Floral Organ Mutants and the Study of Organ Morphogenesis

Size: px
Start display at page:

Download "Floral Organ Mutants and the Study of Organ Morphogenesis"

Transcription

1 Floral Organ Mutants and the Study of Organ Morphogenesis Objectives: 1. How does one use mutants to understand floral organ morphogenesis? 2. What are the phenotypes of some floral organ mutants? 3. What is the genetic basis for the phenotypes? 4. What are the similarities between the different mutant phenotypes described? 5. On the basis of the mutants, what hypothesis can we develop concerning the control of floral organ type in Arabidopsis?

2 From Botany, M. Neushul, John Wiley and Sons Inc. (eds.), 1974

3 Arabidopsis Floral Development Inflorescence SEM Mature Flower

4 The Arabidopsis Flower is complete with four concentric whorls of four organ types Organs of a similar type arranged in a circle is called a whorl

5 If we are going to use mutants to study floralorgan identity, what kind of mutants do we screen for? What would the role of the genes involved in morphogenesis be?

6 The Apetala2 mutant has flowers that differ dramatically from wild type Wild type Apetala 2

7 Apetala2 selfed All Apetala2 mutants Conclusion = heritable Genetic Analysis Apetala2 x Columbia F1 phenotype = is wild type Conclusion = mutant phenotype is recessive to wild type F2 phenotypes 406 wild type, 128 Apetala2 mutants 3:1 expected: X 2 = 0.3 probability = 0.6 (0.05 cutoff) Accept 3:1 Conclusion Apetala2 is a single nuclear locus = APETALA2 All floral defects are due to a single mutation.

8 The Apetala2 mutant has flowers that differ dramatically from wild type Wild type Apetala 2

9 All Floral Organs Have Specific Cell Types

10 Scanning electron micrographs of Apetala 2 flowers and floral organs Wild type floral organ epidermal cell types

11 Structure of wild type and mutant Arabidopsis flowers Whorl 1 Whorl 2 Whorl 3 Whorl 4 WT SEPAL PETAL STAMEN CARPEL Ap2 CARPEL-like

12 Second whorl organs from Apetala2 mutant flowers

13 Structure of wild type and mutant Arabidopsis flowers Whorl 1 Whorl 2 Whorl 3 Whorl 4 WT SEPAL PETAL STAMEN CARPEL Ap2 CARPEL STAMEN

14 Wild type Apetala2

15 Structure of wild type and mutant Arabidopsis flowers Whorl 1 Whorl 2 Whorl 3 Whorl 4 WT SEPAL PETAL STAMEN CARPEL Ap2 CARPEL STAMEN STAMEN CARPEL

16 Structure of an Apetala2 Mutant Flower

17 Perianth organ Reproductive organ (+) AP2 (-) Floral organ primordium

18 Agamous Mutant Phenotype Wild type Agamous

19 Structure of an Agamous Mutant Flower

20 Structure of wild type and mutant Arabidopsis flowers Whorl 1 Whorl 2 Whorl 3 Whorl 4 WT SEPAL PETAL STAMEN CARPEL Ap2 CARPEL STAMEN STAMEN CARPEL Ag SEPAL PETAL PETAL SEPAL

21 Perianth organ Reproductive organ (+) AP2 (-) (-) AG (+) Floral organ primordium

22 Apetala3 (and Pistillata) Mutant Phenotype Wild type Apetala3

23 Structure of wild type and mutant Arabidopsis flowers Whorl 1 Whorl 2 Whorl 3 Whorl 4 WT SEPAL PETAL STAMEN CARPEL Ap2 CARPEL STAMEN STAMEN CARPEL Ag SEPAL PETAL PETAL SEPAL Pi SEPAL SEPAL CARPEL CARPEL Ap3 SEPAL SEPAL CARPEL CARPEL

24 Structure of a Pistillata Mutant Flower

25 sepal petal AP3 (-) And PI (+) stamen carpel AP3 (+) And PI (-) Floral organ primordium Floral organ primordium

26 Structure of wild type and mutant Arabidopsis flowers Whorl 1 Whorl 2 Whorl 3 Whorl 4 WT SEPAL PETAL STAMEN CARPEL Ap2 CARPEL STAMEN STAMEN CARPEL Ag SEPAL PETAL PETAL SEPAL Pi SEPAL SEPAL CARPEL CARPEL Ap3 SEPAL SEPAL CARPEL CARPEL

27 A Model For Control of Organ Type sepal petal stamen carpel B (AP3, PI) A (AP2) C (AG)

28 A Model For Control of Organ Type Mutation in a class B gene sepal sepal petal stamen carpel carpel B (AP3, PI) A (AP2) C (AG)

29 A Model For Control of Organ Type Mutation in a class A gene carpel sepal stamen petal stamen carpel B (AP3, PI) A (AP2) C (AG) C (AG) A function must negatively regulate C function in the outer whorls.

30 A Model For Control of Organ Type Mutation in a class C gene sepal petal stamen petal carpel sepal B (AP3, PI) A (AP2) A (AP2) C (AG) C function must negatively regulate A function in the inner whorls.

31 How can the ABC model of floral organ type be tested?

Testing the ABC floral-organ identity model: expression of A and C function genes

Testing the ABC floral-organ identity model: expression of A and C function genes Objectives: Testing the ABC floral-organ identity model: expression of A and C function genes To test the validity of the ABC model for floral organ identity we will: 1. Use the model to make predictions

More information

Regulation of Floral-Organ- Type by SUPERMAN

Regulation of Floral-Organ- Type by SUPERMAN Regulation of Floral-Organ- Type by SUPERMAN 1. Need for regulators of the organ-identity genes. 2. The Superman mutant phenotype-predicting the role of SUPERMAN. 3. Testing our hypothesis of the role

More information

Regulation of Floral Organ Identity. Dr. Chloe Diamond Mara

Regulation of Floral Organ Identity. Dr. Chloe Diamond Mara Regulation of Floral Organ Identity Dr. Chloe Diamond Mara Flower Development Angiosperms (flowering plants) are the most widespread group of land plants Flowers are the reproductive organs that consist

More information

Arabidopsis: Flower Development and Patterning

Arabidopsis: Flower Development and Patterning Arabidopsis: Flower Development and Patterning John L Bowman, University of California, Davis, California, USA The development of flowers and floral organs is directed by genetic programmes likely to be

More information

Genetic Specification of floral organ identity. Initiating floral development. Deciding when to initiate flowering - induced mutations -in Nature

Genetic Specification of floral organ identity. Initiating floral development. Deciding when to initiate flowering - induced mutations -in Nature Genetic Specification of floral organ identity Initiating floral development Deciding when to initiate flowering - induced mutations -in Nature Flower structure of rabidopsis Stamens arpels Petals Sepals

More information

FILAMENTOUS FLOWER Controls the Formation and Development of Arabidopsis Inflorescences and Floral Meristems

FILAMENTOUS FLOWER Controls the Formation and Development of Arabidopsis Inflorescences and Floral Meristems The Plant Cell, Vol. 11, 69 86, January 1999, www.plantcell.org 1999 American Society of Plant Physiologists FILAMENTOUS FLOWER Controls the Formation and Development of Arabidopsis Inflorescences and

More information

The Role of Lipids in Flowering Development of Arabidopsis Enhanced pah1pah2 Plants. Toshiro Ito 1 & Lee Lishi 2

The Role of Lipids in Flowering Development of Arabidopsis Enhanced pah1pah2 Plants. Toshiro Ito 1 & Lee Lishi 2 The Role of Lipids in Flowering Development of Arabidopsis Enhanced pah1pah2 Plants Toshiro Ito 1 & Lee Lishi 2 Department of Biological Sciences, Faculty of Science, National University of Singapore,

More information

Genes Directing Flower Development in Arabidopsis

Genes Directing Flower Development in Arabidopsis The Plant Cell, Vol. 1,37-52, January 1989, 1989 American Society of Plant Physiologists Genes Directing Flower Development in Arabidopsis John L. Bowman, David R. Smyth, 1 and Elliot M. Meyerowitz 2 Division

More information

The Ff.010 Gene Product Regulates the Expression Domain of Homeotic Genes AP3 and PI in Arabidopsis Flowers

The Ff.010 Gene Product Regulates the Expression Domain of Homeotic Genes AP3 and PI in Arabidopsis Flowers The Plant Cell, Vol. 3, 1221-1237, November 1991 1991 American Society of Plant Physiologists The Ff.010 Gene Product Regulates the Expression Domain of Homeotic Genes AP3 and PI in Arabidopsis Flowers

More information

UFO and LEAFY in Arabidopsis

UFO and LEAFY in Arabidopsis Development 128, 2735-2746 (2001) Printed in Great Britain The Company of Biologists Limited 2001 DEV0360 2735 The ASK1 gene regulates B function gene expression in cooperation with UFO and LEAFY in Arabidopsis

More information

A genetic and molecular model for flower development in Arabidopsis thaliana

A genetic and molecular model for flower development in Arabidopsis thaliana Development Supplement I, 1991, 157-167 Printed in Great Britain The Company of Biologists Limited 1991 157 A genetic and molecular model for flower development in Arabidopsis thaliana ELLIOT M. MEYEROWITZ*,

More information

CLAVATA1, a regulator of meristem and flower development in Arabidopsis

CLAVATA1, a regulator of meristem and flower development in Arabidopsis Development 119, 397-418 (1993) Printed in Great Britain The Company of Biologists Limited 1993 397 CLAVATA1, a regulator of meristem and flower development in Arabidopsis Steven E. Clark, Mark P. Running

More information

Genetics of Floral Development An Evo-Devo Approach

Genetics of Floral Development An Evo-Devo Approach Genetics of Floral Development An Evo-Devo Approach Biology 317 Kelsey Galimba 8.5.2013 Why are flowering plants so diverse? Why are flowering plants so diverse? http://www.botanicalgarden.ubc.ca/potd/

More information

RABBIT EARS is a second-whorl repressor of AGAMOUS that maintains spatial boundaries in Arabidopsis flowers

RABBIT EARS is a second-whorl repressor of AGAMOUS that maintains spatial boundaries in Arabidopsis flowers The Plant Journal (2006) 45, 369 383 doi: 10.1111/j.1365-313X.2005.02633.x RABBIT EARS is a second-whorl repressor of AGAMOUS that maintains spatial boundaries in Arabidopsis flowers Beth A. Krizek 1,*,

More information

The Arabidopsis homeotic genes APETALA3 and PISTILLATA are sufficient to provide the B class organ identity function

The Arabidopsis homeotic genes APETALA3 and PISTILLATA are sufficient to provide the B class organ identity function University of South Carolina Scholar Commons Faculty Publications Biological Sciences, Department of 1-1-1996 The Arabidopsis homeotic genes APETALA3 and PISTILLATA are sufficient to provide the B class

More information

Functional Diversification of the Two C-Class MADS Box Genes OSMADS3 and OSMADS58 in Oryza sativa W OA

Functional Diversification of the Two C-Class MADS Box Genes OSMADS3 and OSMADS58 in Oryza sativa W OA The Plant Cell, Vol. 18, 15 28, January 2006, www.plantcell.org ª 2005 American Society of Plant Biologists RESEARCH ARTICLES Functional Diversification of the Two C-Class MADS Box Genes OSMADS3 and OSMADS58

More information

Supplemental Data. Müller-Xing et al. (2014). Plant Cell /tpc

Supplemental Data. Müller-Xing et al. (2014). Plant Cell /tpc Supplemental Figure 1. Phenotypes of iclf (clf-28 swn-7 CLF pro :CLF-GR) plants. A, Late rescue of iclf plants by renewed DEX treatment; senescent inflorescence with elongated siliques (arrow; 90 DAG,

More information

From model plants to crops: the MADS box family of gene controlling flower development in Crocus (Crocus sativus L.)

From model plants to crops: the MADS box family of gene controlling flower development in Crocus (Crocus sativus L.) From model plants to crops: the MADS box family of gene controlling flower development in Crocus (Crocus sativus L.) A. Tsaftaris 1, 2, K. Pasentsis 1, A. Kalivas 2, A. Polidoros 1 1 Institute of Agobiotechnology

More information

BELL1 and AGAMOUS genes promote ovule identity in Arabidopsis thaliana

BELL1 and AGAMOUS genes promote ovule identity in Arabidopsis thaliana The Plant Journal (1999) 18(3), 329 336 SHORT COMMUNICATION BELL1 and AGAMOUS genes promote ovule identity in Arabidopsis thaliana Tamara L. Western and George W. Haughn* Botany Department, University

More information

Involvement of CUP-SHAPED COTYLEDON Genes in Gynoecium and Ovule Development in Arabidopsis thaliana

Involvement of CUP-SHAPED COTYLEDON Genes in Gynoecium and Ovule Development in Arabidopsis thaliana Plant CellPhysiol. 41(1): 60-67 (2000) JSPP 2000 Involvement of CUP-SHAPED COTYLEDON Genes in Gynoecium and Ovule Development in Arabidopsis thaliana Tetsuya Ishida ', Mitsuhiro Aida 2, Shinobu Takada

More information

The Flower - what is it? 1/31/18. Magnoliophyta - Flowering Plants. Magnoliophyta - Flowering Plants. Magnoliophyta - Flowering Plants

The Flower - what is it? 1/31/18. Magnoliophyta - Flowering Plants. Magnoliophyta - Flowering Plants. Magnoliophyta - Flowering Plants - what is it? Floral structure will be examined in lab next Mon/Tues save space in your notes! Introduction to Angiosperms "angio-" = vessel; so "angiosperm" means "vessel for the seed [seed encased in

More information

Activation of the Arabidopsis B Class Homeotic Genes by APETALA1

Activation of the Arabidopsis B Class Homeotic Genes by APETALA1 The Plant Cell, Vol. 13, 739 753, April 2001, www.plantcell.org 2001 American Society of Plant Physiologists RESEARCH ARTICLE Activation of the Arabidopsis B Class Homeotic Genes by APETALA1 Medard Ng

More information

Determination of Arabidopsis Floral Meristem ldentity by AGA MOUS

Determination of Arabidopsis Floral Meristem ldentity by AGA MOUS The Plant Cell, Vol. 9, 393-408, March 1997 O 1997 American Society of Plant Physiologists Determination of Arabidopsis loral Meristem ldentity by AGA MOUS Yukiko Mizukamil and Hong Ma2 Cold Spring Harbor

More information

CRABS CLAW and SPATULA, two Arabidopsis genes that control carpel

CRABS CLAW and SPATULA, two Arabidopsis genes that control carpel Development 126, 2377-2386 (1999) Printed in Great Britain The Company of Biologists Limited 1999 DEV0225 2377 CRABS CLAW and SPATULA, two Arabidopsis genes that control carpel development in parallel

More information

CLAVATA3 is a specific regulator of shoot and floral meristem development

CLAVATA3 is a specific regulator of shoot and floral meristem development Development 2, 20572067 (995) Printed in Great Britain The Company of Biologists Limited 995 2057 CLAVATA3 is a specific regulator of shoot and floral meristem development affecting the same processes

More information

Morphogenesis, Anatomical Observation and Primary Genetic Analysis of a Multi-glume Floral Organ Mutant in Rice

Morphogenesis, Anatomical Observation and Primary Genetic Analysis of a Multi-glume Floral Organ Mutant in Rice Rice Science, 2006, 13(4): 227-233 227 http://www.ricesci.cn; http://www.ricescience.org Morphogenesis, Anatomical Observation and Primary Genetic Analysis of a Multi-glume Floral Organ Mutant in Rice

More information

The SEP4 Gene of Arabidopsis thaliana Functions in Floral Organ and Meristem Identity

The SEP4 Gene of Arabidopsis thaliana Functions in Floral Organ and Meristem Identity Current Biology, Vol. 14, 1935 1940, November 9, 2004, 2004 Elsevier Ltd. All rights reserved. DOI 10.1016/j.cub.2004.10.028 The SEP4 Gene of Arabidopsis thaliana Functions in Floral Organ and Meristem

More information

ARGONAUTE10 and ARGONAUTE1 Regulate the Termination of Floral Stem Cells Through Two MicroRNAs in Arabidopsis

ARGONAUTE10 and ARGONAUTE1 Regulate the Termination of Floral Stem Cells Through Two MicroRNAs in Arabidopsis University of Kentucky UKnowledge Plant and Soil Sciences Faculty Publications Plant and Soil Sciences 3-31-2011 ARGONAUTE10 and ARGONAUTE1 Regulate the Termination of Floral Stem Cells Through Two MicroRNAs

More information

HANABA TARANU Is a GATA Transcription Factor That Regulates Shoot Apical Meristem and Flower Development in Arabidopsis W

HANABA TARANU Is a GATA Transcription Factor That Regulates Shoot Apical Meristem and Flower Development in Arabidopsis W The Plant Cell, Vol. 16, 2586 2600, October 2004, www.plantcell.org ª 2004 American Society of Plant Biologists HANABA TARANU Is a GATA Transcription Factor That Regulates Shoot Apical Meristem and Flower

More information

AP2 Gene Determines the ldentity of Perianth Organs in FI o w e rs o f Ara bidopsis thaliana

AP2 Gene Determines the ldentity of Perianth Organs in FI o w e rs o f Ara bidopsis thaliana The Plant Cell, Vol. 1, 11 95-1 208, December 1989 O 1989 American Society of Plant Physiologists AP2 Gene Determines the ldentity of Perianth Organs in FI o w e rs o f Ara bidopsis thaliana Ljerka Kunst,a

More information

A LEAFY co-regulator encoded by UNUSUAL FLORAL ORGANS Ilha Lee, Diana S. Wolfe, Ove Nilsson and Detlef Weigel

A LEAFY co-regulator encoded by UNUSUAL FLORAL ORGANS Ilha Lee, Diana S. Wolfe, Ove Nilsson and Detlef Weigel Research Paper 95 A LEAFY co-regulator encoded by UNUSUAL FLORAL ORGANS Ilha Lee, Diana S. Wolfe, Ove Nilsson and Detlef Weigel Background: Development of petals and stamens in Arabidopsis flowers requires

More information

Bract reduction in Cruciferae: possible genetic mechanisms and evolution

Bract reduction in Cruciferae: possible genetic mechanisms and evolution Wulfenia 15 (2008): 63 73 Mitteilungen des Kärntner Botanikzentrums Klagenfurt Bract reduction in Cruciferae: possible genetic mechanisms and evolution Aleksey A. Penin Summary: This review is an attempt

More information

Homeotic Transformation of Ovules into Carpel-like Structures in Arabidopsis

Homeotic Transformation of Ovules into Carpel-like Structures in Arabidopsis The Plant Cell, Vol. 6, 333-349, March 1994 O 1994 American Society of Plant Physiologists Homeotic Transformation of Ovules into Carpel-like Structures in Arabidopsis Zora Modrusan, Leonore Reiser,b Kenneth

More information

plant reproduction Alternation of Generations chapter 38

plant reproduction Alternation of Generations chapter 38 Alternation of Generations Haploid (n) plant reproduction chapter 38 Diploid (2n) Sporangium Spore dispersal Spore (n) Young Mature (n) ARCHEGONIUM ANTHERIDIUM Sperm Mature Sorus Sporangium sporophyte

More information

2014 Pearson Education, Inc. 1

2014 Pearson Education, Inc. 1 1 Stamen Anther Filament Stigma Carpel Style Ovary Petal Sepal Ovule 2 A B Sepals Petals Stamens Carpels C A + B gene activity B + C gene activity C gene activity Carpel Petal (a) A schematic diagram of

More information

BIOLOGY 363 VASCULAR PLANTS LABORATORY #12

BIOLOGY 363 VASCULAR PLANTS LABORATORY #12 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! ATTENTION STUDENTS!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! BIOLOGY 363 VASCULAR PLANTS LABORATORY #12 ! ANGIOSPERM FLOWER MORPHOLOGY & ANATOMY !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

More information

The potential role of B-function gene involved in floral development for double flowers formation in Camellia changii Ye

The potential role of B-function gene involved in floral development for double flowers formation in Camellia changii Ye African Journal of Biotechnology Vol. 10(73), pp. 16757-16762, 23 November, 2011 Available online at http://www.academicjournals.org/ajb DOI: 10.5897/AJB10.2690 ISSN 1684 5315 2011 Academic Journals Full

More information

The Homeotic Protein AGAMOUS Controls Late Stamen Development by Regulating a Jasmonate Biosynthetic Gene in Arabidopsis W

The Homeotic Protein AGAMOUS Controls Late Stamen Development by Regulating a Jasmonate Biosynthetic Gene in Arabidopsis W The Plant Cell, Vol. 19: 3516 3529, November 2007, www.plantcell.org ª 2007 American Society of Plant Biologists The Homeotic Protein AGAMOUS Controls Late Stamen Development by Regulating a Jasmonate

More information

LABORATORY 2: Flowers

LABORATORY 2: Flowers LABORATORY 2: Flowers INTRODUCTION The goal of this laboratory exercise is to familiarize you with flowers, their structure, variation, and importance to the plant. By the end of today s laboratory exercise

More information

Genetic Separation of Third and Fourth Whorl Functions of AGAMOUS

Genetic Separation of Third and Fourth Whorl Functions of AGAMOUS The Plant Cell, Vol. 7, 1249-1258, August 1995 O 1995 American Society of Plant Physiologists Genetic Separation of Third and Fourth Whorl Functions of AGAMOUS Leslie E. Sieburth, Mark P. Running, and

More information

BIOLOGY 460/560 PLANT PHYSIOLOGY LABORATORY #12

BIOLOGY 460/560 PLANT PHYSIOLOGY LABORATORY #12 BIOLOGY 460/560 PLANT PHYSIOLOGY LABORATORY #12 ! ANGIOSPERM MORPHOLOGY & ANATOMY !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! ATTENTION STUDENTS ^!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! REQUIRED MATERIAL LAB EXAM

More information

Early Flower Development in Arabídopsis

Early Flower Development in Arabídopsis The Plant Cell, Vol. 2, 755-767, August 1990 O 1990 American Society of Plant Physiologists Early Flower Development in Arabídopsis David R. Smyth,' John L. Bowman, and Elliot M. Meyerowitz* Division of

More information

plant reproduction chapter 40 Alternation of Generations

plant reproduction chapter 40 Alternation of Generations Alternation of Generations plant reproduction chapter 40 Haploid (n) Diploid (2n) Sporangium Spore dispersal Spore (n) Young Mature (n) Archegonium Antheridium Sperm Sporangium Mature sporophyte (2n) New

More information

Turning floral organs into leaves, leaves into floral organs Koji Goto*, Junko Kyozuka and John L Bowman

Turning floral organs into leaves, leaves into floral organs Koji Goto*, Junko Kyozuka and John L Bowman 449 Turning floral organs into leaves, leaves into floral organs Koji Goto*, Junko Kyozuka and John L Bowman The development of the floral organs is specified by the combinations of three classes of gene

More information

Teaching A2 Biology Practical Skills Appendix 2

Teaching A2 Biology Practical Skills Appendix 2 Practical 10 - T(a)(d) The structure of wind pollinated flowers and fruit. This practical focuses on recording accurately Biological drawings. You will be developing other assessed skills throughout the

More information

POLYGONUM EMBRYO SAC CHALAZAL END ANTIPODAL CELL EMBRYO SAC OVULE L.S.

POLYGONUM EMBRYO SAC CHALAZAL END ANTIPODAL CELL EMBRYO SAC OVULE L.S. POLYGONUM EMBRYO SAC? CHALAZAL END ANTIPODAL CELL EMBRYO SAC OVULE L.S. POLYGONUM EMBRYO SAC C CHALAZAL END ANTIPODAL CELL? EMBRYO SAC OVULE L.S. POLYGONUM EMBRYO SAC? CHALAZAL END ANTIPODAL CELL CENTRAL

More information

Botany Physiology. Due Date Code Period Earned Points

Botany Physiology. Due Date Code Period Earned Points Name Botany Physiology C/By Due Date Code Period Earned Points Bot Phys 4W1 Flowers (divide by 6.5) Completion Complete each sentence or statement. 1. (4 points) The female reproductive organs are the

More information

How To Make A Seed EMBRYONIC DEVELOPMENT AND THE LIFE CYCLE OF ANGIOSPERMS NORA COOPER JAZMIN SAMANO DOMINIC SAADI

How To Make A Seed EMBRYONIC DEVELOPMENT AND THE LIFE CYCLE OF ANGIOSPERMS NORA COOPER JAZMIN SAMANO DOMINIC SAADI How To Make A Seed EMBRYONIC DEVELOPMENT AND THE LIFE CYCLE OF ANGIOSPERMS NORA COOPER JAZMIN SAMANO DOMINIC SAADI Why Study Seeds? o Within the next fi*y years we will need to produce more food than in

More information

Sex Determination in the Monoecious Species Cucumber Is Confined to Specific Floral Whorls

Sex Determination in the Monoecious Species Cucumber Is Confined to Specific Floral Whorls The Plant Cell, Vol. 13, 481 493, March 2001, www.plantcell.org 2001 American Society of Plant Physiologists Sex Determination in the Monoecious Species Cucumber Is Confined to Specific Floral Whorls Martin

More information

Redundantly in the Temporal Regulation of Floral Meristem Termination in Arabidopsis thaliana W

Redundantly in the Temporal Regulation of Floral Meristem Termination in Arabidopsis thaliana W The Plant Cell, Vol. 20: 901 919, April 2008, www.plantcell.org ª 2008 American Society of Plant Biologists REBELOTE, SQUINT, andultrapetala1 Function Redundantly in the Temporal Regulation of Floral Meristem

More information

Arabidopsis gynoecium structure in the wild type and in ettin mutants

Arabidopsis gynoecium structure in the wild type and in ettin mutants Development 121, 1519-1532 (1995) Printed in Great Britain The Company of Biologists Limited 1995 1519 Arabidopsis gynoecium structure in the wild type and in ettin mutants R. Allen Sessions* and Patricia

More information

PLENA and FARINELLI: redundancy and regulatory interactions between two Antirrhinum MADS-box factors controlling flower development

PLENA and FARINELLI: redundancy and regulatory interactions between two Antirrhinum MADS-box factors controlling flower development The EMBO Journal Vol.18 No.14 pp.4023 4034, 1999 PLENA and FARINELLI: redundancy and regulatory interactions between two Antirrhinum MADS-box factors controlling flower development Brendan Davies 1, Patrick

More information

The Flower, Pollination, and Seeds

The Flower, Pollination, and Seeds The Flower, Pollination, and Seeds Class 9 th Chapters 6,7,8 1 The Flower A complete or a perfect flower, has all the four Whorls. If, even one whorl is missing, it is an Incomplete Flower. The fourth

More information

Divergence of Function and Regulation of Class B Floral Organ ldentity Genes

Divergence of Function and Regulation of Class B Floral Organ ldentity Genes The Plant Cell, Vol. 9, 559-570, April 1997 O 1997 American Society of Plant Physiologists Divergence of Function and Regulation of Class B Floral Organ ldentity Genes Alon Samach,a Susanne E. Kohalmi,b.l

More information

Flower Morphology. Flower Structure. Name

Flower Morphology. Flower Structure. Name right 84 83 82 81 80 79 78 77 76 75 74 73 72 71 70 69 68 67 score 100 98.8 97.6 96.4 95.2 94.0 92.9 91.7 90.5 89.3 88.1 86.9 85.7 84.5 83.3 82.1 81.0 79.8 Flower Morphology Name You are already familiar

More information

Beth A. Krizek & Marcie Eaddy

Beth A. Krizek & Marcie Eaddy AINTEGUMENTA-LIKE6 regulates cellular differentiation in flowers Beth A. Krizek & Marcie Eaddy Plant Molecular Biology An International Journal on Molecular Biology, Molecular Genetics and Biochemistry

More information

The AINTEGUMENTA Gene of Arabidopsis Required for Ovule and Female Gametophyte Development 1s Related to the Floral Homeotic Gene APETALA2

The AINTEGUMENTA Gene of Arabidopsis Required for Ovule and Female Gametophyte Development 1s Related to the Floral Homeotic Gene APETALA2 The Plant Cell, Vol. 8, 137-153, February 1996 0 1996 American Society of Plant Physiologists RESEARCH ARTICLE The AINTEGUMENTA Gene of Arabidopsis Required for Ovule and Female Gametophyte Development

More information

Specification of Arabidopsis floral meristem identity by repression of flowering time genes

Specification of Arabidopsis floral meristem identity by repression of flowering time genes RESEARCH ARTICLE 1901 Development 134, 1901-1910 (2007) doi:10.1242/dev.003103 Specification of Arabidopsis floral meristem identity by repression of flowering time genes Chang Liu 1, *, Jing Zhou 1, *,

More information

AINTEGUMENTA Contributes to Organ Polarity and Regulates Growth of Lateral Organs in Combination with YABBY Genes 1

AINTEGUMENTA Contributes to Organ Polarity and Regulates Growth of Lateral Organs in Combination with YABBY Genes 1 AINTEGUMENTA Contributes to Organ Polarity and Regulates Growth of Lateral Organs in Combination with YABBY Genes 1 Staci Nole-Wilson 2 and Beth A. Krizek* Department of Biological Sciences, University

More information

Ectopic Expression of AINTEGUMENTA in Arabidopsis Plants Results in Increased Growth of Floral Organs

Ectopic Expression of AINTEGUMENTA in Arabidopsis Plants Results in Increased Growth of Floral Organs DEVELOPMENTAL GENETICS 25:224 236 (1999) Ectopic Expression of AINTEGUMENTA in Arabidopsis Plants Results in Increased Growth of Floral Organs BETH ALLYN KRIZEK* Department of Biological Sciences, University

More information

TSO1 functions in cell division during Arabidopsis flower development

TSO1 functions in cell division during Arabidopsis flower development Development 124, 665-672 (1997) Printed in Great Britain The Company of Biologists Limited 1997 DEV0095 665 TSO1 functions in cell division during Arabidopsis flower development Zhongchi Liu*, Mark P.

More information

Reproductive Development and Structure

Reproductive Development and Structure Reproductive Development and Structure Bởi: OpenStaxCollege Sexual reproduction takes place with slight variations in different groups of plants. Plants have two distinct stages in their lifecycle: the

More information

Publishing. Telephone: Fax:

Publishing. Telephone: Fax: Publishing Australian Journal of Botany An international journal for the publication of original research in plant science Volume 49, 2001 CSIRO 2001 All enquiries and manuscripts should be directed to:

More information

Flower Morphology. Flower Structure

Flower Morphology. Flower Structure wrong 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 right 84 83 82 81 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 score 100 98.8 97.6 96.4 95.2 94.0 92.9 91.7 90.5 89.3 88.1 86.9 85.7 84.5

More information

Research. Bharti Sharma and Elena Kramer. Summary. Introduction

Research. Bharti Sharma and Elena Kramer. Summary. Introduction Research Sub- and neo-functionalization of AALA3 paralogs have contributed to the evolution of novel floral organ identity in Aquilegia (columbine, Ranunculaceae) Bharti Sharma and Elena Kramer Department

More information

Supplemental Data. Wu et al. (2010). Plant Cell /tpc

Supplemental Data. Wu et al. (2010). Plant Cell /tpc Supplemental Figure 1. FIM5 is preferentially expressed in stamen and mature pollen. The expression data of FIM5 was extracted from Arabidopsis efp browser (http://www.bar.utoronto.ca/efp/development/),

More information

Arabidopsis PRC1 core component AtRING1 regulates stem cell-determining carpel development mainly through repression of class I KNOX genes

Arabidopsis PRC1 core component AtRING1 regulates stem cell-determining carpel development mainly through repression of class I KNOX genes Chen et al. BMC Biology (2016) 14:112 DOI 10.1186/s12915-016-0336-4 RESEARCH ARTICLE Open Access Arabidopsis PRC1 core component AtRING1 regulates stem cell-determining carpel development mainly through

More information

Morphological Variation and AGAMOUS-like Gene Expression in Double Flowers of Cyclamen persicum Mill.

Morphological Variation and AGAMOUS-like Gene Expression in Double Flowers of Cyclamen persicum Mill. The Horticulture Journal 84 (2): 140 147. 2015. doi: 10.2503/hortj.MI-024 JSHS The Japanese Society for Horticultural Science http://www.jshs.jp/ Morphological Variation and AGAMOUS-like Gene Expression

More information

NO APICAL MERISTEM (MtNAM) regulates floral organ identity and lateral organ separation in Medicago truncatula

NO APICAL MERISTEM (MtNAM) regulates floral organ identity and lateral organ separation in Medicago truncatula Research NO APICAL MERISTEM (MtNAM) regulates floral organ identity and lateral organ separation in Medicago truncatula Xiaofei Cheng, Jianling Peng, Junying Ma, Yuhong Tang, Rujin Chen, Kirankumar S.

More information

Peony Flower Anatomy I

Peony Flower Anatomy I Peony Flower Anatomy I Don Hollingsworth, APS Director Maryville, Missouri What Makes a Peony Flower Luxurious? Rich luxury of the flowers explains why peonies are wanted, why loved and why known in history

More information

Flowering Plant Reproduction

Flowering Plant Reproduction Lab Exercise Flowering Plant Reproduction Objectives - To be able to identify the parts of a flower - Be able to distinguish between dicots and monocots based on flower morphology - Become familiar with

More information

See pedigree info on extra sheet 1. ( 6 pts)

See pedigree info on extra sheet 1. ( 6 pts) Biol 321 Quiz #2 Spring 2010 40 pts NAME See pedigree info on extra sheet 1. ( 6 pts) Examine the pedigree shown above. For each mode of inheritance listed below indicate: E = this mode of inheritance

More information

Nyla Phillips-Martin 2013 mscraftynyla.blogspot.com

Nyla Phillips-Martin 2013 mscraftynyla.blogspot.com 1 Here are exciting ways to teach your students about the parts of a flower and the function of each part. It includes: A DIY craft activity for assembling the flower parts together to make a complete

More information

In cladistics, a synapomorphy or synapomorphic character state is a trait that is shared ("symmorphy") by two or more taxa and inferred to have been present in their most recent common ancestor, whose

More information

PETAL LOSS, a trihelix transcription factor gene, regulates perianth

PETAL LOSS, a trihelix transcription factor gene, regulates perianth Research article 4035 PETAL LOSS, a trihelix transcription factor gene, regulates perianth architecture in the Arabidopsis flower Philip B. Brewer, Paul A. Howles*, Kristen Dorian, Megan E. Griffith, Tetsuya

More information

ACURIOUS malformation in one of the flowers on a raceme of

ACURIOUS malformation in one of the flowers on a raceme of ON AN ABNORMALITY IN PURPUREA By VIOLET L. ANDERSON. DIGITALIS Quain Student of Botany, University College, London. (With 6 figures in the text.) ACURIOUS malformation in one of the flowers on a raceme

More information

Angiosperm Reproduction

Angiosperm Reproduction Name Angiosperm Reproduction Today you will examine closely the reproductive aspects of the Anthophyta (aka Magnoliophyta aka Angiosperms) to finish your phylogenetic study of reproduction and evolution

More information

Floral Ontogeny of Pelargonium domesticum

Floral Ontogeny of Pelargonium domesticum J. AMER. SOC. HORT. SCI. 125(1):36 40. 2000. Floral Ontogeny of Pelargonium domesticum Marietta Loehrlein 1 and Richard Craig 2 Department of Horticulture, The Pennsylvania State University, University

More information

Homeotic Transformation of Ovules into Carpel-like Structures in Arabidopsis

Homeotic Transformation of Ovules into Carpel-like Structures in Arabidopsis The Plant Cell, Vol. 6, 333-349, March 1994 O 1994 American Society of Plant Physiologists Homeotic Transformation of Ovules into Carpel-like Structures in Arabidopsis Zora Modrusan, Leonore Reiser,b Kenneth

More information

The early inflorescence of Arabidopsis thaliana demonstrates positional effects in floral organ growth and meristem patterning

The early inflorescence of Arabidopsis thaliana demonstrates positional effects in floral organ growth and meristem patterning Plant Reproduction (2018) 31:171 191 https://doi.org/10.1007/s00497-017-0320-3 ORIGINAL ARTICLE The early inflorescence of Arabidopsis thaliana demonstrates positional effects in floral organ growth and

More information

Plant Terminology. Floral Symmetry

Plant Terminology. Floral Symmetry Plant Terminology Parts of a Flower Pedicel--the stalk of an individual flower Calyx--outermost whorl of a flower Sepal--one member of the calyx Corolla--second whorl of a flower Petal--one member of the

More information

The Maize PI/GLO Ortholog Zmm16/sterile tassel silky ear1 Interacts with the Zygomorphy and Sex Determination Pathways in Flower Development OPEN

The Maize PI/GLO Ortholog Zmm16/sterile tassel silky ear1 Interacts with the Zygomorphy and Sex Determination Pathways in Flower Development OPEN This article is a Plant Cell Advance Online Publication. The date of its first appearance online is the official date of publication. The article has been edited and the authors have corrected proofs,

More information

Copyright 2015 Kelsey Diane Galimba

Copyright 2015 Kelsey Diane Galimba Copyright 2015 Kelsey Diane Galimba Duplication and Functional Divergence in the Floral Organ Identity Genes Kelsey Diane Galimba A dissertation submitted in partial fulfillment of the requirements for

More information

ANGIOSPERM L.S. POLLEN GRAIN

ANGIOSPERM L.S. POLLEN GRAIN ANGIOSPERM 2 L.S. POLLEN GRAIN ANGIOSPERM T 2 CELLS L.S. POLLEN GRAIN ANGIOSPERM TUBE CELL G L.S. POLLEN GRAIN ANGIOSPERM TUBE CELL > L.S. GENERATIVE CELL POLLEN GRAIN ANGIOSPERM TUBE CELL GENERATIVE CELL

More information

Arabidopsis thaliana. Initiation patterns of flower and floral organ development in. Gerd Bossinger* and David R. Smyth SUMMARY

Arabidopsis thaliana. Initiation patterns of flower and floral organ development in. Gerd Bossinger* and David R. Smyth SUMMARY Development 122, 1093-1102 (1996) Printed in Great Britain The Company of Biologists Limited 1996 DEV0061 1093 Initiation patterns of flower and floral organ development in Arabidopsis thaliana Gerd Bossinger*

More information

Termination of Stem Cell Maintenance in Arabidopsis Floral Meristems by Interactions

Termination of Stem Cell Maintenance in Arabidopsis Floral Meristems by Interactions Cell, Vol. 105, 805 814, June 15, 2001, Copyright 2001 by Cell Press Termination of Stem Cell Maintenance in Arabidopsis Floral Meristems by Interactions between WUSCHEL and AGAMOUS Michael Lenhard, 2

More information

Anatomy of a New Sepaloid Mutant Flower in Sugarbeet 1

Anatomy of a New Sepaloid Mutant Flower in Sugarbeet 1 January-June, 1991 Anatomy of a New SepaJoid Mutant Flower in Sugarbeet 23 Anatomy of a New Sepaloid Mutant Flower in Sugarbeet 1 J. C. Theurer, S. A. Owens 3, and F. W. Ewers 4 2Sugarbeet, Bean and Cereal

More information

Biology. Chapter 13. Observing Patterns in Inherited Traits. Concepts and Applications 9e Starr Evers Starr. Cengage Learning 2015

Biology. Chapter 13. Observing Patterns in Inherited Traits. Concepts and Applications 9e Starr Evers Starr. Cengage Learning 2015 Biology Concepts and Applications 9e Starr Evers Starr Chapter 13 Observing Patterns in Inherited Traits Cengage Learning 2015 Cengage Learning 2015 After completing today s activities, students should

More information

Genetic ablation of petal and stamen primordia to elucidate cell interactions during floral development

Genetic ablation of petal and stamen primordia to elucidate cell interactions during floral development Development 121, 2887-2895 (1995) Printed in Great Britain The Company of Biologists Limited 1995 2887 Genetic ablation of petal and stamen primordia to elucidate cell interactions during floral development

More information

Gwyneth C. Ingram,a Justin Goodrich,a Mark D. Wilkinson,b Rüdiger Simon,a George W. Haughn,b and Enrico S. Coena,

Gwyneth C. Ingram,a Justin Goodrich,a Mark D. Wilkinson,b Rüdiger Simon,a George W. Haughn,b and Enrico S. Coena, The Plant Cell, Vol. 7, 1501-1510, September 1995 O 1995 American Society of Plant Physiologists Parallels between UNUSUAL FLORAL ORGANS and FMBRATA, Genes Controlling Flower Development in Arabidopsis

More information

Reproduction in plants

Reproduction in plants Reproduction in plants No individual organism can live forever, but reproduction makes sure that organisms do not become extinct. Organisms reproduce sexually or asexually and some organisms, such as angiosperms

More information

A novel class of MYB factors controls sperm

A novel class of MYB factors controls sperm A novel class of MYB factors controls sperm cell formation in plants Nicolas Rotman 1, Anjusha Durbarry 2, Anthony Wardle 2, Wei Cai Yang 3, Annie Chaboud 1, Jean-Emmanuel Faure 1,4, Frédéric Berger 1,5*

More information

Within and between Whorls: Comparative Transcriptional Profiling of Aquilegia and Arabidopsis

Within and between Whorls: Comparative Transcriptional Profiling of Aquilegia and Arabidopsis Within and between Whorls: Comparative Transcriptional Profiling of Aquilegia and Arabidopsis The Harvard community has made this article openly available. Please share how this access benefits you. Your

More information

The NGATHA Distal Organ Development Genes Are Essential for Style Specification in Arabidopsis W

The NGATHA Distal Organ Development Genes Are Essential for Style Specification in Arabidopsis W The Plant Cell, Vol. 21: 1373 1393, May 2009, www.plantcell.org ã 2009 American Society of Plant Biologists The NGATHA Distal Organ Development Genes Are Essential for Style Specification in Arabidopsis

More information

Supplemental Data. Beck et al. (2010). Plant Cell /tpc

Supplemental Data. Beck et al. (2010). Plant Cell /tpc Supplemental Figure 1. Phenotypic comparison of the rosette leaves of four-week-old mpk4 and Col-0 plants. A mpk4 vs Col-0 plants grown in soil. Note the extreme dwarfism of the mpk4 plants (white arrows)

More information

Operation Flower Dissection

Operation Flower Dissection Operation Flower Dissection Classroom Activity: K-4 Time: One to two 50-minute class periods Overview: In this activity, students will observe the similarities and differences between flowers of different

More information

The PRETTY FEW SEEDS2 gene encodes an Arabidopsis homeodomain protein that regulates ovule development

The PRETTY FEW SEEDS2 gene encodes an Arabidopsis homeodomain protein that regulates ovule development First posted online on 19 January 2005 as 10.1242/dev.01654 Access the most recent epress version at online http://dev.biologists.org/lookup/doi/10.1242/dev.01654 publication date 19 January 2005 841 The

More information

AINTEGUMENTA, an A PETA LAP-like Gene of Arabidopsis with Pleiotropic Roles in Ovule Development and Floral Organ Growth

AINTEGUMENTA, an A PETA LAP-like Gene of Arabidopsis with Pleiotropic Roles in Ovule Development and Floral Organ Growth The Plant Cell, Vol. 8, 155-168, February 1996 O 1996 American Society of Plant Physiologists AINTEGUMENTA, an A PETA LAP-like Gene of Arabidopsis with Pleiotropic Roles in Ovule Development and Floral

More information

Functional conservation and diversification of class E floral homeotic genes in rice (Oryza sativa)

Functional conservation and diversification of class E floral homeotic genes in rice (Oryza sativa) The Plant Journal (2010) 61, 767 781 doi: 10.1111/j.1365-313X.2009.04101.x Functional conservation and diversification of class E floral homeotic genes in rice (Oryza sativa) Rongfeng Cui 1,2,, Jiakun

More information