Highly Accurate Brain Stroke Diagnostic System and Generative Lesion Model. Junghwan Cho, Ph.D. CAIDE Systems, Inc. Deep Learning R&D Team

Size: px
Start display at page:

Download "Highly Accurate Brain Stroke Diagnostic System and Generative Lesion Model. Junghwan Cho, Ph.D. CAIDE Systems, Inc. Deep Learning R&D Team"

Transcription

1 Highly Accurate Brain Stroke Diagnostic System and Generative Lesion Model Junghwan Cho, Ph.D. CAIDE Systems, Inc. Deep Learning R&D Team

2 Established in September, 2016 at 110 Canal st. Lowell, MA 01852, USA CEO & Founder: Jacob Kyewook Lee Employees : 6 Contact: caideinfo@caidesystems.com Our Mission Save human lives by developing Cognitive Artificial Intelligence Disease Detection Systems. Provide protection of human life and equal access to health care and treatment through artificial intelligence technology. Our Goals Eliminating human errors and reducing delayed diagnosis Developing the most reliable AI system for analyzing images (ultra sound, MRI, CT and X-ray), electronic medical records, and genome data. Available Position Looking for Talented Research Scientist or Engineer With CAIDE, Better and Healthier Life!

3 Outlines CAIDE Diagnostic System for Brain Stroke Stroke Classification/Stroke Lesion Segmentation Stroke Lesion Generative Network Demo- CAIDE m: Studio BSR

4 Brain Stroke Brain attack/accident Up to 2 million brain cells die every minute. About 795,000 people suffer from stroke every year in US. More than 137,000 people (17% of all strokes) die from the stroke, with a cost of approximately $76.3 billion. Ischemic Stroke (Blood Blockage) Hemorrhagic Stroke (Bleeding) *Source image from With CAIDE, Better and Healthier Life!

5 CT Findings on Intracranial Hemorrhage Types Intraparenchymal (IPH) Intraventricular (IVH) Subarachnoid (SAH) Epidural (EDH) Subdural (SDH) IPH+IVH

6 END CAIDE Diagnostic System CT Images DICOM Files---> Gray Scale (on Window Level/Width) Preprocessing False Negative Model 1 CNN1- Classifier (Default Window) Cascaded CNN Classifiers VS Positive? (Bleeding) NO CNN2- Classifier (Stroke Window) Hemorrhagic(bleeding) No Bleeding YES Model 2 Stroke Lesion Delineation (FCN) YES Positive? NO

7 Sensitivity (Recall) vs Specificity True Positives Rate (Sensitivity) ROC for Classification ROC for Classification (0.953, 0983) (0.991, 0.961) Th p >=0.5 = (Specificity, Sensitivity) Th p >= False Positives Rate (1- Specificity) Sensitivity >> Specificity Cascaded CT window for increasing sensitivity while preserving specificity

8 Default Window vs Stroke Window Setting 50/100 (WL/WW) 40/40 50/100 Default Brain Window Stroke Window Ground Truth Narrow window width (high-contrast) Increase detection of subtle abnormalities Turner, P. J., and G. Holdsworth. "CT stroke window settings: an unfortunate misleading misnomer?." The British journal of radiology 84, no (2011):

9 Training for Cascaded CNN Classifier (Bleeding or not) Total data sets- 5,647 patients (3,000 no bleeding vs 2,647 bleeding) o2d axial CT images with 512x512 size 5-fold cross validation Trained cascaded CNN model otwo different training solvers: Stochastic Gradient Descent (SGD) and Adaptive Moment Estimation (ADAM) oscratch vs fined tuned using pre-trained model Hardware computer: NVIDIA DGX-1 with 8 Tesla V100

10 Evaluation- Classification- (top 1- accuracy) after 15 epoch 100 % 98 ("#. "" ± &. '%) ("-. ". ± &..%) ("'. +' ± &. +%) 96 ("*. *+ ± &.,%) SGD- 1 SGD- 2 ADAM- 3 ADAM- 4 Scratch Fine-tuned Scratch Fine-tuned

11 Evaluation Cascade CT Window Increasing Sensitivity 100 % # of False Negative CT Images /100 (WL/WW) / /40 (Cascaded) Specificity Sensitivity 50/100 (WL/WW) 50/ /40 50/100 50/ /40 (Cascaded)

12 Outlines CAIDE Diagnostic System for Brain Stroke Stroke Lesion Segmentation Stroke Lesion Generative Network Demo- CAIDE m: Studio BSR

13 Encoder-Decoder Architecture - for sematic image segmentation SegNet, U-Net, and Fully Convolutional Network (FCN) Encoder Feature extraction (Convolution) Dimensional reduction (Pooling) VGG 16 or ResNet Decoder High resolution from low resolution Unpooling/up-sampling with transposed convolution (deconvolution) Source image from "Segnet, IEEE transactions on pattern analysis and machine intelligence 39, no. 12 (2017):

14 Fully Convolutional Network (FCN) for Stroke Lesion Segmentation VGG16 Network 2x upsampled SUM Pool4 prediction Pool3 prediction SUM 2x upsampled 8x upsampled Softmax FCN-8s Long, Jonathan, Evan Shelhamer, and Trevor Darrell. "Fully convolutional networks for semantic segmentation." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition

15 FCN Training Total data sets- 2,647 patients (corresponding 33,391 well labeled images) 5-fold cross validation Fully convolutional network with ADAM solver using pre-trained model NVIDA DGX-1 (8 V100 GPU) Histogram of Hemorrhagic Stroke Type IPH IVH EDH SDH SAH

16 Segmented Results by FCN8s after 50 Epoch Training IVH DC IVH =.86 IPH, SAH DC IPH =.89, DC SAH =.77

17 Segmented Results by FCN8s after 50 Epoch Training SDH: False Negative SAH, SDH DC SAH =. 84 SAH: False Positive EDH, SDH DC EDH =.89, DC SDH =.54

18 Performance Evaluation 100 Precision % % 100 #FP: Number of Pixels Falsely Positive Segmented DC: Dice Coefficient Recall, Sensitivity #FP>300 #FP>200 #FP> DC>5% DC>25% DC>50% Precision=TP/(TP+FP) Recall=TP/(TP+FN) IPH IVH EDH SDH SAH IPH IVH EDH SDH SAH

19 Outlines CAIDE Diagnostic System for Brain Stroke Stroke Classification/Stroke Lesion Segmentation Stroke Lesion Generative Network Demo- CAIDE m: Studio BSR

20 Generative Adversarial Networks (GANs) Two networks competing against each other in a zero sum game The discriminator (D): Distinguish real data from fake created by the generator (x) The generator (G): Learn distribution of the data from random noise, in an attempt to fool the discriminator Source Image from (z) Source Image from

21 Image to Image Translation - for Generating Stoke Lesion Images l l Apply to map stoke lesion labels to corresponding lesion image. Stoke lesion masks (segmented regions) - conditional input images to the Generator (G) as well as Discriminator (D) Lesion Generated Image Stoke Lesion Labels Source image from, Phillip, et al. "Image-to-image translation with conditional adversarial networks." arxiv preprint (2017) GAN for Generating Stoke Lesion Images Target (Stroke Lesion)

22 Training Pix2Pix-Tensorflow l Trained conditional GAN below conditions q Total data set : 2,647 patients (corresponding 33,391 well labeled images) : 80% training, 20% testing q Learning parameters: Learning rate =0.0002, L1 weight=100, and GAN weight=1.0 q About 16 hour up to 200 epoch on NVIDIA Tesla V100 (1 GPU)

23 Examples of Generated Fake CT Image after 200 Epoch Training Input Target Output Input Target Output SDH SAH EDH SAH SAH

24 Input Target Output SAH, EDH Input Target Output SAH, IVH, IPH IPH, SAH IVH, IPH SAH, SAHIVH SAH, IVH

25 Evaluation l l l l In general, evaluating GANs is difficult q q Loss function makes it harder during training FCN /Inception scores and Amazon Mechanical Turk (AMT by human) FCN scores : fake/generated images inferred by FCN Clarity- threshold blurriness (variance of Laplacian) Second discriminator- choose more realistic images IPH FCN scores (DICE) vs Image Quality Dice:.981 Dice:.976 Dice:.981 Dice: epochs 50 epochs 100 epochs 200 epochs

26 Evaluation Recall, DICE l Evaluated by varying: q Percentage of training data (based on patient number): 2.5, 10, 50, and 100% q Number of epochs : 10, 50, 100, and 200 epoch Recall DICE (FCN Scores)

27 Evaluation- Data Augmentation Original (Real Data) Original+ Augment Original+ 2xAugment Original+ 3xAugment

28 CAIDE m: Studio BSR (Demo), Booth #726

Segmentation of Cell Membrane and Nucleus by Improving Pix2pix

Segmentation of Cell Membrane and Nucleus by Improving Pix2pix Segmentation of Membrane and Nucleus by Improving Pix2pix Masaya Sato 1, Kazuhiro Hotta 1, Ayako Imanishi 2, Michiyuki Matsuda 2 and Kenta Terai 2 1 Meijo University, Siogamaguchi, Nagoya, Aichi, Japan

More information

Automatic Hemorrhage Classification System Based On Svm Classifier

Automatic Hemorrhage Classification System Based On Svm Classifier Automatic Hemorrhage Classification System Based On Svm Classifier Abstract - Brain hemorrhage is a bleeding in or around the brain which are caused by head trauma, high blood pressure and intracranial

More information

Skin cancer reorganization and classification with deep neural network

Skin cancer reorganization and classification with deep neural network Skin cancer reorganization and classification with deep neural network Hao Chang 1 1. Department of Genetics, Yale University School of Medicine 2. Email: changhao86@gmail.com Abstract As one kind of skin

More information

CSE Introduction to High-Perfomance Deep Learning ImageNet & VGG. Jihyung Kil

CSE Introduction to High-Perfomance Deep Learning ImageNet & VGG. Jihyung Kil CSE 5194.01 - Introduction to High-Perfomance Deep Learning ImageNet & VGG Jihyung Kil ImageNet Classification with Deep Convolutional Neural Networks Alex Krizhevsky, Ilya Sutskever, Geoffrey E. Hinton,

More information

Chair for Computer Aided Medical Procedures (CAMP) Seminar on Deep Learning for Medical Applications. Shadi Albarqouni Christoph Baur

Chair for Computer Aided Medical Procedures (CAMP) Seminar on Deep Learning for Medical Applications. Shadi Albarqouni Christoph Baur Chair for (CAMP) Seminar on Deep Learning for Medical Applications Shadi Albarqouni Christoph Baur Results of matching system obtained via matching.in.tum.de 108 Applicants 9 % 10 % 9 % 14 % 30 % Rank

More information

ARTIFICIAL INTELLIGENCE FOR DIGITAL PATHOLOGY. Kyunghyun Paeng, Co-founder and Research Scientist, Lunit Inc.

ARTIFICIAL INTELLIGENCE FOR DIGITAL PATHOLOGY. Kyunghyun Paeng, Co-founder and Research Scientist, Lunit Inc. ARTIFICIAL INTELLIGENCE FOR DIGITAL PATHOLOGY Kyunghyun Paeng, Co-founder and Research Scientist, Lunit Inc. 1. BACKGROUND: DIGITAL PATHOLOGY 2. APPLICATIONS AGENDA BREAST CANCER PROSTATE CANCER 3. DEMONSTRATIONS

More information

Holistically-Nested Edge Detection (HED)

Holistically-Nested Edge Detection (HED) Holistically-Nested Edge Detection (HED) Saining Xie, Zhuowen Tu Presented by Yuxin Wu February 10, 20 What is an Edge? Local intensity change? Used in traditional methods: Canny, Sobel, etc Learn it!

More information

Convolutional Neural Networks for Estimating Left Ventricular Volume

Convolutional Neural Networks for Estimating Left Ventricular Volume Convolutional Neural Networks for Estimating Left Ventricular Volume Ryan Silva Stanford University rdsilva@stanford.edu Maksim Korolev Stanford University mkorolev@stanford.edu Abstract End-systolic and

More information

arxiv: v2 [cs.cv] 22 Mar 2018

arxiv: v2 [cs.cv] 22 Mar 2018 Deep saliency: What is learnt by a deep network about saliency? Sen He 1 Nicolas Pugeault 1 arxiv:1801.04261v2 [cs.cv] 22 Mar 2018 Abstract Deep convolutional neural networks have achieved impressive performance

More information

arxiv: v2 [cs.cv] 7 Jun 2018

arxiv: v2 [cs.cv] 7 Jun 2018 Deep supervision with additional labels for retinal vessel segmentation task Yishuo Zhang and Albert C.S. Chung Lo Kwee-Seong Medical Image Analysis Laboratory, Department of Computer Science and Engineering,

More information

Y-Net: Joint Segmentation and Classification for Diagnosis of Breast Biopsy Images

Y-Net: Joint Segmentation and Classification for Diagnosis of Breast Biopsy Images Y-Net: Joint Segmentation and Classification for Diagnosis of Breast Biopsy Images Sachin Mehta 1, Ezgi Mercan 1, Jamen Bartlett 2, Donald Weaver 2, Joann G. Elmore 1, and Linda Shapiro 1 1 University

More information

HHS Public Access Author manuscript Med Image Comput Comput Assist Interv. Author manuscript; available in PMC 2018 January 04.

HHS Public Access Author manuscript Med Image Comput Comput Assist Interv. Author manuscript; available in PMC 2018 January 04. Discriminative Localization in CNNs for Weakly-Supervised Segmentation of Pulmonary Nodules Xinyang Feng 1, Jie Yang 1, Andrew F. Laine 1, and Elsa D. Angelini 1,2 1 Department of Biomedical Engineering,

More information

arxiv: v1 [cs.cv] 24 Jul 2018

arxiv: v1 [cs.cv] 24 Jul 2018 Multi-Class Lesion Diagnosis with Pixel-wise Classification Network Manu Goyal 1, Jiahua Ng 2, and Moi Hoon Yap 1 1 Visual Computing Lab, Manchester Metropolitan University, M1 5GD, UK 2 University of

More information

arxiv: v1 [cs.cv] 17 Aug 2017

arxiv: v1 [cs.cv] 17 Aug 2017 Deep Learning for Medical Image Analysis Mina Rezaei, Haojin Yang, Christoph Meinel Hasso Plattner Institute, Prof.Dr.Helmert-Strae 2-3, 14482 Potsdam, Germany {mina.rezaei,haojin.yang,christoph.meinel}@hpi.de

More information

Automatic Detection of Knee Joints and Quantification of Knee Osteoarthritis Severity using Convolutional Neural Networks

Automatic Detection of Knee Joints and Quantification of Knee Osteoarthritis Severity using Convolutional Neural Networks Automatic Detection of Knee Joints and Quantification of Knee Osteoarthritis Severity using Convolutional Neural Networks Joseph Antony 1, Kevin McGuinness 1, Kieran Moran 1,2 and Noel E O Connor 1 Insight

More information

arxiv: v2 [cs.cv] 19 Dec 2017

arxiv: v2 [cs.cv] 19 Dec 2017 An Ensemble of Deep Convolutional Neural Networks for Alzheimer s Disease Detection and Classification arxiv:1712.01675v2 [cs.cv] 19 Dec 2017 Jyoti Islam Department of Computer Science Georgia State University

More information

arxiv: v1 [cs.cv] 13 Jul 2018

arxiv: v1 [cs.cv] 13 Jul 2018 Multi-Scale Convolutional-Stack Aggregation for Robust White Matter Hyperintensities Segmentation Hongwei Li 1, Jianguo Zhang 3, Mark Muehlau 2, Jan Kirschke 2, and Bjoern Menze 1 arxiv:1807.05153v1 [cs.cv]

More information

Final Report: Automated Semantic Segmentation of Volumetric Cardiovascular Features and Disease Assessment

Final Report: Automated Semantic Segmentation of Volumetric Cardiovascular Features and Disease Assessment Final Report: Automated Semantic Segmentation of Volumetric Cardiovascular Features and Disease Assessment Tony Lindsey 1,3, Xiao Lu 1 and Mojtaba Tefagh 2 1 Department of Biomedical Informatics, Stanford

More information

arxiv: v1 [cs.cv] 31 Jul 2017

arxiv: v1 [cs.cv] 31 Jul 2017 Synthesis of Positron Emission Tomography (PET) Images via Multi-channel Generative Adversarial Networks (GANs) Lei Bi 1, Jinman Kim 1, Ashnil Kumar 1, Dagan Feng 1,2, and Michael Fulham 1,3,4 1 School

More information

Lung Nodule Segmentation Using 3D Convolutional Neural Networks

Lung Nodule Segmentation Using 3D Convolutional Neural Networks Lung Nodule Segmentation Using 3D Convolutional Neural Networks Research paper Business Analytics Bernard Bronmans Master Business Analytics VU University, Amsterdam Evert Haasdijk Supervisor VU University,

More information

Image Captioning using Reinforcement Learning. Presentation by: Samarth Gupta

Image Captioning using Reinforcement Learning. Presentation by: Samarth Gupta Image Captioning using Reinforcement Learning Presentation by: Samarth Gupta 1 Introduction Summary Supervised Models Image captioning as RL problem Actor Critic Architecture Policy Gradient architecture

More information

Rich feature hierarchies for accurate object detection and semantic segmentation

Rich feature hierarchies for accurate object detection and semantic segmentation Rich feature hierarchies for accurate object detection and semantic segmentation Ross Girshick, Jeff Donahue, Trevor Darrell, Jitendra Malik UC Berkeley Tech Report @ http://arxiv.org/abs/1311.2524! Detection

More information

Improved Intelligent Classification Technique Based On Support Vector Machines

Improved Intelligent Classification Technique Based On Support Vector Machines Improved Intelligent Classification Technique Based On Support Vector Machines V.Vani Asst.Professor,Department of Computer Science,JJ College of Arts and Science,Pudukkottai. Abstract:An abnormal growth

More information

arxiv: v1 [cs.cv] 3 Apr 2018

arxiv: v1 [cs.cv] 3 Apr 2018 Towards whole-body CT Bone Segmentation André Klein 1,2, Jan Warszawski 2, Jens Hillengaß 3, Klaus H. Maier-Hein 1 arxiv:1804.00908v1 [cs.cv] 3 Apr 2018 1 Division of Medical Image Computing, Deutsches

More information

Object Detectors Emerge in Deep Scene CNNs

Object Detectors Emerge in Deep Scene CNNs Object Detectors Emerge in Deep Scene CNNs Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva, Antonio Torralba Presented By: Collin McCarthy Goal: Understand how objects are represented in CNNs Are

More information

arxiv: v2 [cs.cv] 8 Mar 2018

arxiv: v2 [cs.cv] 8 Mar 2018 Automated soft tissue lesion detection and segmentation in digital mammography using a u-net deep learning network Timothy de Moor a, Alejandro Rodriguez-Ruiz a, Albert Gubern Mérida a, Ritse Mann a, and

More information

Automated diagnosis of pneumothorax using an ensemble of convolutional neural networks with multi-sized chest radiography images

Automated diagnosis of pneumothorax using an ensemble of convolutional neural networks with multi-sized chest radiography images Automated diagnosis of pneumothorax using an ensemble of convolutional neural networks with multi-sized chest radiography images Tae Joon Jun, Dohyeun Kim, and Daeyoung Kim School of Computing, KAIST,

More information

Automatic Prostate Cancer Classification using Deep Learning. Ida Arvidsson Centre for Mathematical Sciences, Lund University, Sweden

Automatic Prostate Cancer Classification using Deep Learning. Ida Arvidsson Centre for Mathematical Sciences, Lund University, Sweden Automatic Prostate Cancer Classification using Deep Learning Ida Arvidsson Centre for Mathematical Sciences, Lund University, Sweden Outline Autoencoders, theory Motivation, background and goal for prostate

More information

High-Resolution Breast Cancer Screening with Multi-View Deep Convolutional Neural Networks

High-Resolution Breast Cancer Screening with Multi-View Deep Convolutional Neural Networks High-Resolution Breast Cancer Screening with Multi-View Deep Convolutional Neural Networks Krzysztof J. Geras Joint work with Kyunghyun Cho, Linda Moy, Gene Kim, Stacey Wolfson and Artie Shen. GTC 2017

More information

Differentiating Tumor and Edema in Brain Magnetic Resonance Images Using a Convolutional Neural Network

Differentiating Tumor and Edema in Brain Magnetic Resonance Images Using a Convolutional Neural Network Original Article Differentiating Tumor and Edema in Brain Magnetic Resonance Images Using a Convolutional Neural Network Aida Allahverdi 1, Siavash Akbarzadeh 1, Alireza Khorrami Moghaddam 2, Armin Allahverdy

More information

CHAPTER 9 SUMMARY AND CONCLUSION

CHAPTER 9 SUMMARY AND CONCLUSION CHAPTER 9 SUMMARY AND CONCLUSION 9.1 SUMMARY In this thesis, the CAD system for early detection and classification of ischemic stroke in CT image, hemorrhage and hematoma in brain CT image and brain tumor

More information

Motivation: Attention: Focusing on specific parts of the input. Inspired by neuroscience.

Motivation: Attention: Focusing on specific parts of the input. Inspired by neuroscience. Outline: Motivation. What s the attention mechanism? Soft attention vs. Hard attention. Attention in Machine translation. Attention in Image captioning. State-of-the-art. 1 Motivation: Attention: Focusing

More information

An Overview and Comparative Analysis on Major Generative Models

An Overview and Comparative Analysis on Major Generative Models An Overview and Comparative Analysis on Major Generative Models Zijing Gu zig021@ucsd.edu Abstract The amount of researches on generative models has been grown rapidly after a period of silence due to

More information

ARTERY/VEIN CLASSIFICATION IN FUNDUS IMAGES USING CNN AND LIKELIHOOD SCORE PROPAGATION

ARTERY/VEIN CLASSIFICATION IN FUNDUS IMAGES USING CNN AND LIKELIHOOD SCORE PROPAGATION ARTERY/VEIN CLASSIFICATION IN FUNDUS IMAGES USING CNN AND LIKELIHOOD SCORE PROPAGATION Fantin Girard and Farida Cheriet Liv4D, Polytechnique Montreal fantin.girard@polymtl.ca MOTIVATION Changes in blood

More information

Deep CNNs for Diabetic Retinopathy Detection

Deep CNNs for Diabetic Retinopathy Detection Deep CNNs for Diabetic Retinopathy Detection Alex Tamkin Stanford University atamkin@stanford.edu Iain Usiri Stanford University iusiri@stanford.edu Chala Fufa Stanford University cfufa@stanford.edu 1

More information

Convolutional Neural Networks (CNN)

Convolutional Neural Networks (CNN) Convolutional Neural Networks (CNN) Algorithm and Some Applications in Computer Vision Luo Hengliang Institute of Automation June 10, 2014 Luo Hengliang (Institute of Automation) Convolutional Neural Networks

More information

Retinopathy Net. Alberto Benavides Robert Dadashi Neel Vadoothker

Retinopathy Net. Alberto Benavides Robert Dadashi Neel Vadoothker Retinopathy Net Alberto Benavides Robert Dadashi Neel Vadoothker Motivation We were interested in applying deep learning techniques to the field of medical imaging Field holds a lot of promise and can

More information

NEURORADIOLOGY DIL part 3

NEURORADIOLOGY DIL part 3 NEURORADIOLOGY DIL part 3 Bleeds and hemorrhages K. Agyem MD, G. Hall MD, D. Palathinkal MD, Alexandre Menard March/April 2015 OVERVIEW Introduction to Neuroimaging - DIL part 1 Basic Brain Anatomy - DIL

More information

Cancer Cells Detection using OTSU Threshold Algorithm

Cancer Cells Detection using OTSU Threshold Algorithm Cancer Cells Detection using OTSU Threshold Algorithm Nalluri Sunny 1 Velagapudi Ramakrishna Siddhartha Engineering College Mithinti Srikanth 2 Velagapudi Ramakrishna Siddhartha Engineering College Kodali

More information

Development of Novel Approach for Classification and Detection of Brain Tumor

Development of Novel Approach for Classification and Detection of Brain Tumor International Journal of Latest Technology in Engineering & Management (IJLTEM) www.ijltem.com ISSN: 245677 Development of Novel Approach for Classification and Detection of Brain Tumor Abstract This paper

More information

Quantitative Evaluation of Edge Detectors Using the Minimum Kernel Variance Criterion

Quantitative Evaluation of Edge Detectors Using the Minimum Kernel Variance Criterion Quantitative Evaluation of Edge Detectors Using the Minimum Kernel Variance Criterion Qiang Ji Department of Computer Science University of Nevada Robert M. Haralick Department of Electrical Engineering

More information

Efficient Deep Model Selection

Efficient Deep Model Selection Efficient Deep Model Selection Jose Alvarez Researcher Data61, CSIRO, Australia GTC, May 9 th 2017 www.josemalvarez.net conv1 conv2 conv3 conv4 conv5 conv6 conv7 conv8 softmax prediction???????? Num Classes

More information

Classification of breast cancer histology images using transfer learning

Classification of breast cancer histology images using transfer learning Classification of breast cancer histology images using transfer learning Sulaiman Vesal 1 ( ), Nishant Ravikumar 1, AmirAbbas Davari 1, Stephan Ellmann 2, Andreas Maier 1 1 Pattern Recognition Lab, Friedrich-Alexander-Universität

More information

CS231n Project: Prediction of Head and Neck Cancer Submolecular Types from Patholoy Images

CS231n Project: Prediction of Head and Neck Cancer Submolecular Types from Patholoy Images CSn Project: Prediction of Head and Neck Cancer Submolecular Types from Patholoy Images Kuy Hun Koh Yoo Energy Resources Engineering Stanford University Stanford, CA 90 kohykh@stanford.edu Markus Zechner

More information

PathGAN: Visual Scanpath Prediction with Generative Adversarial Networks

PathGAN: Visual Scanpath Prediction with Generative Adversarial Networks PathGAN: Visual Scanpath Prediction with Generative Adversarial Networks Marc Assens 1, Kevin McGuinness 1, Xavier Giro-i-Nieto 2, and Noel E. O Connor 1 1 Insight Centre for Data Analytic, Dublin City

More information

LOOK, LISTEN, AND DECODE: MULTIMODAL SPEECH RECOGNITION WITH IMAGES. Felix Sun, David Harwath, and James Glass

LOOK, LISTEN, AND DECODE: MULTIMODAL SPEECH RECOGNITION WITH IMAGES. Felix Sun, David Harwath, and James Glass LOOK, LISTEN, AND DECODE: MULTIMODAL SPEECH RECOGNITION WITH IMAGES Felix Sun, David Harwath, and James Glass MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, MA, USA {felixsun,

More information

DeepMiner: Discovering Interpretable Representations for Mammogram Classification and Explanation

DeepMiner: Discovering Interpretable Representations for Mammogram Classification and Explanation DeepMiner: Discovering Interpretable Representations for Mammogram Classification and Explanation Jimmy Wu 1, Bolei Zhou 1, Diondra Peck 2, Scott Hsieh 3, Vandana Dialani, MD 4 Lester Mackey 5, and Genevieve

More information

arxiv: v1 [stat.ml] 23 Jan 2017

arxiv: v1 [stat.ml] 23 Jan 2017 Learning what to look in chest X-rays with a recurrent visual attention model arxiv:1701.06452v1 [stat.ml] 23 Jan 2017 Petros-Pavlos Ypsilantis Department of Biomedical Engineering King s College London

More information

Reading Assignments: Lecture 18: Visual Pre-Processing. Chapters TMB Brain Theory and Artificial Intelligence

Reading Assignments: Lecture 18: Visual Pre-Processing. Chapters TMB Brain Theory and Artificial Intelligence Brain Theory and Artificial Intelligence Lecture 18: Visual Pre-Processing. Reading Assignments: Chapters TMB2 3.3. 1 Low-Level Processing Remember: Vision as a change in representation. At the low-level,

More information

Multi-attention Guided Activation Propagation in CNNs

Multi-attention Guided Activation Propagation in CNNs Multi-attention Guided Activation Propagation in CNNs Xiangteng He and Yuxin Peng (B) Institute of Computer Science and Technology, Peking University, Beijing, China pengyuxin@pku.edu.cn Abstract. CNNs

More information

Healthcare Research You

Healthcare Research You DL for Healthcare Goals Healthcare Research You What are high impact problems in healthcare that deep learning can solve? What does research in AI applications to medical imaging look like? How can you

More information

As entered modern society, the interactions. A Study on Deep Learning Based Sauvegrain Method for Measurement of Puberty Bone Age

As entered modern society, the interactions. A Study on Deep Learning Based Sauvegrain Method for Measurement of Puberty Bone Age A Study on Deep Learning Based Sauvegrain Method for Measurement of Puberty Bone Age Seung Bin Baik Keum Gang Cha arxiv:1809.06965v1 [cs.cv] 18 Sep 2018 Plani Inc. bsb@plani.co.kr September 20, 2018 Abstract

More information

A deep learning model integrating FCNNs and CRFs for brain tumor segmentation

A deep learning model integrating FCNNs and CRFs for brain tumor segmentation A deep learning model integrating FCNNs and CRFs for brain tumor segmentation Xiaomei Zhao 1,2, Yihong Wu 1, Guidong Song 3, Zhenye Li 4, Yazhuo Zhang,3,4,5,6, and Yong Fan 7 1 National Laboratory of Pattern

More information

Deep Learning-based Detection of Periodic Abnormal Waves in ECG Data

Deep Learning-based Detection of Periodic Abnormal Waves in ECG Data , March 1-16, 2018, Hong Kong Deep Learning-based Detection of Periodic Abnormal Waves in ECG Data Kaiji Sugimoto, Saerom Lee, and Yoshifumi Okada Abstract Automatic detection of abnormal electrocardiogram

More information

Automatic Classification of Perceived Gender from Facial Images

Automatic Classification of Perceived Gender from Facial Images Automatic Classification of Perceived Gender from Facial Images Joseph Lemley, Sami Abdul-Wahid, Dipayan Banik Advisor: Dr. Razvan Andonie SOURCE 2016 Outline 1 Introduction 2 Faces - Background 3 Faces

More information

Tumor Cellularity Assessment. Rene Bidart

Tumor Cellularity Assessment. Rene Bidart Tumor Cellularity Assessment Rene Bidart 1 Goals Find location and class of all cell nuclei: Lymphocyte Cells Normal Epithelial Cells Malignant Epithelial Cells Why: Test effectiveness of pre-surgery treatment

More information

A HMM-based Pre-training Approach for Sequential Data

A HMM-based Pre-training Approach for Sequential Data A HMM-based Pre-training Approach for Sequential Data Luca Pasa 1, Alberto Testolin 2, Alessandro Sperduti 1 1- Department of Mathematics 2- Department of Developmental Psychology and Socialisation University

More information

Deep learning approaches to medical applications

Deep learning approaches to medical applications Deep learning approaches to medical applications Joseph Paul Cohen Postdoctoral Fellow at Montreal Institute for Learning Algorithms Friend of the Farlow Fellow at Harvard University U.S. National Science

More information

arxiv: v1 [cs.cv] 30 May 2018

arxiv: v1 [cs.cv] 30 May 2018 A Robust and Effective Approach Towards Accurate Metastasis Detection and pn-stage Classification in Breast Cancer Byungjae Lee and Kyunghyun Paeng Lunit inc., Seoul, South Korea {jaylee,khpaeng}@lunit.io

More information

International Journal for Science and Emerging

International Journal for Science and Emerging International Journal for Science and Emerging ISSN No. (Online):2250-3641 Technologies with Latest Trends 8(1): 7-13 (2013) ISSN No. (Print): 2277-8136 Adaptive Neuro-Fuzzy Inference System (ANFIS) Based

More information

International Journal of Engineering Trends and Applications (IJETA) Volume 4 Issue 2, Mar-Apr 2017

International Journal of Engineering Trends and Applications (IJETA) Volume 4 Issue 2, Mar-Apr 2017 RESEARCH ARTICLE OPEN ACCESS Knowledge Based Brain Tumor Segmentation using Local Maxima and Local Minima T. Kalaiselvi [1], P. Sriramakrishnan [2] Department of Computer Science and Applications The Gandhigram

More information

Neural Network for Detecting Head Impacts from Kinematic Data. Michael Fanton, Nicholas Gaudio, Alissa Ling CS 229 Project Report

Neural Network for Detecting Head Impacts from Kinematic Data. Michael Fanton, Nicholas Gaudio, Alissa Ling CS 229 Project Report Neural Network for Detecting Head Impacts from Kinematic Data Michael Fanton, Nicholas Gaudio, Alissa Ling CS 229 Project Report 1. Abstract Mild Traumatic Brain Injury (mtbi) is a serious health concern,

More information

POC Brain Tumor Segmentation. vlife Use Case

POC Brain Tumor Segmentation. vlife Use Case Brain Tumor Segmentation vlife Use Case 1 Automatic Brain Tumor Segmentation using CNN Background Brain tumor segmentation seeks to separate healthy tissue from tumorous regions such as the advancing tumor,

More information

Mammogram Analysis: Tumor Classification

Mammogram Analysis: Tumor Classification Mammogram Analysis: Tumor Classification Term Project Report Geethapriya Raghavan geeragh@mail.utexas.edu EE 381K - Multidimensional Digital Signal Processing Spring 2005 Abstract Breast cancer is the

More information

Comparison of Two Approaches for Direct Food Calorie Estimation

Comparison of Two Approaches for Direct Food Calorie Estimation Comparison of Two Approaches for Direct Food Calorie Estimation Takumi Ege and Keiji Yanai Department of Informatics, The University of Electro-Communications, Tokyo 1-5-1 Chofugaoka, Chofu-shi, Tokyo

More information

MICCAI 2018 VISDMML Tutorial Image Analysis Meets Deep Learning and Visualization in Cardiology and Cardiac Surgery

MICCAI 2018 VISDMML Tutorial Image Analysis Meets Deep Learning and Visualization in Cardiology and Cardiac Surgery MICCAI 2018 VISDMML Tutorial Image Analysis Meets Deep Learning and Visualization in Cardiology and Cardiac Surgery Dr. Sandy Engelhardt Faculty of Computer Science, Mannheim University of Applied Sciences,

More information

A Deep Learning Approach for Breast Cancer Mass Detection

A Deep Learning Approach for Breast Cancer Mass Detection A Deep Learning Approach for Breast Cancer Mass Detection Wael E.Fathy 1, Amr S. Ghoneim 2 Teaching Assistant 1, Assistant Professor 2 Department of Computer Science, Faculty of Computers and Information

More information

CS6501: Deep Learning for Visual Recognition. GenerativeAdversarial Networks (GANs)

CS6501: Deep Learning for Visual Recognition. GenerativeAdversarial Networks (GANs) CS6501: Deep Learning for Visual Recognition GenerativeAdversarial Networks (GANs) Today s Class Adversarial Examples Input Optimization Generative Adversarial Networks (GANs) Conditional GANs Style-Transfer

More information

Flexible, High Performance Convolutional Neural Networks for Image Classification

Flexible, High Performance Convolutional Neural Networks for Image Classification Flexible, High Performance Convolutional Neural Networks for Image Classification Dan C. Cireşan, Ueli Meier, Jonathan Masci, Luca M. Gambardella, Jürgen Schmidhuber IDSIA, USI and SUPSI Manno-Lugano,

More information

Convolutional Neural Networks for Text Classification

Convolutional Neural Networks for Text Classification Convolutional Neural Networks for Text Classification Sebastian Sierra MindLab Research Group July 1, 2016 ebastian Sierra (MindLab Research Group) NLP Summer Class July 1, 2016 1 / 32 Outline 1 What is

More information

Magnetic Resonance Contrast Prediction Using Deep Learning

Magnetic Resonance Contrast Prediction Using Deep Learning Magnetic Resonance Contrast Prediction Using Deep Learning Cagan Alkan Department of Electrical Engineering Stanford University calkan@stanford.edu Andrew Weitz Department of Bioengineering Stanford University

More information

An improved U-Net architecture for simultaneous. arteriole and venule segmentation in fundus image

An improved U-Net architecture for simultaneous. arteriole and venule segmentation in fundus image MIUA2018, 042, v3 (final): An improved U-Net architecture for simultaneous arteriole... 1 An improved U-Net architecture for simultaneous arteriole and venule segmentation in fundus image Xiayu Xu 1,2*,

More information

LUNG NODULE DETECTION SYSTEM

LUNG NODULE DETECTION SYSTEM LUNG NODULE DETECTION SYSTEM Kalim Bhandare and Rupali Nikhare Department of Computer Engineering Pillai Institute of Technology, New Panvel, Navi Mumbai, India ABSTRACT: The Existing approach consist

More information

DIAGNOSTIC CLASSIFICATION OF LUNG NODULES USING 3D NEURAL NETWORKS

DIAGNOSTIC CLASSIFICATION OF LUNG NODULES USING 3D NEURAL NETWORKS DIAGNOSTIC CLASSIFICATION OF LUNG NODULES USING 3D NEURAL NETWORKS Raunak Dey Zhongjie Lu Yi Hong Department of Computer Science, University of Georgia, Athens, GA, USA First Affiliated Hospital, School

More information

Satoru Hiwa, 1 Kenya Hanawa, 2 Ryota Tamura, 2 Keisuke Hachisuka, 3 and Tomoyuki Hiroyasu Introduction

Satoru Hiwa, 1 Kenya Hanawa, 2 Ryota Tamura, 2 Keisuke Hachisuka, 3 and Tomoyuki Hiroyasu Introduction Computational Intelligence and Neuroscience Volume 216, Article ID 1841945, 9 pages http://dx.doi.org/1.1155/216/1841945 Research Article Analyzing Brain Functions by Subject Classification of Functional

More information

Fully Convolutional Network-based Multi-Task Learning for Rectum and Rectal Cancer Segmentation

Fully Convolutional Network-based Multi-Task Learning for Rectum and Rectal Cancer Segmentation Fully Convolutional Network-based Multi-Task Learning for Rectum and Rectal Cancer Segmentation Joohyung Lee 1, Ji Eun Oh 1, Min Ju Kim 2, Bo Yun Hur 2, Sun Ah Cho 1 1, 2*, and Dae Kyung Sohn 1 Innovative

More information

An Artificial Neural Network Architecture Based on Context Transformations in Cortical Minicolumns

An Artificial Neural Network Architecture Based on Context Transformations in Cortical Minicolumns An Artificial Neural Network Architecture Based on Context Transformations in Cortical Minicolumns 1. Introduction Vasily Morzhakov, Alexey Redozubov morzhakovva@gmail.com, galdrd@gmail.com Abstract Cortical

More information

EARLY STAGE DIAGNOSIS OF LUNG CANCER USING CT-SCAN IMAGES BASED ON CELLULAR LEARNING AUTOMATE

EARLY STAGE DIAGNOSIS OF LUNG CANCER USING CT-SCAN IMAGES BASED ON CELLULAR LEARNING AUTOMATE EARLY STAGE DIAGNOSIS OF LUNG CANCER USING CT-SCAN IMAGES BASED ON CELLULAR LEARNING AUTOMATE SAKTHI NEELA.P.K Department of M.E (Medical electronics) Sengunthar College of engineering Namakkal, Tamilnadu,

More information

1 Introduction. Abstract: Accurate optic disc (OD) segmentation and fovea. Keywords: optic disc segmentation, fovea detection.

1 Introduction. Abstract: Accurate optic disc (OD) segmentation and fovea. Keywords: optic disc segmentation, fovea detection. Current Directions in Biomedical Engineering 2017; 3(2): 533 537 Caterina Rust*, Stephanie Häger, Nadine Traulsen and Jan Modersitzki A robust algorithm for optic disc segmentation and fovea detection

More information

Computational modeling of visual attention and saliency in the Smart Playroom

Computational modeling of visual attention and saliency in the Smart Playroom Computational modeling of visual attention and saliency in the Smart Playroom Andrew Jones Department of Computer Science, Brown University Abstract The two canonical modes of human visual attention bottomup

More information

Automated Blood Vessel Extraction Based on High-Order Local Autocorrelation Features on Retinal Images

Automated Blood Vessel Extraction Based on High-Order Local Autocorrelation Features on Retinal Images Automated Blood Vessel Extraction Based on High-Order Local Autocorrelation Features on Retinal Images Yuji Hatanaka 1(&), Kazuki Samo 2, Kazunori Ogohara 1, Wataru Sunayama 1, Chisako Muramatsu 3, Susumu

More information

Recurrent Fully Convolutional Neural Networks for Multi-slice MRI Cardiac Segmentation

Recurrent Fully Convolutional Neural Networks for Multi-slice MRI Cardiac Segmentation Recurrent Fully Convolutional Neural Networks for Multi-slice MRI Cardiac Segmentation Rudra P K Poudel, Pablo Lamata and Giovanni Montana Department of Biomedical Engineering, King s College London, SE1

More information

arxiv: v1 [cs.cv] 21 Jul 2017

arxiv: v1 [cs.cv] 21 Jul 2017 A Multi-Scale CNN and Curriculum Learning Strategy for Mammogram Classification William Lotter 1,2, Greg Sorensen 2, and David Cox 1,2 1 Harvard University, Cambridge MA, USA 2 DeepHealth Inc., Cambridge

More information

Quantifying Radiographic Knee Osteoarthritis Severity using Deep Convolutional Neural Networks

Quantifying Radiographic Knee Osteoarthritis Severity using Deep Convolutional Neural Networks Quantifying Radiographic Knee Osteoarthritis Severity using Deep Convolutional Neural Networks Joseph Antony, Kevin McGuinness, Noel E O Connor, Kieran Moran Insight Centre for Data Analytics, Dublin City

More information

Towards Automatic Report Generation in Spine Radiology using Weakly Supervised Framework

Towards Automatic Report Generation in Spine Radiology using Weakly Supervised Framework Towards Automatic Report Generation in Spine Radiology using Weakly Supervised Framework Zhongyi Han 1,2, Benzheng Wei 1,2,, Stephanie Leung 3,4, Jonathan Chung 3,4, and Shuo Li 3,4, 1 College of Science

More information

[Suryaewanshi, 4(11): November, 2015] ISSN: (I2OR), Publication Impact Factor: 3.785

[Suryaewanshi, 4(11): November, 2015] ISSN: (I2OR), Publication Impact Factor: 3.785 IJESRT INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY AN EXPERT DIAGNOSIS OF BRAIN HEMORRHAGE USING ARTIFICIAL NEURAL NETWORKS Santosh H. Suryawanshi*, K. T. Jadhao PG Scholar: Electronics

More information

Cervical cytology intelligent diagnosis based on object detection technology

Cervical cytology intelligent diagnosis based on object detection technology Cervical cytology intelligent diagnosis based on object detection technology Meiquan Xu xumeiquan@126.com Weixiu Zeng Semptian Co., Ltd. Machine Learning Lab. zengweixiu@gmail.com Hunhui Wu 736886978@qq.com

More information

Patch-based Head and Neck Cancer Subtype Classification

Patch-based Head and Neck Cancer Subtype Classification Patch-based Head and Neck Cancer Subtype Classification Wanyi Qian, Guoli Yin, Frances Liu, Advisor: Olivier Gevaert, Mu Zhou, Kevin Brennan Stanford University wqian2@stanford.edu, guoliy@stanford.edu,

More information

Bottom-Up and Top-Down Attention for Image Captioning and Visual Question Answering

Bottom-Up and Top-Down Attention for Image Captioning and Visual Question Answering Bottom-Up and Top-Down Attention for Image Captioning and Visual Question Answering SUPPLEMENTARY MATERIALS 1. Implementation Details 1.1. Bottom-Up Attention Model Our bottom-up attention Faster R-CNN

More information

The Importance of Time in Visual Attention Models

The Importance of Time in Visual Attention Models The Importance of Time in Visual Attention Models Degree s Thesis Audiovisual Systems Engineering Author: Advisors: Marta Coll Pol Xavier Giró-i-Nieto and Kevin Mc Guinness Dublin City University (DCU)

More information

Deep-Learning Based Semantic Labeling for 2D Mammography & Comparison of Complexity for Machine Learning Tasks

Deep-Learning Based Semantic Labeling for 2D Mammography & Comparison of Complexity for Machine Learning Tasks Deep-Learning Based Semantic Labeling for 2D Mammography & Comparison of Complexity for Machine Learning Tasks Paul H. Yi, MD, Abigail Lin, BSE, Jinchi Wei, BSE, Haris I. Sair, MD, Ferdinand K. Hui, MD,

More information

Deep Visual Attention Prediction

Deep Visual Attention Prediction IEEE TRANSACTIONS ON IMAGE PROCESSING 1 Deep Visual Attention Prediction Wenguan Wang, and Jianbing Shen, Senior Member, IEEE arxiv:1705.02544v3 [cs.cv] 22 Mar 2018 Abstract In this work, we aim to predict

More information

Aggregated Sparse Attention for Steering Angle Prediction

Aggregated Sparse Attention for Steering Angle Prediction Aggregated Sparse Attention for Steering Angle Prediction Sen He, Dmitry Kangin, Yang Mi and Nicolas Pugeault Department of Computer Sciences,University of Exeter, Exeter, EX4 4QF Email: {sh752, D.Kangin,

More information

Machine Learning Powered Automatic Organ Classification for Patient Specific Organ Dose Estimation

Machine Learning Powered Automatic Organ Classification for Patient Specific Organ Dose Estimation Machine Learning Powered Automatic Organ Classification for Patient Specific Organ Dose Estimation Junghwan Cho, Eunmi Lee, Hyunkwang Lee, Bob Liu, Xinhua Li, Shahein Tajmir, Dushyant Sahani, and Synho

More information

arxiv: v2 [cs.cv] 3 Jun 2018

arxiv: v2 [cs.cv] 3 Jun 2018 S4ND: Single-Shot Single-Scale Lung Nodule Detection Naji Khosravan and Ulas Bagci Center for Research in Computer Vision (CRCV), School of Computer Science, University of Central Florida, Orlando, FL.

More information

Intelligent Machines That Act Rationally. Hang Li Bytedance AI Lab

Intelligent Machines That Act Rationally. Hang Li Bytedance AI Lab Intelligent Machines That Act Rationally Hang Li Bytedance AI Lab Four Definitions of Artificial Intelligence Building intelligent machines (i.e., intelligent computers) Thinking humanly Acting humanly

More information

Network Dissection: Quantifying Interpretability of Deep Visual Representation

Network Dissection: Quantifying Interpretability of Deep Visual Representation Name: Pingchuan Ma Student number: 3526400 Date: August 19, 2018 Seminar: Explainable Machine Learning Lecturer: PD Dr. Ullrich Köthe SS 2018 Quantifying Interpretability of Deep Visual Representation

More information

Image Classification with TensorFlow: Radiomics 1p/19q Chromosome Status Classification Using Deep Learning

Image Classification with TensorFlow: Radiomics 1p/19q Chromosome Status Classification Using Deep Learning Image Classification with TensorFlow: Radiomics 1p/19q Chromosome Status Classification Using Deep Learning Charles Killam, LP.D. Certified Instructor, NVIDIA Deep Learning Institute NVIDIA Corporation

More information

Error Detection based on neural signals

Error Detection based on neural signals Error Detection based on neural signals Nir Even- Chen and Igor Berman, Electrical Engineering, Stanford Introduction Brain computer interface (BCI) is a direct communication pathway between the brain

More information