its production visually. In some cases, the butt of the tube is completely black, obscuring the yellow color from carbohydrate fermentation. Because H2S production requires an acid environment, even if the yellow color cannot be seen, it is safe to assume glucose fermentation. a. Bacterium (acid environment) + Sodium thiosulfate H2S gas b. H2S + Ferric ions Ferrous sulfide (black precipitate) 5. Gas production (aerogenic) or no gas production (nonaerogenic). The production of gas results in the formation of bubbles or splitting of the medium in the butt or complete displacement of the medium from the bottom of the tube. 5

6 A B C D Figure 2 The reactions on TSI agar. A; Escherichia coli: Gluc(+), Lac/Suc (+), Gas (+), H 2 S(-), B; Shigella boydii: Gluc(+), Lac/Suc (-), Gas (+), H 2 S(-), C; Salmonella typhimurium: Gluc(+), Lac/Suc (-), Gas (-), H 2 S(+), D; Pseudomonas aeruginosa: Gluc(-), Lac/Suc (-), Gas (-), H 2 S(-). Glucose Metabolism and Its Metabolic Products Glucose metabolized via the Embden-Meyerhof pathway produces several intermediate byproducts, including pyruvic acid. Further degradation of pyruvic acid can produce mixed acids as end products. However, enterics take two separate pathways: the mixed acid fermentation pathway or the butylene glycol pathway. The MR test and VP test detect the end products of glucose fermentation. Each test detects products from a different pathway. The MR and VP tests are part of the IMViC reactions: indole, MR, VP, and citrate. Methyl Red (MR) Test Bacteria are incubated in a broth medium containing glucose. The broth should be incubated 3 to 5 days at 35 C. After incubation, approximately half the broth is transferred to a clean dry tube for the VP test. If glucose is metabolized by the mixed acid fermentation pathway, stable acid end products are produced, which results in a low ph. A red color develops after addition of the ph indicator MR (Figure 3). MR-negative cultures remain yellow after addition of the ph indicator (ph 6.0). 6

7 Voges-Proskauer (VP)Test In some bacteria, acids formed during fermentation can be metabolized further to 2,3- butanediol through the intermediate acetoin. After incubation, α-naphthol is added first as a catalyst or color intensifier. Next, 40% potassium hydroxide (KOH) or sodium hydroxide (NaOH) is added, and the tube is gently shaken to increase oxygenation. Under these conditions, acetoin is oxidized to diacetyl. Diacetyl in the presence of KOH and α-naphthol forms a red complex. The ph remains relatively neutral. Figure 3 illustrates the MRVP test. Bacteria tend to be positive for either MR or VP but not both. Some bacteria are negative for both tests. Figure 3 A, Methyl red Voges-Proskauer (MRVP) test is inoculated and incubated overnight. It is then split equally into two parts: one part for the methyl red (MR) test, the other for the Voges-Proskauer (VP) test. B, MR test. C, VP test. Citrate Utilization The citrate test determines whether an organism can use sodium citrate as a sole carbon source. Simmons citrate medium is frequently used to determine citrate utilization. In addition to citrate, the test medium contains ammonium salts as the sole nitrogen source. Bacteria able to use citrate will use the ammonium salts, releasing ammonia. The alkaline ph that results from use of the ammonium salts changes the ph indicator (bromthymol blue) in 7

8 the medium from green to blue. It is important to use a light inoculum because dead organisms can be a source of carbon, producing a false-positive reaction (Figure 4). Figure 4 Citrate utilization test. Left, Positive result. Right, Negative result. Sulfide-Indole-Motility Agar Sulfide indole motility (SIM) medium is a semisolid agar helpful in differentiating gramnegative bacteria in the Enterobacteriaceae. An inoculating needle is used to make a straight stab down the center of the medium. Cloudiness spreading from the inoculation line is positive for motility. The production of H 2 S is indicated by a black precipitate, and a pink to red color after the addition of Kovac s reagent is positive for indole. Indole Production Indole is one of the degradation products of the amino acid tryptophan. Organisms that possess the enzyme tryptophanase are capable of deaminating tryptophan with the formation of the intermediate degradation products of indole, pyruvic acid, and ammonia. After inoculation, the media should be incubated at 35 C for 48 hours. After incubation, approximately 5 drops of Kovac s reagent is added directly to the media. If indole is present, a red color develops after the addition of Kovac s reagent (Figure 5). Motility Motility can be determined by microscopic examination of bacteria or by observing growth in a semisolid medium. Motility test media have agar concentrations of 0.4% or less to allow for the free spread of microorganisms. A single stab is made into the center of the medium. Best results are obtained if the stab is made as straight as possible. After incubation, movement away from the stab line or a hazy appearance throughout the medium indicates a motile organism. Incubation temperature is important. Some bacteria are motile only at room temperature, but this temperature may not be optimal for growth (Figure 5). 8

9 Figure 5 Sulfur-indole-motility test (SIM media) results for: (A) Escherichia coli: Motile***, hydrogen sulfide (-), indole (+)* (B) Staphylococcus aureus: Non-motile, hydrogen sulfide (-), indole (-) (C) Salmonella arizonae: Motile, hydrogen sulfide (+)**, indole (-) (D) Enterobacter aerogenes: Motile, hydrogen sulfide (-), indole (-) (E) Proteus vulgaris: Motile, hydrogen sulfide(+), indole (+) *After addition of 5-10 drops Kovács reagent, a pink ring at the top of the tube indicates a positive indole result, indole is present,(a and E) meaning that the organism uses tryptophanase to degrade tryptophan and produce indole. A clear yellow ring at the top of the tube after addition of Kovács reagent indicates a negative indole reaction (B, C, and D). **Blackening of the media indicates hydrogen sulfide production due to the reduction of sodium thiosulfate, using the enzyme cystine desulfanase, causing ferrous sulfide to precipitate out of the media (C and E). ***Growth feathering away from the stab line creating a cloudy appearance in the media indicates motility (A, C, D and E). Growth strictly along the stab line indicates a nonmotile organism (B). Urease The urease test determines whether a microorganism can hydrolyze urea, releasing a sufficient amount of ammonia to produce a color change by a ph indicator. Urease hydrolyzes urea to form ammonia, water, and CO 2. The urea medium contains phenol red as 9

10 the ph indicator. After inoculation, the media should be incubated at 35 C for 48 hours. The resulting alkaline ph from hydrolysis of urea is indicated by a bright pink color (Figure 6). Figure 6 The urease test. Left, Negative result. Right, positive result. MacConkey agar MacConkey agar is a selective and differential culture medium for bacteria designed to selectively isolate Gram-negative and enteric bacilli and differentiate them based on lactose fermentation. The crystal violet and bile salts inhibit the growth of Gram-positive organisms which allows for the selection and isolation of Gram-negative bacteria. Enteric bacteria that have the ability to ferment lactose can be detected using the carbohydrate lactose, and the ph indicator neutral red. By utilizing the lactose available in the medium, the Gram-negative bacteria that can ferment the sugar lactose (Lac+) such as Escherichia coli, Enterobacter and Klebsiella will produce acid, which lowers the ph of the agar below 6.8 and results in the appearance of pink colonies (Figure 7). Figure 7 MacConkey agar is used to differentiate lactose fermenters (left) from non-lactose fermenters (Right). Reference 1. Connie R. Mahon, Donald C. Lehman, George Manuselis. Textbook of Diagnostic Microbiology, 5th Edition

Gram-negative rods. Enterobacteriaceae. Biochemical Reactions. Manal AL khulaifi

Gram-negative rods. Enterobacteriaceae. Biochemical Reactions. Manal AL khulaifi Gram-negative rods Enterobacteriaceae Biochemical Reactions Bacteria Gram positive Gram negative Cocci Bacilli Cocci Rods Characters of Enterobacteriaceae All Enterobacteriaciae Gram-negative rods Reduce

More information

IMViC: Indole, Methyl red, Voges-Proskauer, Citrate

IMViC: Indole, Methyl red, Voges-Proskauer, Citrate IMViC: Indole, Methyl red, Voges-Proskauer, Citrate + and H 2 S These 4 IMViC tests (actually 6 tests if you include motility and H 2 S) constitute, perhaps, the most critical tests used for identification

More information

6/28/2016. Growth Media and Metabolism. Complex Media. Defined Media. Made from complex and rich ingredients

6/28/2016. Growth Media and Metabolism. Complex Media. Defined Media. Made from complex and rich ingredients Growth Media and Metabolism Complex Media Made from complex and rich ingredients Ex. Soya protein extracts Milk protein extracts Blood products Tomato juice, etc. Exact chemical composition unknown Can

More information

Biochemical Testing Handout

Biochemical Testing Handout Biochemical Testing Handout As you guys know, the purpose of a medical microbiology laboratory is to mainly isolate and identify organisms to provide proper treatment. For this week we will focus on five

More information

Microbiology Activity #6 Metabolism of Small Molecules.

Microbiology Activity #6 Metabolism of Small Molecules. Microbiology Activity #6 Metabolism of Small Molecules. Analysis of Carbohydrate Metabolism Organisms that use CO 2 as a carbon source and fix the carbon into biomass are autotrophs, usually obtaining

More information

Pathogenic bacteria. Lab 6: Taxonomy: Kingdom: Bacteria Phylum: Proteobacteria Class: Gammaproteobacteria Order: Enterobacteriales

Pathogenic bacteria. Lab 6: Taxonomy: Kingdom: Bacteria Phylum: Proteobacteria Class: Gammaproteobacteria Order: Enterobacteriales Level 5 Pathogenic bacteria Lab 6: Family: Enterobacteriaceae Taxonomy: Kingdom: Bacteria Phylum: Proteobacteria Class: Gammaproteobacteria Order: Enterobacteriales Family: Enterobacteriaceae The prefix

More information

ID of Most Common Bacterial Pathogens. CLS 417- Clinical Practice in Microbiology Miss Zeina Alkudmani

ID of Most Common Bacterial Pathogens. CLS 417- Clinical Practice in Microbiology Miss Zeina Alkudmani ID of Most Common Bacterial Pathogens CLS 417- Clinical Practice in Microbiology Miss Zeina Alkudmani BACTERIA Gram Positive Gram Negative Cocci Bacilli Bacilli Cocci Coccobacilli - Staph - Strept - Clostridium

More information

Biochemical tests. To identify bacteria, we must rely heavily on biochemical testing. The types of. for its identification.

Biochemical tests. To identify bacteria, we must rely heavily on biochemical testing. The types of. for its identification. Biochemical tests To identify bacteria, we must rely heavily on biochemical testing. The types of بصمة اإلببام " thumbprint biochemical reactions each organism undergoes act as a " for its identification.

More information

EXERCISE. Proteins,Amino Acids, and Enzymes VII: Oxidase Test. Suggested Reading in Textbook. Pronunciation Guide. Materials per Student

EXERCISE. Proteins,Amino Acids, and Enzymes VII: Oxidase Test. Suggested Reading in Textbook. Pronunciation Guide. Materials per Student EXERCISE 30 Proteins,Amino Acids, SAFETY CONSIDERATIONS Be careful with the Bunsen burner flame. No mouth pipetting. The oxidase reagent is caustic. Avoid contact with eyes and skin. In case of contact,

More information

Principles of biochemical tests commonly used in the identification of gram-negative bacteria

Principles of biochemical tests commonly used in the identification of gram-negative bacteria Dr. Khoramrooz 1 In the name of God Department Of Microbiology Yasouj University of Medical Science Principles of biochemical tests commonly used in the identification of gram-negative bacteria By: Dr.

More information

Manal AL khulaifi. Enterobacteriaceae

Manal AL khulaifi. Enterobacteriaceae Enterobacteriaceae Characteristics E.coli Most significant species in the genus Important potential pathogen in humans Common isolate from colon flora Dry, pink (lactose positive) pink colony with area

More information

APPLICATION Detection and isolation of pathogenic intestinal bacteria including Shigella and Salmonella from surfaces, food, or liquid samples.

APPLICATION Detection and isolation of pathogenic intestinal bacteria including Shigella and Salmonella from surfaces, food, or liquid samples. HEK/SS Code 5543 COMING SOON! BioPaddles Colony Identification App Hektoen Enteric Agar (HEK) Salmonella Shigella Agar (SS) USE: Detection and isolation of pathogenic intestinal bacteria including Shigella

More information

TSI AGAR INTENDED USE

TSI AGAR INTENDED USE TSI AGAR INTENDED USE TSI (Triple Sugar Iron) Agar is used for the identification of enterobacteria by the rapid detection of the fermentation of lactose, glucose (with or without gas production) and of

More information

(1946), and Elek (1948) have described different methods. Stuart, van Stratum, and Rustigian (1945) found the method of Rustigian

(1946), and Elek (1948) have described different methods. Stuart, van Stratum, and Rustigian (1945) found the method of Rustigian A COMPARISON OF THE PHENYLPYRUVIC ACID REACTION AND THE UREASE TEST IN THE DIFFERENTIATION OF PROTEUS FROM OTHER ENTERIC ORGANISMS SVERRE DICK HENRIKSEN State Institute for Public Health, Bacteriological

More information

Exercise 15-B PHYSIOLOGICAL CHARACTERISTICS OF BACTERIA CONTINUED: AMINO ACID DECARBOXYLATION, CITRATE UTILIZATION, COAGULASE & CAMP TESTS

Exercise 15-B PHYSIOLOGICAL CHARACTERISTICS OF BACTERIA CONTINUED: AMINO ACID DECARBOXYLATION, CITRATE UTILIZATION, COAGULASE & CAMP TESTS Exercise 15-B PHYSIOLOGICAL CHARACTERISTICS OF BACTERIA CONTINUED: AMINO ACID DECARBOXYLATION, CITRATE UTILIZATION, COAGULASE & CAMP TESTS Decarboxylation of Amino Acids and Amine Production The decarboxylation

More information

Multi-Biochemical Test System for Distinguishing

Multi-Biochemical Test System for Distinguishing APuPED MICROBIOLOGY, Sept. 1971, p. 8-1 Vol., No. Copyright 1971 American Society for Microbiology Printed in U.S.A. Multi-Biochemical Test System for Distinguishing Enteric and Other Gram-Negative Bacilli

More information

9.1 Introduction 9.2 Importance of Biochemical Tests 9.3 Biochemical Characteristics

9.1 Introduction 9.2 Importance of Biochemical Tests 9.3 Biochemical Characteristics Food Microbiology and Safety Practical Manual PRACTICAL 9 Structure 9.1 Introduction 9.2 Importance of Biochemical Tests 9.3 Biochemical Characteristics BIOCHEMICAL TESTS BACTERIAL TESTING 9.3.1 Tests

More information

Selective Growth Media for Differentiation and Detection of Escherichia Coli and Other Coliforms

Selective Growth Media for Differentiation and Detection of Escherichia Coli and Other Coliforms Page 1 of 5 Page 1 of 5 Return to Web Version Selective Growth Media for Differentiation and Detection of Escherichia Coli and Other Coliforms By: Jvo Siegrist, AnalytiX Volume 8 Article 4 E. coli and

More information

USE: Isolation and differentiation of Gram (-) enteric bacilli (MAC) / Coliform Testing / Recovery of Stressed Coliforms (EMB)

USE: Isolation and differentiation of Gram (-) enteric bacilli (MAC) / Coliform Testing / Recovery of Stressed Coliforms (EMB) MAC/EMB Code 5544 MacConkey Agar (MAC) Eosin Methylene Blue Agar (EMB) USE: Isolation and differentiation of Gram (-) enteric bacilli (MAC) / Coliform Testing / Recovery of Stressed Coliforms (EMB) Side

More information

Microbiological Methods V-A- 1 SALMONELLA SPECIES PRESUMPTIVE AND CONFIRMATION TESTS

Microbiological Methods V-A- 1 SALMONELLA SPECIES PRESUMPTIVE AND CONFIRMATION TESTS Microbiological Methods V-A- 1 PRESUMPTIVE AND CONFIRMATION TESTS PRINCIPLE SCOPE Enrichment and selective procedures are used to provide a reasonably sensitive, definitive and versatile means of qualitatively

More information

KLIGLER IRON AGAR 1/5

KLIGLER IRON AGAR 1/5 KLIGLER IRON AGAR INTENDED USE Kligler Iron Agar is used for the identification of enterobacteria by the rapid detection of lactose and glucose fermentation (with or without gas production), as well as

More information

NOTE: Poor growth and a weak esculin reaction may be seen after 40 hours of incubation for some enterococci.

NOTE: Poor growth and a weak esculin reaction may be seen after 40 hours of incubation for some enterococci. LIS/EMB Code 5542 COMING SOON! BioPaddles Colony Identification App Listeria Agar (LIS) Eosin Methylene Blue Agar (EMB) USE: Enumeration and selective isolation of Listeria spp.(lis) Isolation and differentiation

More information

Identification of Unknown Indigenous Bacteria

Identification of Unknown Indigenous Bacteria April 29, 2009 Identification of Unknown Indigenous Bacteria Introduction Many bacteria can be found in and on nearly all areas of the healthy human body. These bacteria are referred to as normal flora

More information

Phases of the bacterial growth:

Phases of the bacterial growth: L3: Physiology of Bacteria: Bacterial growth Growth is the orderly increase in the sum of all the components of an organism. Cell multiplication is a consequence of growth, in unicellular organism, growth

More information

GI Micro Lab. B- After that the stool sample should be cultured on different types of media

GI Micro Lab. B- After that the stool sample should be cultured on different types of media GI Micro Lab A- Stool sample is taken and added to Selenite broth to: - 1- Inhibit growth of normal flora bacteria 2- Enhance growth of pathogenic bacteria B- After that the stool sample should be cultured

More information

Stool bench. Cultures: SARAH

Stool bench. Cultures: SARAH Stool bench The bacteria found in stool are representative of the bacteria that are present in the digestive system (gastrointestinal tract). Certain bacteria and fungi called normal flora inhabit everyone's

More information

Bacterial Metabolism & Growth Characteristics. Stijn van der Veen

Bacterial Metabolism & Growth Characteristics. Stijn van der Veen Bacterial Metabolism & Growth Characteristics Stijn van der Veen Differentiating bacterial species Morphology (shape) Composition (cell envelope and other structures) Metabolism & growth characteristics

More information

Biochemical Differentiation of the Enterobacteriaceae

Biochemical Differentiation of the Enterobacteriaceae APPLIED MICROBIOLOGY, Mar., 1966 Copyright 1966 American Society for Microbiology Vol. 14, No. 2 Printed in U.S.A. Biochemical Differentiation of the Enterobacteriaceae with the Aid of -Iron-Agar JANE

More information

Motility-Indole-Lysine Medium for Presumptive

Motility-Indole-Lysine Medium for Presumptive JOURNAL OF CLINICAL MICROBIOLOGY, Sept. 1975, p. 247-252 Copyright (C 1975 American Society for Microbiology Vol. 2, No. 3 Printed in U.S.A. Motility-Indole-Lysine Medium for Presumptive Identification

More information

HARMONISED PHARMACOPOEIA DEHYDRATED CULTURE MEDIA FOR SUPPORTING REGULATORY COMPLIANCE AVAILABLE NOW P O RTF O LIO.

HARMONISED PHARMACOPOEIA DEHYDRATED CULTURE MEDIA FOR SUPPORTING REGULATORY COMPLIANCE AVAILABLE NOW P O RTF O LIO. DEHYDRATED CULTURE MEDIA FOR ENHANCED P O RTF O LIO AVAILABLE NOW HARMONISED PHARMACOPOEIA SUPPORTING REGULATORY COMPLIANCE A Neogen Company THE GATEWAY TO MICROBIOLOGY INTRODUCTION Harmonised Pharmacopoeia;

More information

Lab #9. Introduction. Class samples:

Lab #9. Introduction. Class samples: Lab #9 Introduction Food-borne illness is largely caused by the presence of bacteria in red meat. However, much of these harmful bacteria can be destroyed and prevented by sanitation and safe cooking practices.

More information

S. aureus NCTC 6571, E. coli NCTC (antibiotic

S. aureus NCTC 6571, E. coli NCTC (antibiotic ISO Sensitivity Test Agar Code: KM1204 A semi-defined nutritionally rich sensitivity medium. It is composed of specially selected peptones with a small amount of glucose, solidified with a very pure agar

More information

I. Enterobacteriaceae (enteric = intestine) Enterics

I. Enterobacteriaceae (enteric = intestine) Enterics I. Enterobacteriaceae (enteric = intestine) Enterics Enterics are ubiquitous in nature Except for few, most are present in the intestinal tract of animals and humans as commensal flora; therefore, they

More information

Detection of Hydrogen Sulfide Production by Bacteria using Paper Disc Methods12

Detection of Hydrogen Sulfide Production by Bacteria using Paper Disc Methods12 19581 PAPER DISCS FOR HYDROGEN SULFIDE TEST 193 enteric pathogens and coliform bacteria. J. Bacteriol., 67, 537-541. NETER, E. R. AND CLARK, D. 1944 The effectiveness of different culture media in the

More information

NOVASTREAK. Microbial Contamination Monitoring Device TYPICAL CULTURAL MORPHOLOGY Baird Parker Agar. S. aureus growth on Baird Parker Agar

NOVASTREAK. Microbial Contamination Monitoring Device TYPICAL CULTURAL MORPHOLOGY Baird Parker Agar. S. aureus growth on Baird Parker Agar NOVASTREAK Microbial Contamination Monitoring Device TYPICAL CULTURAL MORPHOLOGY Baird Parker Agar S. aureus growth on Baird Parker Agar Baird Parker Agar is used for the selective isolation and enumeration

More information

Blue coloring. Enrichment medium for the simultaneous detection of total coliforms and Escherichia coli in water, foods and dairy products.

Blue coloring. Enrichment medium for the simultaneous detection of total coliforms and Escherichia coli in water, foods and dairy products. s have proved to be a powerful tool in the identification of microorganisms due to their detection of specific enzymes produced by the target microorganism. The enzymes act as catalysts of the chromogenic,

More information

CHAPTER V TAXONOMIC STUDIES OF THE SELECTED ISOLATE C 9

CHAPTER V TAXONOMIC STUDIES OF THE SELECTED ISOLATE C 9 CHAPTER V TAXONOMIC STUDIES OF THE SELECTED ISOLATE C 9 Selection of media for taxonomic studies: Culture media used for taxonomic studies on actinomycetes comprise: 1) Media used for characterization

More information

Laboratorios CONDA, S.A. Distributed by Separations

Laboratorios CONDA, S.A. Distributed by Separations Culture Media as on Pharmacopoeia 7.3, Harmonized Method for Microbiological Examination of non sterile products -FORMULATIONS Buffered sodium chloride-peptone solution ph 7.0 Cat. Nº 1401 Potassium dihydrogen

More information

320 MBIO Microbial Diagnosis. Aljawharah F. Alabbad Noorah A. Alkubaisi 2017

320 MBIO Microbial Diagnosis. Aljawharah F. Alabbad Noorah A. Alkubaisi 2017 320 MBIO Microbial Diagnosis Aljawharah F. Alabbad Noorah A. Alkubaisi 2017 Pathogens of the Urinary tract The urinary system is composed of organs that regulate the chemical composition and volume of

More information

Chapter 5 MITOCHONDRIA AND RESPIRATION 5-1

Chapter 5 MITOCHONDRIA AND RESPIRATION 5-1 Chapter 5 MITOCHONDRIA AND RESPIRATION All organisms must transform energy. This energy is required to maintain a dynamic steady state, homeostasis, and to insure continued survival. As will be discussed

More information

CHAPTER IV ISOLATION AND IDENTIFICATION OF BACTERIA FROM SEPSIS SAMPLES

CHAPTER IV ISOLATION AND IDENTIFICATION OF BACTERIA FROM SEPSIS SAMPLES 62 CHAPTER IV ISOLATION AND IDENTIFICATION OF BACTERIA FROM SEPSIS SAMPLES 4.1 INTRODUCTION Infectious diseases remain major cause of mortality in both child and maternal populations. The mortality rate

More information

PROTEUS-PROVIDENCIA-MORGANELLA GENERA

PROTEUS-PROVIDENCIA-MORGANELLA GENERA Gram-negative rods Proteus & Pseudomonas DR. HUDA ABO-ALEES 2014-2015 Objectives: Describe the morphology & physiology for Proteus & Pseudomonas. Determine the virulence factors of proteus and pseudomonas.

More information

SHIGELLA. Bacillary dysentery is caused by genus Shigella, named after Shiga who isolated them.

SHIGELLA. Bacillary dysentery is caused by genus Shigella, named after Shiga who isolated them. 24 SHIGELLA 24.1 INTRODUCTION Bacillary dysentery is caused by genus Shigella, named after Shiga who isolated them. OBJECTIVES After reading this lesson, you will be able to: describe the characteristics

More information

Introduction to Microbiology BIOL 220, Summer Session 1, 1996 Exam # 2

Introduction to Microbiology BIOL 220, Summer Session 1, 1996 Exam # 2 Name I. Multiple Choice (1 point each) Introduction to Microbiology BIOL 220, Summer Session 1, 1996 Exam # 2 D 1. Which transport process requires energy? A. Osmosis C. Diffusion B. Facilitated diffusion

More information

BACTERIAL EXAMINATION OF WATER

BACTERIAL EXAMINATION OF WATER BACTERIAL EXAMINATION OF WATER The bacteriological examination of water is performed routinely by water utilities and many governmental agencies to ensure a safe supply of water for drinking, bathing,

More information

Rapid Microbiochemical Method for Presumptive Identification of Gastroenteritis-Associated Members of the Family Enterobacteriaceae

Rapid Microbiochemical Method for Presumptive Identification of Gastroenteritis-Associated Members of the Family Enterobacteriaceae JOURNAL OF CLINICAL MICROBIOLOGY, June 1985, p. 914-918 0095-1137/85/060914-05$02.00/0 Copyright 1985, American Society for Microbiology Vol. 21, No. 6 Rapid Microbiochemical Method for Presumptive Identification

More information

1430 West McCoy Lane Santa Maria, CA p:

1430 West McCoy Lane Santa Maria, CA p: 091217TR HardyCHROM BluEcoli 1 HardyCHROM Candida 2 HardyCHROM ECC 3 HardyCHROM ESBL 4 HardyCHROM Listeria 5 HardyCHROM MRSA 6 HardyCHROM O157 7 HardyCHROM Salmonella 8 HardyCHROM SS NoPRO 9 HardyCHROM

More information

BACTERIAL CONTAMINANTS ASSOCIATED WITH COMMERCIAL POULTRY FEEDS IN ENUGU NIGERIA

BACTERIAL CONTAMINANTS ASSOCIATED WITH COMMERCIAL POULTRY FEEDS IN ENUGU NIGERIA Int. J. LifeSc. Bt & Pharm. Res. 2013 Onyeze Rosemary C et al., 2013 Research Paper ISSN 2250-3137 www.ijlbpr.com Vol. 2, No. 3, July 2013 2013 IJLBPR. All Rights Reserved BACTERIAL CONTAMINANTS ASSOCIATED

More information

PRESENTER: DENNIS NYACHAE MOSE KENYATTA UNIVERSITY

PRESENTER: DENNIS NYACHAE MOSE KENYATTA UNIVERSITY 18/8/2016 SOURCES OF MICROBIAL CONTAMINANTS IN BIOSAFETY LABORATORIES IN KENYA PRESENTER: DENNIS NYACHAE MOSE KENYATTA UNIVERSITY 1 INTRODUCTION Contamination occurs through avoidable procedural errors

More information

Evaluation of the Enteric-Tek System for Identifying Enterobacteriaceae

Evaluation of the Enteric-Tek System for Identifying Enterobacteriaceae JOURNAL OF CLINICAL MICROBIOLOGY, Mar. 1982, p. 419-424 Vol. 15, No. 3 0095-1137/82/030419-06$02.00/0 Evaluation of the Enteric-Tek System for Identifying Enterobacteriaceae A. 0. ESAIAS,* D. L. RHODEN,

More information

Figure 1. Bacterial growth curve.

Figure 1. Bacterial growth curve. INTRODUCTION In order for suitable growth and division, a microorganism must be placed into a favorable environment. Bacterial growth refers to an increase in cell number rather than cell size. Bacteria

More information

STUDIES ON THE ASAKUSA GROUP OF ENTEROBACTERIACEAE (EDWARDSIELLA TARDA)

STUDIES ON THE ASAKUSA GROUP OF ENTEROBACTERIACEAE (EDWARDSIELLA TARDA) Japan. J. Med. Sci. Biol., 20, 205-212, 1967 STUDIES ON THE ASAKUSA GROUP OF ENTEROBACTERIACEAE (EDWARDSIELLA TARDA) RIICHI SAKAZAKI Department of Bacteriology I, National Institute of Health, Tokyo (Received:

More information

ISOLATION OF BACTERIAL ORGANISMS FROM BILE AND INTESTINAL CONTENT OF APPARENTLY HEALTHY SLAUGHTERED CHICKENS IN JOS AND ENVIRONS

ISOLATION OF BACTERIAL ORGANISMS FROM BILE AND INTESTINAL CONTENT OF APPARENTLY HEALTHY SLAUGHTERED CHICKENS IN JOS AND ENVIRONS ISOLATION OF BACTERIAL ORGANISMS FROM BILE AND INTESTINAL CONTENT OF APPARENTLY HEALTHY SLAUGHTERED CHICKENS IN JOS AND ENVIRONS BOT C.J 1* ; WOMA T. Y 2 ; ABIAYI E 3 ; MANGUT P. E 1 ; and ISHAYA D 4 1

More information

GB Translated English of Chinese Standard: GB NATIONAL STANDARD OF THE

GB Translated English of Chinese Standard: GB NATIONAL STANDARD OF THE Translated English of Chinese Standard: GB4789.30-2016 www.chinesestandard.net Buy True-PDF Auto-delivery. Sales@ChineseStandard.net GB NATIONAL STANDARD OF THE PEOPLE S REPUBLIC OF CHINA GB 4789.30-2016

More information

The Presence of N2-fixing Bacteria in the Intestines of Man and Animals

The Presence of N2-fixing Bacteria in the Intestines of Man and Animals J. gen. Microbiol. (1970), 60, 61-65 Printed in Great Britain 61 The Presence of N2-fixing Bacteria in the Intestines of Man and Animals By F. J. BERGERSEN AND E. H. HIPSLEY Division of Plant Industry,

More information

Study of antibiotic sensitivity pattern of Salmonella typhi and Salmonella paratyphi isolated from blood samples in Dhaka city

Study of antibiotic sensitivity pattern of Salmonella typhi and Salmonella paratyphi isolated from blood samples in Dhaka city 2017; 6(1): 93-97 ISSN: 2277-7695 TPI 2017; 6(1): 93-97 2017 TPI www.thepharmajournal.com Received: 17-11-2016 Accepted: 18-12-2016 Shah Md. Wasif Faisal Department of Microbiology, Prime-Asia University

More information

Received for publication 11 April 1975

Received for publication 11 April 1975 JOURNAL OF CLINICAL MICROBIOLOGY, Sept. 1975, p. 186-192 Copyright ) 1975 American Society for Microbiology Vol. 2, No. 3 Printed in U.S.A. Evaluation of the Enteric Analyzer for Identification of Enterobacteriaceae

More information

Microbial Quality Analysis of Milk and Flavoured Milk Products from Local Vendors in Vellore

Microbial Quality Analysis of Milk and Flavoured Milk Products from Local Vendors in Vellore Microbial Quality Analysis of Milk and Flavoured Milk Products from Local Vendors in Vellore Aditya Sood*, Ridhi Sood, Abhijit Kumar, Gaganjot Kaur, Candy Sidhu Assistant Professor, Chandigarh University,

More information

Orderly increase in all the chemical structures of the cell. Cell multiplication. Increase in the number of the cells

Orderly increase in all the chemical structures of the cell. Cell multiplication. Increase in the number of the cells GROWTH OF BACTERIA Growth Orderly increase in all the chemical structures of the cell Cell multiplication Increase in the number of the cells In natural habitat In or on another organism (infection) In

More information

1~~~~~~~~~~~~~~~~~~~~~~~~~~

1~~~~~~~~~~~~~~~~~~~~~~~~~~ APPLIED AND ENVIRONMENTAL MICROBIOLOGY, Nov. 1985, p. 1213-1218 0099-2240/85/111213-06$02.00/0 Copyright C) 1985, American Society for Microbiology Vol. 50, No. 5 Characterization of Dysgonic, Heterotrophic

More information

AN NEXURE. B log Sodium chloride 5g Distilled water (DW) 1 Litre ph: ] g 100 ml pl-l: g Glucose

AN NEXURE. B log Sodium chloride 5g Distilled water (DW) 1 Litre ph: ] g 100 ml pl-l: g Glucose AN NEXURE A. Composition of bacteriological media l. Alkaline Water (APW) B log Sodium chloride 5g Distilled water () 1 Litre ph: 9.110.] 2. Brilliant Green Bile Broth (BGLB ) Bile salt Brilliant green

More information

Scholars Research Library. Purification and characterization of neutral protease enzyme from Bacillus Subtilis

Scholars Research Library. Purification and characterization of neutral protease enzyme from Bacillus Subtilis Journal of Microbiology and Biotechnology Research Scholars Research Library J. Microbiol. Biotech. Res., 2012, 2 (4):612-618 (http://scholarsresearchlibrary.com/archive.html) Purification and characterization

More information

Gram-negative rods Ferment glucose with acid production Reduce nitrates into nitrites Oxidase negative Facultative anaerobic

Gram-negative rods Ferment glucose with acid production Reduce nitrates into nitrites Oxidase negative Facultative anaerobic Enterobacteriaceae Lecture -17 Dr.Baha,H. AL-Amiedi Ph. D.Microbiology Gram-negative rods Enterobacteriaceae Characters of Enterobacteriaceae EnterobacteriaciaeAll Gram-negative rods Ferment glucose with

More information

National food safety standard. Food microbiological examination: Salmonella

National food safety standard. Food microbiological examination: Salmonella NATIONAL STANDARD OF THE PEOPLE S REPUBLIC OF CHINA GB 4789.4 2010 National food safety standard Food microbiological examination: Salmonella Issue date: 2010-03-26 Implementation date: 2010-06-01 Issued

More information

A Single-Tube Screen for Salmonella and Shigella

A Single-Tube Screen for Salmonella and Shigella Microbiology and Infectious Disease / Tube Screen for Salmonella and Shigella A Single-Tube Screen for Salmonella and Shigella Gary W. Procop, MD, 1 Jacqueline D. Wallace, 1 Marion J. Tuohy, MT(ASCP),

More information

Gram-negative rods: Enterobacteriaceae Part II Common Organisms. Escherichia coli. Escherichia coli. Escherichia coli. CLS 418 Clinical Microbiology I

Gram-negative rods: Enterobacteriaceae Part II Common Organisms. Escherichia coli. Escherichia coli. Escherichia coli. CLS 418 Clinical Microbiology I Gram-negative rods: Enterobacteriaceae Part II Common Organisms Karen Honeycutt, M.Ed., MLS(ASCP) CM SM CM Session Enterobacteriaceae Antigens O somatic, part of cell wall (serogroup) Stimulates earliest

More information

D. glycerol and fatty acids 4. Which is an example of an inorganic compound?

D. glycerol and fatty acids 4. Which is an example of an inorganic compound? Name: ate: 1. Glucose and maltose are classified as organic compounds because they are both 3. Which process is most directly responsible for the production of O 2 in these sugar solutions?. carbon-containing

More information

Aim: To study the effect of ph on the action of salivary amylase. NCERT

Aim: To study the effect of ph on the action of salivary amylase. NCERT Exercise 28 Aim: To study the effect of ph on the action of salivary amylase. Principle: Optimal activity for most of the enzymes is generally observed between ph 5.0 and 9.0. However, a few enzymes, e.g.,

More information

Available Online through

Available Online through ISSN: 0975-766X CODEN: IJPTFI Available Online through Review Article www.ijptonline.com BIOCHEMICAL TESTS FOR THE IDENTIFICATION OF BACTERIA Vinay Reddy Gopireddy* HOD, Dept of Microbiology, PMR Pg College,

More information

Detection of microbial enzyme : Amylase, lipase, gelatinase, catalase, urease, nitrate reductase, protease and coagulase

Detection of microbial enzyme : Amylase, lipase, gelatinase, catalase, urease, nitrate reductase, protease and coagulase Detection of microbial enzyme : Amylase, lipase, gelatinase, catalase, urease, nitrate reductase, protease and coagulase To detect amylase enzyme production Introduction: Amylase is hydrolytic enzyme produced

More information

St. Joseph's Journal of Humanities and Science ISSN:

St. Joseph's Journal of Humanities and Science ISSN: M. Parimala Celia et al. / St. Joseph s Journal of Humanities and Science (Volume 4 Issue 1 January 2017) 23-28 33 St. Joseph s Journal of Humanities and Science (Volume 4 Issue 2 August 2015) 33-38 St.

More information

BACTERIAL EXAMINATION OF WATER

BACTERIAL EXAMINATION OF WATER BACTERIAL EXAMINATION OF WATER The bacteriological examination of water is performed routinely by water utilities and many governmental agencies to ensure a safe supply of water for drinking, bathing,

More information

Biology General Microbiology River Proteobacteria and Waterborne Diseases

Biology General Microbiology River Proteobacteria and Waterborne Diseases Biology 331 - General Microbiology River Proteobacteria and Waterborne Diseases Enteric Proteobacteria (12.11) Non-sporulating rods, oxidase (-) facultative aerobes Chemoheterotrophs - simple monomers

More information

WHO Global Foodborne Infections Network

WHO Global Foodborne Infections Network WHO Global Foodborne Infections Network (formerly WHO Global Salm-Surv) "A WHO network building capacity to detect, control and prevent foodborne and other enteric infections from farm to table Laboratory

More information

Microbiology lab 2017

Microbiology lab 2017 Assignments General Directives The first page must include the following information: The assignment number Course code :BIO3126 Your name or names Your group number The date Assignments may be done and

More information

Medical Microbiology

Medical Microbiology Lecture 5!!!!!!ƒš!!Œ!!! š!!œ!! Œ!!!! Dr. Ismail I. Daood Medical Microbiology!! Systematic Bacteriology Gram-Positive Cocci : GENUS : Staphylococcus : The general properties of Staphylococcus are Gram-

More information

Urine bench. Urine test for: SARAH Sugar

Urine bench. Urine test for: SARAH Sugar Urine bench Urine test for: Sugar It's normal to occasionally have a small amount of sugar in your urine during pregnancy, but if you have elevated levels at a couple of prenatal visits in a row or a very

More information

QUALITATIVE TESTS OF CARBOHYDRATE

QUALITATIVE TESTS OF CARBOHYDRATE QUALITATIVE TESTS OF CARBOHYDRATE MACROMOLECULE CARBOHYDRATES Are the key source of energy used by living things. Also serve as extracellular structural elements as in cell wall of bacteria and plant.

More information

BCH302 [Practical] 1

BCH302 [Practical] 1 BCH302 [Practical] 1 Carbohydrates are defined as the polyhydroxy aldehydes or polyhydroxy ketones. Most, but not all carbohydrate have a formula (CH 2 O)n (hence the name hydrate of carbon). Sugars ends

More information

TM SS Hardy tr

TM SS Hardy tr TM 013114tr You don t dress like they did in 1968... so why are you still culturing like they did in 1968? The year was 1968, and bell bottoms and tie dye were all the rage. Also in 1968, Hektoen Enteric

More information

Isolation and Biochemical Characterization of Lactobacillus species Isolated from Dahi

Isolation and Biochemical Characterization of Lactobacillus species Isolated from Dahi International Journal of Current Microbiology and Applied Sciences ISSN: 2319-7706 Volume 5 Number 4 (2016) pp. 1042-1049 Journal homepage: http://www.ijcmas.com Original Research Article http://dx.doi.org/10.20546/ijcmas.2016.504.119

More information

Staining Technology and Bright- Field Microscope Use

Staining Technology and Bright- Field Microscope Use Staining Technology and Bright- Field Microscope Use 2 Abstract We will introduce bright-field microscope use, practice Gram staining with foodborne pathogens, and practice endospore staining with Bacillus

More information

Gram-Negative rods Introduction to

Gram-Negative rods Introduction to Lec 5 Oral Microbiology Dr. Chatin Gram-Negative rods Introduction to Enterobacteriaceae Characteristics: جامعة تكريت كلية طب االسنان Small gram-negative rods (2-5 by 0.5 microns) Most motile with peritrichous

More information

FARM MICROBIOLOGY 2008 PART 3: BASIC METABOLISM & NUTRITION OF BACTERIA I. General Overview of Microbial Metabolism and Nutritional Requirements.

FARM MICROBIOLOGY 2008 PART 3: BASIC METABOLISM & NUTRITION OF BACTERIA I. General Overview of Microbial Metabolism and Nutritional Requirements. FARM MICROBIOLOGY 2008 PART 3: BASIC METABOLISM & NUTRITION OF BACTERIA I. General Overview of Microbial Metabolism and Nutritional Requirements. Under the right physical conditions, every microorganism

More information

Characterization of Bacteria by Their Degradation of Amino Acids

Characterization of Bacteria by Their Degradation of Amino Acids APPLIED MICROBIOLOGY, Oct. 1968, P. 1591-1595 Copyright 1968 American Society for Microbiology Vol. 16, No. 10 Printed in U.S.A. Characterization of Bacteria by Their Degradation of Amino Acids M. J. PICKETT

More information

Citrobacter koseri. II. Serological and biochemical examination of Citrobacter koseri strains from clinical specimens

Citrobacter koseri. II. Serological and biochemical examination of Citrobacter koseri strains from clinical specimens J. Hyg., Camb. (1975), 75, 129 129 Printed in Great Britain Citrobacter koseri. II. Serological and biochemical examination of Citrobacter koseri strains from clinical specimens BY B. ROWE, R. J. GROSS

More information

Survival of Aerobic and Anaerobic Bacteria in

Survival of Aerobic and Anaerobic Bacteria in APPLIED MICROBIOLOGY, Mar. 1968, p. 445-449 Copyright 1968 American Society for Microbiology Vol. 16, No. 3 Printed in U.S.A. Survival of Aerobic and Anaerobic Bacteria in Chicken Meat During Freeze-Dehydration,

More information

BACTERIAL GROWTH. FYBSc.

BACTERIAL GROWTH. FYBSc. BACTERIAL GROWTH FYBSc. Bacterial growth Binary fission Generation time Phases of growth 4-2 Binary fission 1. Prokaryote cells grow by increasing in cell number (as opposed to increasing in size). 2.

More information

ا.م.د.هيفاء الحديثي. Enterobacteriaceae

ا.م.د.هيفاء الحديثي. Enterobacteriaceae ا.م.د.هيفاء الحديثي Bacteriology Genus Salmonella Enterobacteriaceae - Pathogenic for human and animals - They are gram negative rods, motile with peritrichous flagella except Gallinarum-pullorum - Ferment

More information

Changes in the Microflora of Bovine Colostrum During Natural Fermentation

Changes in the Microflora of Bovine Colostrum During Natural Fermentation 27 f. Milk Food Techno/. Vol. 39. No. I, Pages 27-31!January, 1976) Copyright 1976, International Association of Milk, Food, and Environmental Sanitarians Changes in the Microflora of Bovine Colostrum

More information

QUALITATIVE ANALYSIS OF AMINO ACIDS AND PROTEINS

QUALITATIVE ANALYSIS OF AMINO ACIDS AND PROTEINS QUALITATIVE ANALYSIS OF AMINO ACIDS AND PROTEINS Amino acids are molecules containing an amine group, a carboxylic acid group and a side chain that varies between different amino acids. Amino acids of

More information

Clinical Laboratory Science: Urinalysis

Clinical Laboratory Science: Urinalysis Clinical Laboratory Science: Urinalysis Urine is produced by the kidney to maintain constant plasma osmotic concentration; to regulate ph, electrolyte and fluid balances and to excrete some 50 grams of

More information

Comparison of Minitek and Conventional Methods for the

Comparison of Minitek and Conventional Methods for the JOURNAL OF CLINICAL MICROBIOLOGY, Oct. 1979, p. 409-414 Vol. 10, No. 4 0095-1 137/79/10-0409/06$02.00/0 Comparison of Minitek and Conventional Methods for the Biochemical Characterization of Oral Streptococci

More information

Screening and isolation of microbial contaminants from carbonated and non-carbonated soft drinks of Delhi

Screening and isolation of microbial contaminants from carbonated and non-carbonated soft drinks of Delhi International Journal of Emerging Trends in Science and Technology IC Value: 76.89 (Index Copernicus) Impact Factor: 4.219 DOI: https://dx.doi.org/10.18535/ijetst/v4i5.04 Screening and isolation of microbial

More information

Properties of Proteins

Properties of Proteins Name Properties of Proteins Experiment #8 Section Pre Lab Exercise 1. Draw the chemical structure for the amino acids glycine, tyrosine, tryptophan, cysteine and methionine. 2. Which of the above amino

More information

Labquality External Quality Assesment Programmes General Bacteriology 1 1/2010

Labquality External Quality Assesment Programmes General Bacteriology 1 1/2010 Labquality External Quality Assesment Programmes General Bacteriology 1 1/2010 Photos and text: Markku Koskela, M.D., Ph.D. Clinical microbiology specialist Oulu, Finland Sample 1/2010 Pus from an infected

More information

Infectious Disease Testing. UriSelect 4 Medium. Direct Identification Visibly Reliable

Infectious Disease Testing. UriSelect 4 Medium. Direct Identification Visibly Reliable Infectious Disease Testing Urielect 4 Medium Direct Identification Visibly Reliable Urielect 4 Non selective chromogenic medium for the isolation, differentiation and enumeration of urinary tract infections

More information

Microbiological Quality of Non-sterile Products Culture Media for Compendial Methods

Microbiological Quality of Non-sterile Products Culture Media for Compendial Methods Microbiological Quality of Non-sterile Products Culture Media for Compendial Methods The life science business of Merck operates as MilliporeSigma in the U.S. and Canada. Culture Media for Compendial Methods

More information