AP BIOLOGY Chapter 7 Cellular Respiration =
|
|
- Shanon Casey
- 1 years ago
- Views:
Transcription
1 1 AP BIOLOGY Chapter 7 Cellular Respiration = Day 1 p. I. Overview A. Cellular Respiration 1. Respiration breathing, exchange of O 2 for CO 2 2. Cellular respiration aerobic harvesting of energy from food molecules by cells. a. Energy is in the form of ATP. b. Energy is then used to do work. B. ATP Molecules/Usage 1. The overall equation for cellular respiration is as follows: 2. Glucose releases chemical energy. 3. Cells store energy in the chemical bonds of the ATP molecule. a. Equation: b. Hydrolyze ATP which means? c. Break the high energy bonds between phosphates energy. 4. Energy from ATP is used for body maintenance and voluntary activities. II. Basic Mechanisms of Energy Release and Storage A. Energy Release 1. Glucose is broken down is a series of steps. 2. The energy is carried by electrons, which are being rearranged from one molecule to another. 3. The basic mechanism is based on the principle of redox. B. Redox Reactions 1. Redox stands for: Reduction-Oxidation. 2. The addition of electrons to another substance is reduction. 3. A loss of electrons from one substance is called oxidation.
2 2 - LEO goes GER 4. Examples: C. Redox and Respiration 1. Glucose is eventually oxidized to CO 2 2. O 2 is eventually reduced to H 2 O. 3. Equation: 4. Glucose donates its electrons (in the form of H atoms) to oxygen two at a time. a. An enzyme known as dehydrogenase is used. b. A coenzyme known as NAD + is also used in the reaction it is an electron acceptor. 5. The enzyme transfers H atoms (two at a time) from the molecule of glucose. a. It removes 2 protons (2 H + ) and two electrons (2 e - ) b. The NAD + picks up the electrons and one H+ and becomes NADH (a hydrogen carrier). c. The other H + goes into the surrounding solution in the cell. 6. The NADH molecules deliver the electrons to an electron carrier molecule in the electron transport chain. a. As the electrons pass along the chain, they lose energy each step. b. The cell uses this to make ATP. D. Two Mechanisms Generate ATP : in humans = 1. Oxidative Phosphorylation (Chemiosmosis) involves membranes and a protein complex called ATP synthase. a. ATP synthases synthesize ATP using the energy stored in concentration gradients of H + ions (protons) across membranes. b. Cells generate most of their ATP this way.
3 3 2. Substrate-level phosphorylation is much simpler than chemiosmosis and does not involve membranes. a. An enzyme transfers a phosphate group from an organic substrate molecule to ADP. b. The substrate is produced as glucose is converted to CO 2 c. The reaction products are a new organic molecule and ATP. d. This accounts for only a small amount of ATP that the cell makes. Day 2 p. III. The Stages of Cellular Respiration A. Overview 1. The first two stages, glycolysis and the Kreb s cycle, are exergonic processes that break down glucose and other organic fuels. a. Glycolysis occurs in the cytoplasm of the cell it begins cellular respiration by breaking down glucose into two molecules of pyruvic acid. b. The Kreb s cycle takes place in the mitochondria it completes the breakdown of glucose by decomposing a derivative of pyruvic acid to carbon dioxide. c. The electron transport chain obtains electrons from hydrogen carries making lots of ATP as the electrons fall down an energy hill of electron carriers. 2. Glycolysis and the Kreb s cycle are energy releasing stages that extract electrons from food molecules. B. Glycolysis = 1. A molecule of glucose is energized using ATP. 2. A six-carbon intermediate ( ) splits into two threecarbon intermediates ( ). 3. A redox reaction generates NADH.
4 4 4. ATP and two molecules of pyruvic acid are produced. a. Get two ATP for each intermediate converted to pyruvic acid. b. Make 4 ATP (net 2 ATP) why net 2? c. Overall diagram: C. Formation of Acetyl coa 1. The three-carbon pyruvic acid becomes oxidized, loses CO 2, and becomes a 2-C acetyl group. 2. It combines with coenzyme A, making acetyl coa. 3. The acetyl coa gets fed into the Kreb s cycle. 4. The Kreb s cycle takes place in the mitochondria the products must be moved from the cytoplasm (loss of 2 ATP). D. The Kreb s Cycle 1. Acetyl coa combines with a 4-C called oxaloacetic acid (OAA). a. This forms citric acid. b. How many carbons does this have? c. The coa will pop off & return to the beginning of the process why? 2. A molecule of water is removed and then one is added back on. a. This makes isocitric acid. b. Relationship? 3. This substrate then loses a CO 2 molecule and two H. a. The remaining 5-C compound is known as ketoglutaric acid. 4. This compound loses a CO 2, two H, and another coenzyme is added on. a. This forms succinyl coa.
5 b. This has how many carbons? 5. The coa pops off and ATP is generated by substrate level phosphorylation. a. Succinic acid is formed. b. How many carbons does this have? 6. A new electron carrier comes in and picks up two H making fumaric acid. a. How many carbons does fumaric acid have? b. The electron carrier is called FAD when it is full it is called FADH 2 7. Water is added and malic acid is formed. 8. A hydrogen carrier removes 2 H, regenerating OAA. *Cake is kinda sweet so feed me one! 5
6 6 Day 3 p. E. The Results of the Kreb s Cycle Glycolysis P.A. to ACo to mitochondria Krebs ATP NADH FADH 2 1. When oxaloacetic acid is regenerated, the cycle will begin again why? 2. A total of 8 hydrogens are released. a. The H are picked up by NAD + and FAD. b. Makes NADH (3), FADH 2 (1), and ATP (1) all x 2 (why?). 3. The NADH and FADH 2 donate their electrons to the third stage the electron transport chain. F. The Electron Transport Chain 1. The electron transport chain uses chemical energy to create an H + gradient and then uses energy stored in the gradient to drive ATP synthesis. Where? 2. A total of 10 NADH and 2 FADH 2 donate their electrons to the carriers on the chain. a. Each carrier ( ) is a different molecule (mostly proteins). b. The carriers reside in 3 protein complexes, which span the inner membrane in the mitochondria. c. The first one is oxidized as the next one is reduced, and so on, down to the last molecule O 2 d. The electron carriers get increasingly more electronegative, as you move from left to right. e. All the carriers bind and release electrons in redox reactions. 3. As redox occurs, the protein complexes use energy released from the electrons to actively transport H + ions from one side of the membrane to the other. a. The H + ions are stored up (potential energy) to make ATP. 4. The H + ions have a tendency to move back across the membrane to the matrix (due to energy of the gradient). a. They move through a special protein port. b. ATP synthase provides the channel opening and contains enzymes to make ATP.
7 c. ADP is then phosphorylated to make ATP. 5. Each oxygen atom in O 2 combines with 2 electrons and with 2 H + ions (from the surrounding solution) to form H 2 O. 6. Overall ATP made: a. 2.5 ATP for each NADH 2.5 x 10 = 25 ATP. b. 1.5 ATP for each FADH x 2 = 3 ATP. c. A grand total of 28 ATP are made from the ETC. 7
8 8 7. Various poisons interfere with ETC examples are cyanide and carbon monoxide. a. They block the movement of electrons. b. They block the flow of H + through ATP synthase. c. They allow H + to leak through the membrane. IV. Fermentation No O 2 A. Anaerobic Respiration 1. Alcohol fermentation in yeasts, certain bacteria. a. Equation: b. NAD + must be regenerated how? c. Example: 2. Lactic Acid Fermentation a. Equation: b. Lactic acid can accumulate as a waste product. c. Example: 3. Obligate anaerobes are poisoned by oxygen live deep in the soil. 4. Facultative anaerobes (such as yeast) can survive with or without. a. If O 2 is present they go through cellular respiration. b. If no O 2 they will ferment. V. Food for Fuel A. Organic Molecules 1. Molecules other than glucose can be used as fuel.
9 9 2. Polysaccharides can be hydrolyzed to monosaccharides and then converted to glucose for glycolysis. 3. Proteins can be digested for amino acids. a. The amino groups are disposed of in the urine. b. The remains are oxidized in the Kreb s cycle. 4. Fats, rich in hydrogen, electrons, and energy, are broken up and fed into glycolysis and the Kreb s cycle. p. 152 If we eat more food than we need, we store fat even if our diet is fatfree. B. Raw Materials 1. In addition to energy, cells need raw materials for growth and repair. a. Some of these things are obtained from food. b. Others are made as intermediates from glycolysis and the Kreb s cycle. 2. This process, known as biosynthesis, consumes ATP. a. All organisms have the ability to harvest energy from organic molecules. b. But plants can also make these molecules from inorganic sources by photosynthesis.
Chapter 9 Notes. Cellular Respiration and Fermentation
Chapter 9 Notes Cellular Respiration and Fermentation Objectives Distinguish between fermentation and anaerobic respiration. Name the three stages of cellular respiration and state the region of the cell
4. Which step shows a split of one molecule into two smaller molecules? a. 2. d. 5
1. Which of the following statements about NAD + is false? a. NAD + is reduced to NADH during both glycolysis and the citric acid cycle. b. NAD + has more chemical energy than NADH. c. NAD + is reduced
Respiration. Respiration. How Cells Harvest Energy. Chapter 7
How Cells Harvest Energy Chapter 7 Respiration Organisms can be classified based on how they obtain energy: autotrophs: are able to produce their own organic molecules through photosynthesis heterotrophs:
How Cells Harvest Chemical Energy. Chapter 9
How Cells Harvest Chemical Energy Chapter 9 Cellular Respiration Releasing energy (ATP) from glucose (chemical energy) in the presence of O 2 Energy flows Matter cycles True or False Plants only perform
MULTIPLE CHOICE QUESTIONS
MULTIPLE CHOICE QUESTIONS 1. Which of the following statements concerning anabolic reactions is FALSE? A. They are generally endergonic. B. They usually require ATP. C. They are part of metabolism. D.
Chapter 7 Cellular Respiration and Fermentation*
Chapter 7 Cellular Respiration and Fermentation* *Lecture notes are to be used as a study guide only and do not represent the comprehensive information you will need to know for the exams. Life Is Work
Cellular Respiration: Harvesting Chemical Energy
Chapter 9 Cellular Respiration: Harvesting Chemical Energy You should be able to: 1. Explain how redox reactions are involved in energy exchanges. Name and describe the three stages of cellular respiration;
Cellular Pathways That Harvest Chemical Energy. Cellular Pathways That Harvest Chemical Energy. Cellular Pathways In General
Cellular Pathways That Harvest Chemical Energy A. Obtaining Energy and Electrons from Glucose Lecture Series 12 Cellular Pathways That Harvest Chemical Energy B. An Overview: Releasing Energy from Glucose
Cellular Respiration: Harvesting Chemical Energy
Chapter 9 Cellular Respiration: Harvesting Chemical Energy PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with
3.7.1 Define cell respiration [Cell respiration is the controlled release of energy from organic compounds in cells to form ATP]
3.7 Cell respiration ( Chapter 9 in Campbell's book) 3.7.1 Define cell respiration [Cell respiration is the controlled release of energy from organic compounds in cells to form ATP] Organic compounds store
Chapter 9. Cellular Respiration and Fermentation
Chapter 9 Cellular Respiration and Fermentation Energy flows into an ecosystem as sunlight and leaves as heat Photosynthesis generates O 2 and organic molecules, which are used in cellular respiration
Releasing Chemical Energy
Releasing Chemical Energy Ø Energy From Carbohydrates Ø Aerobic Respiration/ Stages Ø Fermentation Ø Food as a Source of Energy How Do Cells Access the Chemical Energy in Carbohydrayes? Aerobic Respiration
Metabolism. Metabolism. Energy. Metabolism. Energy. Energy 5/22/2016
5//016 Metabolism Metabolism All the biochemical reactions occurring in the body Generating, storing and expending energy ATP Supports body activities Assists in constructing new tissue Metabolism Two
Chapter 9: Cellular Respiration: Harvesting Chemical Energy
AP Biology Reading Guide Name: Date: Period Chapter 9: Cellular Respiration: Harvesting Chemical Energy Overview: Before getting involved with the details of cellular respiration and photosynthesis, take
How Cells Harvest Chemical Energy
How Cells Harvest Chemical Energy Chapter 6 Introduction: How Is a Marathoner Different from a Sprinter? Individuals inherit various percentages of the two main types of muscle fibers, slow and fast The
Cellular Respiration. Unit 5: Plants, Photosynthesis, and Cellular Respiration
Cellular Respiration Unit 5: Plants, Photosynthesis, and Cellular Respiration Overview! Organisms obtain energy (ATP) by breaking down (catabolic pathway, exergonic reaction) organic molecules (glucose)
Chapter 9: Cellular Respiration
Chapter 9: Cellular Respiration Breaking down glucose a little at a time.. It s like turning a five pound bag of sugar into several tiny sugar packets worth of energy in the form of ATP. Remember the carbon
Cellular Respiration Harvesting Chemical Energy ATP
Cellular Respiration Harvesting Chemical Energy ATP 2006-2007 What s the point? The point is to make ATP! ATP 2006-2007 Harvesting stored energy Energy is stored in organic molecules carbohydrates, fats,
CH 7: Cell Respiration and Fermentation Overview. Concept 7.1: Catabolic pathways yield energy by oxidizing organic fuels
CH 7: Cell Respiration and Fermentation Overview Living cells require energy from outside sources Some animals obtain energy by eating plants, and some animals feed on other organisms Energy flows into
Concept 9.1: Catabolic pathways yield energy by oxidizing organic fuels Several processes are central to cellular respiration and related pathways
Overview: Life Is Work Living cells require energy from outside sources Some animals, such as the chimpanzee, obtain energy by eating plants, and some animals feed on other organisms that eat plants Energy
How Cells Harvest Energy. Chapter 7. Respiration
How Cells Harvest Energy Chapter 7 Respiration Organisms classified on how they obtain energy: autotrophs: produce their own organic molecules through photosynthesis heterotrophs: live on organic compounds
Cellular Metabolism 9/24/2013. Metabolism. Cellular Metabolism. Consists of all the chemical reactions that take place in a cell!
Cellular Metabolism Biology 105 Lecture 6 Chapter 3 (pages 56-61) Metabolism Consists of all the chemical reactions that take place in a cell! Cellular Metabolism Aerobic cellular respiration requires
Cellular Respiration Harvesting Chemical Energy ATP
Cellular Respiration Harvesting Chemical Energy ATP 2009-2010 Ch.8.3 Section Objectives: Compare and contrast cellular respiration and fermentation. Explain how cells obtain energy from cellular respiration.
Cellular Respiration: Harvesting Chemical Energy Chapter 9
Cellular Respiration: Harvesting Chemical Energy Chapter 9 Assemble polymers, pump substances across membranes, move and reproduce The giant panda Obtains energy for its cells by eating plants which get
Cellular Metabolism. Biol 105 Lecture 6 Read Chapter 3 (pages 63 69)
Cellular Metabolism Biol 105 Lecture 6 Read Chapter 3 (pages 63 69) Metabolism Consists of all of the chemical reactions that take place in a cell Metabolism Animation Breaking Down Glucose For Energy
Chapter 9 Cellular Respiration
Chapter 9 Cellular Respiration Biology and Society: Marathoners versus Sprinters Sprinters do not usually compete at short and long distances. Natural differences in the muscles of these athletes favor
KEY CONCEPT The overall process of cellular respiration converts sugar into ATP using oxygen.
KEY CONCEPT The overall process of cellular respiration converts sugar into ATP using oxygen. ! Cellular respiration makes ATP by breaking down sugars. Cellular respiration is aerobic, or requires oxygen.
Cellular Respiration and Fermentation
LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert B. Jackson Chapter 9 Cellular Respiration and Fermentation
Bio 111 Study Guide Chapter 7 Cellular Respiration & Fermentation
Bio 111 Study Guide Chapter 7 Cellular Respiration & Fermentation BEFORE CLASS: Reading: Read the whole chapter from pp. 141-158. In Concept 7.1, pay special attention to oxidation & reduction and the
Cellular Respiration
Cellular Respiration 1. To perform cell work, cells require energy. a. A cell does three main kinds of work: i. Mechanical work, such as the beating of cilia, contraction of muscle cells, and movement
Cell Respiration - 1
Cell Respiration - 1 All cells must do work to stay alive and maintain their cellular environment. The energy needed for cell work comes from the bonds of ATP. Cells obtain their ATP by oxidizing organic
2) The molecule that functions as the reducing agent (electron donor) in a redox or oxidationreduction
Campbell Biology in Focus (Urry) Chapter 7 Cellular Respiration and Fermentation 7.1 Multiple-Choice Questions 1) What is the term for metabolic pathways that release stored energy by breaking down complex
2. What are the products of cellular respiration? Include all forms of energy that are products.
Name Per Cellular Respiration An Overview Why Respire Anyhoo? Because bucko all cells need usable chemical energy to do work. The methods cells use to convert glucose into ATP vary depending on the availability
Chapter 6 Cellular Respiration: Obtaining Energy from Food
Chapter 6 Cellular Respiration: Obtaining Energy from Food PowerPoint Lectures for Campbell Essential Biology, Fifth Edition, and Campbell Essential Biology with Physiology, Fourth Edition Eric J. Simon,
Cellular Respiration: Obtaining Energy from Food
Chapter 6 Cellular Respiration: Obtaining Energy from Food PowerPoint Lectures for Campbell Essential Biology, Fourth Edition Eric Simon, Jane Reece, and Jean Dickey Campbell Essential Biology with Physiology,
Name: Block: Date: PACKET #8 Unit 3: Energy Transfer, Part II: Cellular Respiration
Name: Block: Date: PACKET #8 Unit 3: Energy Transfer, Part II: Cellular Respiration Reading: BSCS Text chapters 4, 5, and 2.8. Objectives: By the conclusion of this unit the student will be able to: Topic
Biology Kevin Dees. Chapter 9 Harvesting Chemical Energy: Cellular Respiration
Chapter 9 Harvesting Chemical Energy: Cellular Respiration Life is Work!!! Biology Kevin Dees Catabolic pathways and ATP production Catabolic pathways release energy by breaking down large molecules into
Essential Question. How do organisms obtain energy?
Dr. Bertolotti Essential Question How do organisms obtain energy? What is cellular respiration? Burn fuels to make energy combustion making heat energy by burning fuels in one step O 2 Fuel (carbohydrates)
Cellular Respiration
Cellular Respiration Cellular respiration is the process that releases energy by breaking down glucose and other food molecules in the presence of oxygen In biology and chemistry, energy is referred to
Cellular Respiration: Harvesting Chemical Energy
Chapter 9 Cellular Respiration: Harvesting Chemical Energy PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with
1st half of glycolysis (5 reactions) Glucose priming get glucose ready to split phosphorylate glucose rearrangement split destabilized glucose
Warm- Up Objective: Describe the role of in coupling the cell's anabolic and catabolic processes. Warm-up: What cellular processes produces the carbon dioxide that you exhale? 1st half of glycolysis (5
MIDDLETOWN HIGH SCHOOL SOUTH BIOLOGY
MIDDLETOWN HIGH SCHOOL SOUTH BIOLOGY BOOKLET 10 NAME: CLASS: 1 S.Tagore Middletown South High School March 2013 LEARNING OUTCOMES The role and production of ATP (a) Importance, role and structure of ATP
Cellular Respiration. How is energy in organic matter released for used for in living systems?
Cellular Respiration How is energy in organic matter released for used for in living systems? Cellular Respiration Organisms that perform cellular respiration are called chemoheterotrophs Includes both
Cellular Respiration: Harvesting Chemical Energy
Chapter 9 Cellular Respiration: Harvesting Chemical Energy Edited by Shawn Lester PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated
Metabolism. Chapter 5. Catabolism Drives Anabolism 8/29/11. Complete Catabolism of Glucose
8/29/11 Metabolism Chapter 5 All of the reactions in the body that require energy transfer. Can be divided into: Cell Respiration and Metabolism Anabolism: requires the input of energy to synthesize large
3.2 Aerobic Respiration
3.2 Aerobic Respiration Aerobic Cellular Respiration Catabolic pathways Breaks down energy-rich compounds to make ATP Requires oxygen Occurs in different parts of the cell C 6 H 12 O 6 (s) + 6O 2 (g) 6CO
Cellular Respiration- -conversion of stored energy in glucose to usable energy for the cell -energy in cells is stored in the form of ATP
Cellular Respiration Notes Chapter 7 How Cells Make ATP Energy Releasing Pathways Cellular Respiration- -conversion of stored energy in glucose to usable energy for the cell -energy in cells is stored
CELLULAR RESPIRATION SUMMARY EQUATION. C 6 H 12 O 6 + O 2 6CO2 + 6H 2 O + energy (ATP) STEPWISE REDOX REACTION
CELLULAR RESPIRATION SUMMARY EQUATION C 6 H 12 O 6 + O 2 6CO2 + 6H 2 O + energy (ATP) STEPWISE REDOX REACTION Oxidation: partial or complete loss of electrons Reduction: partial or complete gain of electrons
Cellular Respira,on. Topic 3.7 and 3.8
Cellular Respira,on Topic 3.7 and 3.8 Defini,on of cellular respira,on Controlled release of energy from organic compounds to produce ATP Cells break down organic compounds by SLOW oxida,on Chemical energy
CH 9 CELLULAR RESPIRATION. 9-1 Chemical Pathways 9-2 The Krebs Cycle and Electron Transport
CH 9 CELLULAR RESPIRATION 9-1 Chemical Pathways 9-2 The Krebs Cycle and Electron Transport Chemical Energy and Food Energy source = food = ATP A calorie is the unit for the amount of energy needed to raise
Chapter 9 Cellular Respiration. Copyright Pearson Prentice Hall
Chapter 9 Cellular Respiration Copyright Pearson Prentice Hall 9-1 Chemical Pathways Both plant and animal cells carry out the final stages of cellular respiration in the mitochondria. Animal Cells Animal
Chapter 6 Cellular Respiration: Obtaining Energy from Food Biology and Society: Marathoners versus Sprinters
Chapter 6 Cellular Respiration: Obtaining Energy from Food Biology and Society: Marathoners versus Sprinters Sprinters do not usually compete at short and long distances. Natural differences in the muscles
Complete breakdown of Glucose: + Light + 6 H 2 O = C 6 H 12 O 6 6 CO O 2. + Energy = 6 CO 2 C 6 H 12 O 6. What is Glucose Metabolism?
Chapter 8: Harvesting Energy: Glycolysis and Cellular Respiration What is Metabolism? Answer: The breakdown of glucose to release energy from its chemical bonds Photosynthesis: 6 CO 2 Carbon Dioxide +
How Cells Harvest Chemical Energy
Chapter 6 How Cells Harvest Chemical Energy PowerPoint Lectures for Biology: Concepts & Connections, Sixth Edition Campbell, Reece, Taylor, Simon, and Dickey Lecture by Richard L. Myers 6.1 Photosynthesis
Campbell's Biology: Concepts and Connections, 7e (Reece et al.) Chapter 6 How Cells Harvest Chemical Energy. 6.1 Multiple-Choice Questions
Campbell's Biology: Concepts and Connections, 7e (Reece et al.) Chapter 6 How Cells Harvest Chemical Energy 6.1 Multiple-Choice Questions 1) Which of the following statements regarding photosynthesis and
Section B: The Process of Cellular Respiration
CHAPTER 9 CELLULAR RESPIRATION: HARVESTING CHEMICAL ENERGY Section B: The Process of Cellular Respiration 1. Respiration involves glycolysis, the Krebs cycle, and electron transport: an overview 2. Glycolysis
Cell Respiration. Anaerobic & Aerobic Respiration
Cell Respiration Anaerobic & Aerobic Respiration Understandings/Objectives 2.8.U1: Cell respiration is the controlled release of energy from organic compounds to produce ATP. Define cell respiration State
Cellular Respiration and Fermentation
Chapter 9 LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert B. Jackson Cellular Respiration and Fermentation
Bio 103 Section A02 Summer 2003 Exam #2 Study Guide Dr. Largen
Chapter 4 - Cell Structure Bio 103 Section A02 Summer 2003 Exam #2 Study Guide Dr. Largen Microscopes provide windows to the world of the cell compare light versus electron microscopes illumination type
Cellular Respiration an overview Section 9.1
Cellular Respiration an overview Section 9.1 Where do organisms get their energy? Unit calories 1 calorie = amount of energy required to increase 1 gram of water by 1 degrees Celsius 1000 calories 1 Calorie
CELLULAR RESPIRATION. Xe - + Y X + Ye - CH 4 + 2O 2 CO 2 + H 2 O + energy. C 6 H 12 O 6 + 6O 2 6CO 2 + 6H 2 O + energy SUMMARY EQUATION
AP BIOLOGY CELLULAR ENERGETICS ACTIVITY #2 NAME DATE HOUR CELLULAR RESPIRATION SUMMARY EQUATION STEPWISE REDOX REACTION Oxidation: Reduction: Xe - + Y X + Ye - CH 4 + 2O 2 CO 2 + H 2 O + energy C 6 H 12
MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) What is the term for metabolic pathways that release stored energy by breaking down complex
Cell Respiration Ch 7. Both autotrophs and heterotrophs use cellular respiration to make CO2 and water from
Cell Respiration Ch 7 Objectives: Identify the 2 major steps of cellular respiration Describe the major events in glycolysis Compare lactic acid fermentation with alcoholic fermentation Calculate the efficiency
Cellular Respiration and Fermentation
LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert B. Jackson Chapter 9 Cellular Respiration and Fermentation
How Cells Release Chemical Energy Cellular Respiration
How Cells Release Chemical Energy Cellular Respiration Overview of Cellular Respiration HO double membrane outer membrane inner membrane CO matrix Produces molecules Requires oxygen Releases carbon dioxide
Consists of all of the chemical reactions that take place in a cell. Summary of Cellular Respiration. Electrons transferred. Cytoplasm Blood vessel
7/19/2014 Metabolism Cellular Metabolism Metabolism Consists of all of the chemical reactions that take place in a cell PLAY Animation Breaking Down Glucose For Energy Biol 105 Lecture Packet 6 Read Chapter
CHAPTER 6 CELLULAR RESPIRATION
CHAPTER 6 CELLULAR RESPIRATION Chemical Energy In Food Purpose of food: Source of raw materials used to make new molecules Source of energy calorie the amount of energy needed to raise the temperature
Cellular Respiration. Chapter 9
Cellular Respiration Chapter 9 1.A)Explain where organisms get the energy needed for life processes. Organisms get the energy they need from food. Energy stored in food is expressed as calories. Calorie
Cellular Respiration
Cellular Respiration The breakdown of glucose for cellular energy. happens in all living cells. is exothermic H atoms and e are removed from glucose (oxidization) and added to oxygen (reduction) excess
1 Which pathway for aerobic cellular respiration is located in the cytoplasm of the cell?
1 Which pathway for aerobic cellular respiration is located in the cytoplasm of the cell? glycolysis citric cycle 2 Which of the following statements is NOT correct regarding aerobic cellular respiration?
Cellular Respiration Harvesting Chemical Energy ATP
Cellular Respiration Harvesting Chemical Energy ATP 2006-2007 What s the point? The point is to make ATP! ATP 2006-2007 Harvesting stored energy Energy is stored in organic molecules carbohydrates, fats,
CELLULAR RESPIRATION GETTING ENERGY TO MAKE ATP
ELLULAR RESPIRATION GETTING ENERGY TO MAKE ATP ELLULAR RESPIRATION ellular process by which mitochondria releases energy by breaking down food molecules (glucose or other organic molecules) to produce
LAB 6 Fermentation & Cellular Respiration
LAB 6 Fermentation & Cellular Respiration INTRODUCTION The cells of all living organisms require energy to keep themselves alive and fulfilling their roles. Where does this energy come from? The answer
How Cells Release Chemical Energy. Chapter 8
How Cells Release Chemical Energy Chapter 8 Impacts, Issues: When Mitochondria Spin Their Wheels More than forty disorders related to defective mitochondria are known (such as Friedreich s ataxia); many
Section 9 2 The Krebs Cycle and Electron Transport (pages )
Section 9 2 The Krebs Cycle and Electron Transport (pages 226 232) This section describes what happens during the second stage of cellular respiration, called the Krebs cycle. It also explains how high-energy
9.1 Chemical Pathways ATP
9.1 Chemical Pathways ATP 2009-2010 Objectives Explain cellular respiration. Describe what happens during glycolysis. Describe what happens during fermentation. Where do we get energy? Energy is stored
Class XI Chapter 14 Respiration in Plants Biology. 1. It is a biochemical process. 1. It is a physiochemical process.
Question 1: Differentiate between (a) Respiration and Combustion (b) Glycolysis and Krebs cycle (c) Aerobic respiration and Fermentation (a) Respiration and combustion Respiration Combustion 1. It is a
Ch. 9 Cellular Respiration Stage 2 & 3: Oxidation of Pyruvate Krebs Cycle
Ch. 9 Cellular Respiration Stage 2 & 3: Oxidation of Pyruvate Krebs Cycle 2006-2007 Glycolysis is only the start Glycolysis glucose pyruvate 6C Pyruvate has more energy to yield 3 more C to strip off (to
9.2 The Process of Cellular Respiration
9.2 The Process of Cellular Respiration Oxygen Carbon 2 2 Dioxide 34 Water Glycolysis Glycolysis is the first stage of cellular respiration. During glycolysis, glucose is broken down into 2 molecules of
Higher Biology. Unit 2: Metabolism and Survival Topic 2: Respiration. Page 1 of 25
Higher Biology Unit 2: Metabolism and Survival Topic 2: Respiration Page 1 of 25 Sub Topic: Respiration I can state that: All living cells carry out respiration. ATP is the energy currency of the cell
What s the point? The point is to make ATP! ATP
ATP Chapter 8 What s the point? The point is to make ATP! ATP Flows into an ecosystem as sunlight and leaves as heat Energy is stored in organic compounds Carbohydrates, lipids, proteins Heterotrophs eat
g) Cellular Respiration Higher Human Biology
g) Cellular Respiration Higher Human Biology What can you remember about respiration? 1. What is respiration? 2. What are the raw materials? 3. What are the products? 4. Where does it occur? 5. Why does
Chapter 8. Metabolism. Topics in lectures 15 and 16. Chemical foundations Catabolism Biosynthesis
Chapter 8 Topics in lectures 15 and 16 Metabolism Chemical foundations Catabolism Biosynthesis 1 Metabolism Chemical Foundations Enzymes REDOX Catabolism Pathways Anabolism Principles and pathways 2 Enzymes
Enzymes and Metabolism
PowerPoint Lecture Slides prepared by Vince Austin, University of Kentucky Enzymes and Metabolism Human Anatomy & Physiology, Sixth Edition Elaine N. Marieb 1 Protein Macromolecules composed of combinations
Food serves as a source of raw materials for the cells in the body and as a source of energy.
9-1 Chemical Pathways Food serves as a source of raw materials for the cells in the body and as a source of energy. Animal Cells Animal Mitochondrion Plant Plant Cells 1 of 39 Both plant and animal cells
Energy Flow. Chapter 7. Cellular Respiration: Overview. Cellular Respiration. Cellular Respiration. Cellular Respiration occurs in three stages
Energy Flow Chapter 7 Cellular Respiration hotosynthesis uses solar energy to produce glucose and O from CO and H O Cellular respiration makes and consumes O during the oxidation of glucose to CO and H
MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Respiration Practice Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Which of the following statements describes NAD+? A) NAD+ can donate
Active Learning Exercise 5. Cellular Respiration
Name Biol 211 - Group Number Active Learning Exercise 5. Cellular Respiration Reference: Chapter 9 (Biology by Campbell/Reece, 8 th ed.) 1. Give the overall balanced chemical equation for aerobic cellular
Enzymes what are they?
Topic 11 (ch8) Microbial Metabolism Topics Metabolism Energy Pathways Biosynthesis 1 Catabolism Anabolism Enzymes Metabolism 2 Metabolic balancing act Catabolism Enzymes involved in breakdown of complex
Lesson Overview. Cellular Respiration: An Overview. 9.2 process of cell respiration
9.2 process of cell respiration Glycolysis During glycolysis, glucose is broken down into 2 molecules of the 3-carbon molecule pyruvic acid. Pyruvic acid is a reactant in the Krebs cycle. ATP and NADH
Energy and life. Generation of Biochemical Energy Chapter 21. Energy. Energy and biochemical reactions: 4/5/09
Energy and life Generation of Biochemical Energy Chapter 21 1 Biological systems are powered by oxidation of biomolecules made mainly of C, H and O. The food biomolecules are mainly Lipids (fats) Carbohydrates
Biology 30 Structure & Function of Cells (Part 2) Bioenergetics: Energy: Potential energy: Examples: Kinetic energy. Examples:
Biology 30 Structure & Function of Cells (Part 2) Bioenergetics: Energy: Potential energy: Examples: Kinetic energy Examples: Energy can be transformed: Thermodynamics: First law of Thermodynamics: Second
9-1 Chemical Pathways Interactive pgs
Interactive pgs. 221-225 1 of 39 9-1 Chemical Pathways Food serves as a source of raw materials for the cells in the body and as a source of energy. Animal Cells Animal Mitochondrion Plant Plant Cells
Energy Production In A Cell (Chapter 25 Metabolism)
Energy Production In A Cell (Chapter 25 Metabolism) Large food molecules contain a lot of potential energy in the form of chemical bonds but it requires a lot of work to liberate the energy. Cells need
Name: Date: Per: Enzymes Review & Using text to understand ATP & Cellular Respiration
Name: Date: Per: Enzymes Review & Using text to understand ATP & Cellular Respiration Read this: Digestive enzymes are protein-based biological catalysts that play important roles in our lives. They help
Biology and Society: Feeling the Burn
Some Announcements Monday October 6 UW Evening Degree Program Information Table 4-6:00 pm, Hallway, 1st floor, College Center Tuesday, October 7 Eastern WA@ BCC Information Table 10am-1:00pm, Hallway,
BY: RASAQ NURUDEEN OLAJIDE
BY: RASAQ NURUDEEN OLAJIDE LECTURE CONTENT INTRODUCTION CITRIC ACID CYCLE (T.C.A) PRODUCTION OF ACETYL CoA REACTIONS OF THE CITIRC ACID CYCLE THE AMPHIBOLIC NATURE OF THE T.C.A CYCLE THE GLYOXYLATE CYCLE
Cellular Respiration: Harvesting Chemical Energy
Chapter 9 Cellular Respiration: Harvesting Chemical Energy Overview: Life Is Work Living cells require energy from outside sources Some animals, such as the giant panda, obtain energy by eating plants,
Unit 2: Metabolic Processes
How is energy obtained biologically? Recall: Red Ox Reactions Unit 2: Metabolic Processes Oxidation Is the chief mechanism by which chemical potential energy is released This energy comes from reduced