[AUTOIMMUNITY] July 14, 2013

Size: px
Start display at page:

Download "[AUTOIMMUNITY] July 14, 2013"

Transcription

1 This sheet includes only the extra notes. Slide 5,6: [AUTOIMMUNITY] July 14, 2013 Autoimmunity is the condition or case where the immune system is activated by self antigensand when the immune system no longer recognizes itself which is the most important characteristic of the adaptive immune system self-nonself discrimination. And generally self tolerance is acquired, where self reactive antigens are eliminated, ( self reactive antigens here refer to B or T cell receptors on B or T lymphocytes. So, our body cannot eliminate all the self reactive antigens because some of these help in protecting us from foreign antigens, so its impossible to remove all autoreactive B or T lymphocytes from the body. The simplest reason is the inability to present all self antigens to B or T lymphocytes during maturation. Those B or T lymphocytes carrying a receptor that react with hidden nonpresentedself antigens will be present in the immune repertoire. This means that everyone has some self reactive antigens that are not activated. As we talked in the last lecture, individuals inherit the genes that enable them to mount a response against self. But this is regulated at the phenotypic level.so genetically T and B lymphocytes are self reactive, however those that are detected as self reacting are eliminated in the thymus or the bone more. Slide 7 :

2 We should distinct between autoimmune response and autoimmune disease.autoimmune response involves interaction with cells but may not be associated with pathology. But, autoimmune diseases are those autoimmune responses that develop in pathologic conditions. Without autoimmune responses, the immune system wont function normally. Its very essential for the interaction between CD molecules ( CD4, CD8 ) and MHC, they are also essential for the regulation of the immune system thatidiotypeantiidiotype responses develop. Slide 8 : So we can introduce two terms : - Normal autoimmunity - Autoimmune diseases. Normal autoimmunity doesn t indicate failure of tolerance induction, especially tolerance at the central level as the body exerts extra precautions to maintain tolerance. Slide 9 : Titer < 4 is present in all healthy individuals. Natural autoantibodies can bind to intracellular constituents, ( the released ones as a result of cell death ). Slide 11 : Its believed that autoantibodies can prevent autoimmune diseases by blinding the immune system of these self components that are released as a result of cell death for example.so these autoantibodies will bind to them and they will be cleared by phagocytosis, but if they for a long

3 period of time, this will trigger an adaptive immune response against these autoantibodies. Myasthenia graves antibodies against acetylcoline receptors which block the binding acetylcolineto its receptor in postsynaptic site and this will decreaseor block the contractility of the muscles that is associated with sever muscle pain. The acetyl colinereceptors are of IgGclass,and pregnant woman with myasthenia graves will provide these antibodies to their fetus, so the antibody passes to the placenta, crosses it and reaches the circulation. New born are born with manifestations of myasthenia graves, but these manifestations will decrease with time and by the 6 months they are gone due to the normal decay of immuneglobulin without any treatment. Slide 12 : Autoimmune diseases are very common. Common by percentage is defined as 1%. Slide 13 : Autoimmune diseases should be distinguished from the conditions where an antibody or a cell mediated immunity develops causing tissue damage but the trigger is not self antigens. We have cases like infections, for ex. TB, associated with immune mediated tissue damage but the trigger is not self antigens. Animal models like these which are available for the study of multiple sclerosis, mice for the study of experimental allergic encephalitis.

4 Slide 14,15 : From the figure we can conclude that autoimmune diseases are multifactorial notsingle. Autoimmunity is of many mechanisms that are clear: Failure of tolerance induction :its not common, especially at the central level, its difficult to break a T cell tolerance but the B cell tolerance is easier to break. CTLA-4 :cytotoxic T lymphocyte antigen 4, binds to the CD8. Apoptosis of T lymphocytes results as a result of the expression of fasligand. Excess IL2, especially at the B cell level, the injection of increased amounts of IL2 can break tolerance. Antigens that are hidden from the immune system are regarded as nonself (not sure, check it at 19:54), because the immune system is educated to recognize self, if these antigens can be brought to the thymus or the bone marrow they will be recognized as self, but if not, they will be recognized as foreign. Neoantigens can stimulate immune system. In Multiple sclerosis, T lymphocytes act as the effector, they recognize myelin as foreign, in infection, the exposure of this myelin will cause attack of these myelin sheaths by T lymphocytes,and those that attack myelin sheaths will expose more myelin, so more spreading. Its believed that conformational change is responsible for the production of IgM antibodies against the Fc fragment of IgG which is believed to be the rheumatic factor.

5 Slide 16: Cryptic epitopes can be exposed by break down of barriers like blood testis barrier, vasectomy exposes sperms and this will cause production of antispermantiobodies and infertility can develop because sperms are hidden by barriers from immune system, Molecular mimicry is the presence of cross reacting antigens in substances on the surface of organisms, that cross react with antigens on the tissues. Like in rheumatic fever where strep. M protein cross react with antigens on sarcolemmal membrane and valves. And antibodies produced against M protein will bind to antigens on the sarcolemmal membrane and valves and activate rheumatic fever. -Insulin dependant diabetes millets : Where coxsakie and cmv antigens cross react with Glutamin Acid Decarboxylase (GAD) on B-cells of pancrease. -T Helper 1-T Helper 2 balance associated with establishment of tolerance. Its imbalanced when associated with autoimmunity. _superantigens can activate multiple clones of T-lymphocytes by binding to the variable domain of the B chain of TCR. Slide 18:

6 -Smoking can cause damage to the basement membrane of the alveoli, this will expose collagen 4 which will be recognized as foreign because it was not introduced during the development of T-cells, this will lead to the production of antibodies against collagen 4, this is followed by the formation of complexes between antibodies and the basement membrane of the lung and the kidney, so good pastures syndrome involves the lung and the kidney, leading to hemoptysis( coughing of blood) in the lung, and glomerulonephritis in the kidney. -EAE: experimental allergic encephalitis -The best example of an injury that can trigger an immune response is eye trauma, 'cause it releases tissue of the eye lens which is considered sequestered antigens, so an immune response can develop, leading to opthalmitis. Slide 19: Immune stimulation is another mechanism for development of an auto immune response. -there are some tissues that do not express MHC whether class 1 or 2, IFNγ can increase the expression of MHC I and II, it is produced in high concentrations in infections or inflammation, so it will increase the expression of MHC II by tissues, for example by thyroid tissue. Thyroid tissue will be regarded as foreign, this will lead to auto immune thyroiditis.

7 -MHC cannot be expressed unless loaded with a peptide, this peptide will be derived from thyroid cells, and so this will lead to an auto immune thyroiditis. Slide 20: -In graves disease the TSH receptor is recognized as foreign, and antibodies produced against this TSH receptor can bind to it. -Thyroid hormones will inhibit the synthesis of further TSH,feed back inhibition. -naturally increased production of hormones will inhibit further production of TSH, but in graves the receptors are occupied and saturated by the auto antibodies, leading to production of thyroid hormones and more TSH will be produced as well, leading to thyrotoxicosis. so this disease is associated with hyper reactivity of the thyroid gland. Slide 21 : Naturally TSH binds to TSH receptors in the thyroid gland and stimulate the production of thyroid hormones, then the thyroid hormone inhibit further production of TSH by feedback inhibition. In grave s disease the antibody mimic the action of the normal TSH causing increase production of thyroid hormones. The hormones will inhibit the further production of TSH, but in this case the TSH can t suppress the production of the hormones because the receptors are

8 saturated by antibodies and that cause increase the level of thyroid hormones which will cause thyrotoxicosis. Slide : Naturally,activation of T cells will lead to expression of Fas(CD95)and Fas ligand bind to this molecule causing cell death and apoptosis. In cases of defective expression of these ligands will cause to cell survive and mutation in Fas/ Fas ligands and lead to what we called AIPS. TCR double negative present in circulation in very low amount but in ALPS they increase in number. Slide 25 : Transforming growth factor beta (TGF-beta)and IL-6 cause the development of Th17 and Th17 produce IL17. Mice that lack IL17 don t develop Experimental Allergic encephalitis which is equivalent to multiple sclerosis. That means IL17 mediate multiple sclerosis. Slide 26 : Intrinsic factor is important in absorption of vitamin b12 and its produced from parietal cells of GI tract and bind to B12 allowing its absorption. In certain conditions the IF recognized as foreign and antibody produced against it. Antibody make complexes with IF inhibiting its

9 binding to B12 so that B12 deficiency developed in condition known as pernicious anemia. Slide 27 : Characteristic of autoimmune disease 1-Systemic vs organ-specific In systemic the antigen stimulus will be common to all tissue Generally,its antibody mediated (not in all cases) In organ specific antigen stimulus will be specific to one tissue. Generally, its T cell mediated (not for all ) 2-Variable course within the same disease/ same individual Or different disease/ different individual. 3-Female preponderance (the exception is diabetes ) all autoimmune more common in female. The ratio could be 50:1 like in hashimoto. 4-Overlapping manifestations : because of similar immune pathology. 5-Diverse Immunopathology :it may be mediated by antibody or immune complex or T cells ( T helper or T cytotoxic ). 6-Immunosuppression : despite the fact is that an individual produces antibodies in high amounts against self antigens, when he s immunized with a foreign antigen he responses in proper ( suboptimal ) so they are immunosuppresent. 7-Constant antigen: the same antigen that trigger the autoimmune disease is the same in all individual in the same disease.

10 8-Genetic susceptibility: individual that inherit specific gene has higher risk to develop autoimmune disease. 9-Environmental factors such as drugs, infections and food all of them involved in autoimmune disease. Slide 29 : They found that left handed individual has higher risk to develop autoimmune disease. Slide 30 : Hashimoto disease : thyroglobulin is involved in the synthesis of T4,T3 hormones. inhibition of the hormone release will cause the pituitary gland to secrete more TSH and this is associated with the tissue response but failure to release the hormone so that an enlargement of the thyroid gland will result. (Goiter) Pancreas : more than one mechanism, insulin receptors, insulin itself. Slide 31 : SLE : antibodies produced against intracellular components, nuclear factors especially the double stranded DNA. These antigens antibody complexes will deposit everywhere in the body, ( heart, kidney, joints) and activate the complement that s why manifestations are multiple in SLE. Slide 32 : This skin manifestation as butterfly. Slide 33 :

11 All rheumatic diseases are autoimmune caused by different variable antigens most of them are proteins ( intracellular components ) Slide 36 : In hashimoto, antibodies block the function. Slide 38 : In APS-1 : decreased expression of self antigens will result in defect in negative selection, that means that auto reactive T lymphocytes will pass through. Slide 39,40 : If we assume to take diabetes, if we assume that genetics is not involved, there s no genetic susceptibility, and no genetic predisposition for diabetes. Then the distribution of HLA among diabetics will be equal.so, if we take 1000 thousand diabetics, ¼ of them will share 0 HLA and ¼ will share 2 HLA and 50% will share 1 HLA within a family, but what was detected is an increase in the rate of HLA sharing with diabetes. Slide 42 : The relative risk indicates the risk of acquiring the disease if you the gene in comparison with those who lack. Slide 43 : Prevalence of diabetes increases with the presence of both DR3 and DR4, but less than.5 with one of them and DR2. The risk is almost zero when the person is homozygous for DR2.

12 So, DR3 and DR4 predispose for diabetes but DR2 protects from it. Slide 49 : Certain molecules of TCR are associated with multiple sclerosis, antibodies to those molecules can treat MS. Special thanks for RouwandAbdulwahed and SaifAlHamaideh. By LinaBaker.

Autoimmunity Origins. Horror autotoxicus: Literally, the horror of self-toxicity.

Autoimmunity Origins. Horror autotoxicus: Literally, the horror of self-toxicity. Autoimmunity Autoimmunity Origins Horror autotoxicus: Literally, the horror of self-toxicity. A term coined by the German immunologist Paul Ehrlich (1854-1915) to describe the body's innate aversion to

More information

What is Autoimmunity?

What is Autoimmunity? Autoimmunity What is Autoimmunity? Robert Beatty MCB150 Autoimmunity is an immune response to self antigens that results in disease. The immune response to self is a result of a breakdown in immune tolerance.

More information

What is Autoimmunity?

What is Autoimmunity? Autoimmunity What is Autoimmunity? Robert Beatty MCB150 Autoimmunity is an immune response to self antigens that results in disease. The immune response to self is a result of a breakdown in immune tolerance.

More information

Self-tolerance. Lack of immune responsiveness to an individual s own tissue antigens. Central Tolerance. Peripheral tolerance

Self-tolerance. Lack of immune responsiveness to an individual s own tissue antigens. Central Tolerance. Peripheral tolerance Autoimmunity Self-tolerance Lack of immune responsiveness to an individual s own tissue antigens Central Tolerance Peripheral tolerance Factors Regulating Immune Response Antigen availability Properties

More information

Diseases of Immunity 2017 CL Davis General Pathology. Paul W. Snyder, DVM, PhD Experimental Pathology Laboratories, Inc.

Diseases of Immunity 2017 CL Davis General Pathology. Paul W. Snyder, DVM, PhD Experimental Pathology Laboratories, Inc. Diseases of Immunity 2017 CL Davis General Pathology Paul W. Snyder, DVM, PhD Experimental Pathology Laboratories, Inc. Autoimmunity Reflects a loss of immunologic tolerance Mechanisms Auto-antibodies

More information

Medical Immunology Dr. Hassan Abul Raghib Lecture 16

Medical Immunology Dr. Hassan Abul Raghib Lecture 16 Medical Immunology Dr. Hassan Abul Raghib Lecture 16 Autoimmunity: Natural Auto-Antibodies: - Autoimmunity is not very uncommon; because there are auto-antibodies in all of us (natural auto-antibodies).

More information

Disruption of Healthy Tissue by the Immune Response Autoimmune diseases: Inappropriate immune response against self-components

Disruption of Healthy Tissue by the Immune Response Autoimmune diseases: Inappropriate immune response against self-components Chapter 13 Disruption of Healthy Tissue by the Immune Response Autoimmune diseases: Inappropriate immune response against self-components Humoral imm 胞外 胞內 CMI: CD8 T Self Ag Self(Auto) antigen (encoded

More information

DISCLOSURE. Relevant relationships with commercial entities none. Potential for conflicts of interest within this presentation none

DISCLOSURE. Relevant relationships with commercial entities none. Potential for conflicts of interest within this presentation none AUTOIMMUNITY DISCLOSURE Relevant relationships with commercial entities none Potential for conflicts of interest within this presentation none Steps taken to review and mitigate potential bias N/A MODULE

More information

Immune responses in autoimmune diseases

Immune responses in autoimmune diseases Immune responses in autoimmune diseases Erika Jensen-Jarolim Dept. of Pathophysiology Medical University Vienna CCHD Lecture January 24, 2007 Primary immune organs: Bone marrow Thymus Secondary: Lymph

More information

Immunology. Lecture- 8

Immunology. Lecture- 8 Immunology Lecture- 8 Immunological Disorders Immunodeficiency Autoimmune Disease Hypersensitivities Immunodeficiency 1. Immunodeficiency --> abnormal production or function of immune cells, phagocytes,

More information

Autoimmunity. Autoimmunity arises because of defects in central or peripheral tolerance of lymphocytes to selfantigens

Autoimmunity. Autoimmunity arises because of defects in central or peripheral tolerance of lymphocytes to selfantigens Autoimmunity Autoimmunity arises because of defects in central or peripheral tolerance of lymphocytes to selfantigens Autoimmune disease can be caused to primary defects in B cells, T cells and possibly

More information

Bachelor of Chinese Medicine ( ) AUTOIMMUNE DISEASES

Bachelor of Chinese Medicine ( ) AUTOIMMUNE DISEASES Bachelor of Chinese Medicine (2002 2003) BCM II Dr. EYT Chan February 6, 2003 9:30 am 1:00 pm Rm 134 UPB AUTOIMMUNE DISEASES 1. Introduction Diseases may be the consequence of an aberrant immune response,

More information

Essentials In Immunology Prof. Anjali A. Karande Department of Biochemistry Indian Institute of Science, Bangalore

Essentials In Immunology Prof. Anjali A. Karande Department of Biochemistry Indian Institute of Science, Bangalore Essentials In Immunology Prof. Anjali A. Karande Department of Biochemistry Indian Institute of Science, Bangalore Lecture No. # 16 Autoimmunity Autoimmuno-deficiencies f the B cells So, in today s class,

More information

. Autoimmune disease. Dr. Baha,Hamdi.AL-Amiedi Ph.D.Microbiology

. Autoimmune disease. Dr. Baha,Hamdi.AL-Amiedi Ph.D.Microbiology . Autoimmune disease Dr. Baha,Hamdi.AL-Amiedi Ph.D.Microbiology, Paul Ehrich The term coined by the German immunologist paul Ehrich ( 1854-1915) To describe the bodys innate aversion to immunological

More information

SEVENTH EDITION CHAPTER

SEVENTH EDITION CHAPTER Judy Owen Jenni Punt Sharon Stranford Kuby Immunology SEVENTH EDITION CHAPTER 16 Tolerance, Autoimmunity, and Transplantation Copyright 2013 by W. H. Freeman and Company Immune tolerance: history * Some

More information

Immunology 2011 Lecture 20 Autoimmunity 18 October

Immunology 2011 Lecture 20 Autoimmunity 18 October Immunology 2011 Lecture 20 Autoimmunity 18 October APC Antigen processing (dendritic cells, MΦ et al.) Antigen "presentation" Ag/Ab complexes Antigenspecific triggering B T ANTIGEN Proliferation Differentiation

More information

Immunology Lecture 4. Clinical Relevance of the Immune System

Immunology Lecture 4. Clinical Relevance of the Immune System Immunology Lecture 4 The Well Patient: How innate and adaptive immune responses maintain health - 13, pg 169-181, 191-195. Immune Deficiency - 15 Autoimmunity - 16 Transplantation - 17, pg 260-270 Tumor

More information

Immunological Tolerance

Immunological Tolerance Immunological Tolerance Introduction Definition: Unresponsiveness to an antigen that is induced by exposure to that antigen Tolerogen = tolerogenic antigen = antigen that induces tolerance Important for

More information

Cellular Pathology of immunological disorders

Cellular Pathology of immunological disorders Cellular Pathology of immunological disorders SCBM344 Cellular and Molecular Pathology Witchuda Payuhakrit, Ph.D (Pathobiology) witchuda.pay@mahidol.ac.th Objectives Describe the etiology of immunological

More information

Autoimmunity. By: Nadia Chanzu, PhD Student, UNITID Infectious Minds Presentation November 17, 2011

Autoimmunity. By: Nadia Chanzu, PhD Student, UNITID Infectious Minds Presentation November 17, 2011 Molecular Mechanisms of Autoimmunity By: Nadia Chanzu, PhD Student, UNITID Infectious Minds Presentation November 17, 2011 Introduction 3m Pick an organ, any organ... Autoimmunity can affect ANY organ/organ

More information

Immune tolerance, autoimmune diseases

Immune tolerance, autoimmune diseases Immune tolerance, autoimmune diseases Immune tolerance Central: negative selection during thymic education deletion of autoreactive B-lymphocytes in bone marrow Positive selection in the thymus Negative

More information

Medical Immunology Practice Questions-2016 Autoimmunity + Case Studies

Medical Immunology Practice Questions-2016 Autoimmunity + Case Studies Medical Immunology Practice Questions-2016 Autoimmunity + Case Studies Directions: Each of the numbered items or incomplete statements in this section is followed by answers or by completions of the statement.

More information

CELL BIOLOGY - CLUTCH CH THE IMMUNE SYSTEM.

CELL BIOLOGY - CLUTCH CH THE IMMUNE SYSTEM. !! www.clutchprep.com CONCEPT: OVERVIEW OF HOST DEFENSES The human body contains three lines of against infectious agents (pathogens) 1. Mechanical and chemical boundaries (part of the innate immune system)

More information

Principles of Adaptive Immunity

Principles of Adaptive Immunity Principles of Adaptive Immunity Chapter 3 Parham Hans de Haard 17 th of May 2010 Agenda Recognition molecules of adaptive immune system Features adaptive immune system Immunoglobulins and T-cell receptors

More information

Editing file. Color code: Important in red Extra in blue. Autoimmune Diseases

Editing file. Color code: Important in red Extra in blue. Autoimmune Diseases Editing file Color code: Important in red Extra in blue Autoimmune Diseases Objectives To know that the inflammatory processes in autoimmune diseases are mediated by hypersensitivity reactions (type II,

More information

Autoimmunity & Transplantation. Dr. Aws Alshamsan Department of Pharmaceu5cs Office: AA87 Tel:

Autoimmunity & Transplantation. Dr. Aws Alshamsan Department of Pharmaceu5cs Office: AA87 Tel: Autoimmunity & Transplantation Dr. Aws Alshamsan Department of Pharmaceu5cs Office: AA87 Tel: 4677363 aalshamsan@ksu.edu.sa Learning Objectives By the end of this lecture you will be able to: 1 Recognize

More information

The Lymphatic System and Body Defenses

The Lymphatic System and Body Defenses PowerPoint Lecture Slide Presentation by Patty Bostwick-Taylor, Florence-Darlington Technical College The Lymphatic System and Body Defenses 12PART B Adaptive Defense System: Third Line of Defense Immune

More information

Third line of Defense. Topic 8 Specific Immunity (adaptive) (18) 3 rd Line = Prophylaxis via Immunization!

Third line of Defense. Topic 8 Specific Immunity (adaptive) (18) 3 rd Line = Prophylaxis via Immunization! Topic 8 Specific Immunity (adaptive) (18) Topics - 3 rd Line of Defense - B cells - T cells - Specific Immunities 1 3 rd Line = Prophylaxis via Immunization! (a) A painting of Edward Jenner depicts a cow

More information

Defensive mechanisms include :

Defensive mechanisms include : Acquired Immunity Defensive mechanisms include : 1) Innate immunity (Natural or Non specific) 2) Acquired immunity (Adaptive or Specific) Cell-mediated immunity Humoral immunity Two mechanisms 1) Humoral

More information

10/25/2018. Autoimmunity and how to treat it. Disclosure. Why do we get autoimmunity? James Verbsky MD/PhD Pediatric Rheumatology/Immunology

10/25/2018. Autoimmunity and how to treat it. Disclosure. Why do we get autoimmunity? James Verbsky MD/PhD Pediatric Rheumatology/Immunology Autoimmunity and how to treat it James Verbsky MD/PhD Pediatric Rheumatology/Immunology Disclosure None I will mention drug names and some brand names but I have no financial interest or any other ties

More information

Tolerance 2. Regulatory T cells; why tolerance fails. Abul K. Abbas UCSF. FOCiS

Tolerance 2. Regulatory T cells; why tolerance fails. Abul K. Abbas UCSF. FOCiS 1 Tolerance 2. Regulatory T cells; why tolerance fails Abul K. Abbas UCSF FOCiS 2 Lecture outline Regulatory T cells: functions and clinical relevance Pathogenesis of autoimmunity: why selftolerance fails

More information

Foundations in Microbiology Seventh Edition

Foundations in Microbiology Seventh Edition Lecture PowerPoint to accompany Foundations in Microbiology Seventh Edition Talaro Chapter 16 To run the animations you must be in Slideshow View. Use the buttons on the animation to play, pause, and turn

More information

Third line of Defense

Third line of Defense Chapter 15 Specific Immunity and Immunization Topics -3 rd of Defense - B cells - T cells - Specific Immunities Third line of Defense Specific immunity is a complex interaction of immune cells (leukocytes)

More information

Chapter 43. Immune System. phagocytosis. lymphocytes. AP Biology

Chapter 43. Immune System. phagocytosis. lymphocytes. AP Biology Chapter 43. Immune System phagocytosis lymphocytes 1 Why an immune system? Attack from outside lots of organisms want you for lunch! animals must defend themselves against unwelcome invaders viruses protists

More information

T-cell activation T cells migrate to secondary lymphoid tissues where they interact with antigen, antigen-presenting cells, and other lymphocytes:

T-cell activation T cells migrate to secondary lymphoid tissues where they interact with antigen, antigen-presenting cells, and other lymphocytes: Interactions between innate immunity & adaptive immunity What happens to T cells after they leave the thymus? Naïve T cells exit the thymus and enter the bloodstream. If they remain in the bloodstream,

More information

T-cell activation T cells migrate to secondary lymphoid tissues where they interact with antigen, antigen-presenting cells, and other lymphocytes:

T-cell activation T cells migrate to secondary lymphoid tissues where they interact with antigen, antigen-presenting cells, and other lymphocytes: Interactions between innate immunity & adaptive immunity What happens to T cells after they leave the thymus? Naïve T cells exit the thymus and enter the bloodstream. If they remain in the bloodstream,

More information

Disorders Associated with the Immune System

Disorders Associated with the Immune System PowerPoint Lecture Presentations prepared by Bradley W. Christian, McLennan Community College C H A P T E R 19 Disorders Associated with the Immune System Disorders of the Immune System Disorders of the

More information

Cell Mediated Immunity (I) Dr. Aws Alshamsan Department of Pharmaceu5cs Office: AA87 Tel:

Cell Mediated Immunity (I) Dr. Aws Alshamsan Department of Pharmaceu5cs Office: AA87 Tel: Cell Mediated Immunity (I) Dr. Aws Alshamsan Department of Pharmaceu5cs Office: AA87 Tel: 4677363 aalshamsan@ksu.edu.sa Learning Objectives By the end of this lecture you will be able to: 1 Understand

More information

MOLECULAR IMMUNOLOGY Manipulation of immune response Autoimmune diseases & the pathogenic mechanism

MOLECULAR IMMUNOLOGY Manipulation of immune response Autoimmune diseases & the pathogenic mechanism MOLECULAR IMMUNOLOGY Manipulation of immune response Autoimmune diseases & the pathogenic mechanism SCHMAIEL SHIRDEL CONTENT 2 Introduction Autoimmune diseases Classification Involved components Autoimmune

More information

Immune system. Aims. Immune system. Lymphatic organs. Inflammation. Natural immune system. Adaptive immune system

Immune system. Aims. Immune system. Lymphatic organs. Inflammation. Natural immune system. Adaptive immune system Aims Immune system Lymphatic organs Inflammation Natural immune system Adaptive immune system Major histocompatibility complex (MHC) Disorders of the immune system 1 2 Immune system Lymphoid organs Immune

More information

The Immune System. These are classified as the Innate and Adaptive Immune Responses. Innate Immunity

The Immune System. These are classified as the Innate and Adaptive Immune Responses. Innate Immunity The Immune System Biological mechanisms that defend an organism must be 1. triggered by a stimulus upon injury or pathogen attack 2. able to counteract the injury or invasion 3. able to recognise foreign

More information

Tolerance 2. Regulatory T cells; why tolerance fails. FOCiS. Lecture outline. Regulatory T cells. Regulatory T cells: functions and clinical relevance

Tolerance 2. Regulatory T cells; why tolerance fails. FOCiS. Lecture outline. Regulatory T cells. Regulatory T cells: functions and clinical relevance 1 Tolerance 2. Regulatory T cells; why tolerance fails Abul K. Abbas UCSF FOCiS 2 Lecture outline Regulatory T cells: functions and clinical relevance Pathogenesis of autoimmunity: why selftolerance fails

More information

I. Defense Mechanisms Chapter 15

I. Defense Mechanisms Chapter 15 10/24/11 I. Defense Mechanisms Chapter 15 Immune System Lecture PowerPoint Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Defense Mechanisms Protect against

More information

Foundations in Microbiology

Foundations in Microbiology Foundations in Microbiology Fifth Edition Talaro Chapter 15 The Acquisition of Specific Immunity and Its Applications Chapter 15 2 Chapter Overview 1. Development of the Dual Lymphocyte System 2. Entrance

More information

Immune response. This overview figure summarizes simply how our body responds to foreign molecules that enter to it.

Immune response. This overview figure summarizes simply how our body responds to foreign molecules that enter to it. Immune response This overview figure summarizes simply how our body responds to foreign molecules that enter to it. It s highly recommended to watch Dr Najeeb s lecture that s titled T Helper cells and

More information

Immunology: an overview Lecture

Immunology: an overview Lecture Slide #2: Immunology is sometimes regarded as part of microbiology department because it started there as an investigation of ways used to prevent against infectious agents (e.g. microorganisms ). However

More information

Overview. Barriers help animals defend against many dangerous pathogens they encounter.

Overview. Barriers help animals defend against many dangerous pathogens they encounter. Immunity Overview Barriers help animals defend against many dangerous pathogens they encounter. The immune system recognizes foreign bodies and responds with the production of immune cells and proteins.

More information

There are 2 major lines of defense: Non-specific (Innate Immunity) and. Specific. (Adaptive Immunity) Photo of macrophage cell

There are 2 major lines of defense: Non-specific (Innate Immunity) and. Specific. (Adaptive Immunity) Photo of macrophage cell There are 2 major lines of defense: Non-specific (Innate Immunity) and Specific (Adaptive Immunity) Photo of macrophage cell Development of the Immune System ery pl neu mφ nk CD8 + CTL CD4 + thy TH1 mye

More information

Lymphoid tissue. 1. Central Lymphoid tissue. - The central lymphoid tissue (also known as primary) is composed of bone morrow and thymus.

Lymphoid tissue. 1. Central Lymphoid tissue. - The central lymphoid tissue (also known as primary) is composed of bone morrow and thymus. 1. Central Lymphoid tissue Lymphoid tissue - The central lymphoid tissue (also known as primary) is composed of bone morrow and thymus. Bone Morrow - The major site of hematopoiesis in humans. - Hematopoiesis

More information

Chapter 22: The Lymphatic System and Immunity

Chapter 22: The Lymphatic System and Immunity Bio40C schedule Lecture Immune system Lab Quiz 2 this week; bring a scantron! Study guide on my website (see lab assignments) Extra credit Critical thinking questions at end of chapters 5 pts/chapter Due

More information

Medical Virology Immunology. Dr. Sameer Naji, MB, BCh, PhD (UK) Head of Basic Medical Sciences Dept. Faculty of Medicine The Hashemite University

Medical Virology Immunology. Dr. Sameer Naji, MB, BCh, PhD (UK) Head of Basic Medical Sciences Dept. Faculty of Medicine The Hashemite University Medical Virology Immunology Dr. Sameer Naji, MB, BCh, PhD (UK) Head of Basic Medical Sciences Dept. Faculty of Medicine The Hashemite University Human blood cells Phases of immune responses Microbe Naïve

More information

NOTES: CH 43, part 2 Immunity; Immune Disruptions ( )

NOTES: CH 43, part 2 Immunity; Immune Disruptions ( ) NOTES: CH 43, part 2 Immunity; Immune Disruptions (43.3-43.4) Activated B & T Lymphocytes produce: CELL-MEDIATED IMMUNE RESPONSE: involves specialized T cells destroying infected host cells HUMORAL IMMUNE

More information

The Adaptive Immune Responses

The Adaptive Immune Responses The Adaptive Immune Responses The two arms of the immune responses are; 1) the cell mediated, and 2) the humoral responses. In this chapter we will discuss the two responses in detail and we will start

More information

Tolerance, autoimmunity and the pathogenesis of immunemediated inflammatory diseases. Abul K. Abbas UCSF

Tolerance, autoimmunity and the pathogenesis of immunemediated inflammatory diseases. Abul K. Abbas UCSF Tolerance, autoimmunity and the pathogenesis of immunemediated inflammatory diseases Abul K. Abbas UCSF Balancing lymphocyte activation and control Activation Effector T cells Tolerance Regulatory T cells

More information

Topic (Final-03): Immunologic Tolerance and Autoimmunity-Part II

Topic (Final-03): Immunologic Tolerance and Autoimmunity-Part II Topic (Final-03): Immunologic Tolerance and Autoimmunity-Part II MECHANISMS OF AUTOIMMUNITY The possibility that an individual s immune system may react against autologous antigens and cause tissue injury

More information

Physiology Unit 3. ADAPTIVE IMMUNITY The Specific Immune Response

Physiology Unit 3. ADAPTIVE IMMUNITY The Specific Immune Response Physiology Unit 3 ADAPTIVE IMMUNITY The Specific Immune Response In Physiology Today The Adaptive Arm of the Immune System Specific Immune Response Internal defense against a specific pathogen Acquired

More information

1. Overview of Adaptive Immunity

1. Overview of Adaptive Immunity Chapter 17A: Adaptive Immunity Part I 1. Overview of Adaptive Immunity 2. T and B Cell Production 3. Antigens & Antigen Presentation 4. Helper T cells 1. Overview of Adaptive Immunity The Nature of Adaptive

More information

S. No Topic Class No Date

S. No Topic Class No Date S. No Topic Class No Date 1 Introduction 2 3 4 5 6 7 Fundamentals of Immunology Definitions and basic terms Types of immunity Organs of immune system Cells of immune system Innate immunity PAMPs PRRs Phagocytosis

More information

Warm-up. Parts of the Immune system. Disease transmission. Disease transmission. Why an immune system? Chapter 43 3/9/2012.

Warm-up. Parts of the Immune system. Disease transmission. Disease transmission. Why an immune system? Chapter 43 3/9/2012. Warm-up Objective: Explain how antigens react with specific lymphocytes to induce immune response and immunological memory. Warm-up: Which of the following would normally contain blood with the least amount

More information

AUTOIMMUNITY CLINICAL CORRELATES

AUTOIMMUNITY CLINICAL CORRELATES AUTOIMMUNITY CLINICAL CORRELATES Pamela E. Prete, MD, FACP, FACR Section Chief, Rheumatology VA Healthcare System, Long Beach, CA Professor of Medicine, Emeritus University of California, Irvine Colonel

More information

AUTOIMMUNITY TOLERANCE TO SELF

AUTOIMMUNITY TOLERANCE TO SELF AUTOIMMUNITY CLINICAL CORRELATES Pamela E. Prete, MD, FACP, FACR Section Chief, Rheumatology VA Healthcare System, Long Beach, CA Professor of Medicine, Emeritus University of California, Irvine Colonel

More information

Immunology lecture: 14. Cytokines: Main source: Fibroblast, but actually it can be produced by other types of cells

Immunology lecture: 14. Cytokines: Main source: Fibroblast, but actually it can be produced by other types of cells Immunology lecture: 14 Cytokines: 1)Interferons"IFN" : 2 types Type 1 : IFN-Alpha : Main source: Macrophages IFN-Beta: Main source: Fibroblast, but actually it can be produced by other types of cells **There

More information

Immunology for the Rheumatologist

Immunology for the Rheumatologist Immunology for the Rheumatologist Rheumatologists frequently deal with the immune system gone awry, rarely studying normal immunology. This program is an overview and discussion of the function of the

More information

Topics in Parasitology BLY Vertebrate Immune System

Topics in Parasitology BLY Vertebrate Immune System Topics in Parasitology BLY 533-2008 Vertebrate Immune System V. Vertebrate Immune System A. Non-specific defenses against pathogens 1. Skin - physical barrier a. Tough armor protein KERATIN b. Surface

More information

A. Incorrect! The duodenum drains to the superior mesenteric lymph nodes. B. Incorrect! The jejunum drains to the superior mesenteric lymph nodes.

A. Incorrect! The duodenum drains to the superior mesenteric lymph nodes. B. Incorrect! The jejunum drains to the superior mesenteric lymph nodes. USMLE Step 1 Problem Drill 11: Immunology Question No. 1 of 10 1. A 67 year old man is discovered to have metastatic disease involving his inferior mesenteric lymph nodes. His primary cancer is most likely

More information

All animals have innate immunity, a defense active immediately upon infection Vertebrates also have adaptive immunity

All animals have innate immunity, a defense active immediately upon infection Vertebrates also have adaptive immunity 1 2 3 4 5 6 7 8 9 The Immune System All animals have innate immunity, a defense active immediately upon infection Vertebrates also have adaptive immunity Figure 43.2 In innate immunity, recognition and

More information

PHM142 Autoimmune Disorders + Idiosyncratic Drug Reactions

PHM142 Autoimmune Disorders + Idiosyncratic Drug Reactions PHM142 Autoimmune Disorders + Idiosyncratic Drug Reactions 1 Autoimmune Disorders Auto-reactivity: low physiological levels (e.g. tolerance) vs. pathogenic levels 80+ types of autoimmune diseases affect

More information

PROBLEMS WITH THE IMMUNE SYSTEM. Blood Types, Transplants, Allergies, Autoimmune diseases, Immunodeficiency Diseases

PROBLEMS WITH THE IMMUNE SYSTEM. Blood Types, Transplants, Allergies, Autoimmune diseases, Immunodeficiency Diseases PROBLEMS WITH THE IMMUNE SYSTEM Blood Types, Transplants, Allergies, Autoimmune diseases, Immunodeficiency Diseases Antigens on red blood cells determine whether a person has type A, B, AB, or O blood

More information

Lecture outline. Immunological tolerance and immune regulation. Central and peripheral tolerance. Inhibitory receptors of T cells. Regulatory T cells

Lecture outline. Immunological tolerance and immune regulation. Central and peripheral tolerance. Inhibitory receptors of T cells. Regulatory T cells 1 Immunological tolerance and immune regulation Abul K. Abbas UCSF 2 Lecture outline Central and peripheral tolerance Inhibitory receptors of T cells Regulatory T cells 1 The immunological equilibrium:

More information

HYPERSENSITIVITY REACTIONS D R S H O AI B R AZ A

HYPERSENSITIVITY REACTIONS D R S H O AI B R AZ A HYPERSENSITIVITY REACTIONS D R S H O AI B R AZ A HYPERSENSITIVITY REACTIONS Are exaggerated immune response upon antigenic stimulation Individuals who have been previously exposed to an antigen are said

More information

I. Critical Vocabulary

I. Critical Vocabulary I. Critical Vocabulary A. Immune System: a set of glands, tissues, cells, and dissolved proteins that combine to defend against non-self entities B. Antigen: any non-self chemical that triggers an immune

More information

Helminth worm, Schistosomiasis Trypanosomes, sleeping sickness Pneumocystis carinii. Ringworm fungus HIV Influenza

Helminth worm, Schistosomiasis Trypanosomes, sleeping sickness Pneumocystis carinii. Ringworm fungus HIV Influenza Helminth worm, Schistosomiasis Trypanosomes, sleeping sickness Pneumocystis carinii Ringworm fungus HIV Influenza Candida Staph aureus Mycobacterium tuberculosis Listeria Salmonella Streptococcus Levels

More information

T Cell Effector Mechanisms I: B cell Help & DTH

T Cell Effector Mechanisms I: B cell Help & DTH T Cell Effector Mechanisms I: B cell Help & DTH Ned Braunstein, MD The Major T Cell Subsets p56 lck + T cells γ δ ε ζ ζ p56 lck CD8+ T cells γ δ ε ζ ζ Cα Cβ Vα Vβ CD3 CD8 Cα Cβ Vα Vβ CD3 MHC II peptide

More information

Immune System Notes Innate immunity Acquired immunity lymphocytes, humoral response Skin lysozyme, mucus membrane

Immune System Notes Innate immunity Acquired immunity lymphocytes, humoral response Skin lysozyme, mucus membrane Immune System Notes I. The immune system consists of innate and acquired immunity. A. An animal must defend itself against unwelcome intruders the many potentially dangerous viruses, bacteria, and other

More information

Alida R Harahap & Farida Oesman Department of Clinical Pathology Faculty of Medicine, University of Indonesia

Alida R Harahap & Farida Oesman Department of Clinical Pathology Faculty of Medicine, University of Indonesia Alida R Harahap & Farida Oesman Department of Clinical Pathology Faculty of Medicine, University of Indonesia Foreign molecules = antigens Immune response Immune system non-specific specific cellular humoral

More information

Attribution: University of Michigan Medical School, Department of Microbiology and Immunology

Attribution: University of Michigan Medical School, Department of Microbiology and Immunology Attribution: University of Michigan Medical School, Department of Microbiology and Immunology License: Unless otherwise noted, this material is made available under the terms of the Creative Commons Attribution

More information

Immunohaematology: a branch of immunology that deals with the immunologic properties of blood.

Immunohaematology: a branch of immunology that deals with the immunologic properties of blood. 1 Immunohaematology: a branch of immunology that deals with the immunologic properties of blood. The red blood cells have on their surface hundreds of antigens and according to the antigen on their surface

More information

Introduction to Immunopathology

Introduction to Immunopathology MICR2209 Introduction to Immunopathology Dr Allison Imrie 1 Allergy and Hypersensitivity Adaptive immune responses can sometimes be elicited by antigens not associated with infectious agents, and this

More information

Introduction to Immunology Part 2 September 30, Dan Stetson

Introduction to Immunology Part 2 September 30, Dan Stetson Introduction to Immunology Part 2 September 30, 2016 Dan Stetson stetson@uw.edu 441 Lecture #2 Slide 1 of 26 CLASS ANNOUNCEMENT PLEASE NO TREE NUTS IN CLASS!!! (Peanuts, walnuts, almonds, cashews, etc)

More information

Immune System. Biology 105 Lecture 16 Chapter 13

Immune System. Biology 105 Lecture 16 Chapter 13 Immune System Biology 105 Lecture 16 Chapter 13 Outline: Immune System I. Functions of the immune system II. Barrier defenses III. Non-specific defenses A. Immune system cells B. Inflammatory response

More information

Blood and Immune system Acquired Immunity

Blood and Immune system Acquired Immunity Blood and Immune system Acquired Immunity Immunity Acquired (Adaptive) Immunity Defensive mechanisms include : 1) Innate immunity (Natural or Non specific) 2) Acquired immunity (Adaptive or Specific) Cell-mediated

More information

An Update On Autoimmune Diseases

An Update On Autoimmune Diseases California Association for Medical Laboratory Technology Distance Learning Program An Update On Autoimmune Diseases by Paula J. D Amore, Ph.D., D(AMBLI) Assistant Professor, Division of Health Sciences

More information

TYPE II IMMUNOPATHOLOGY

TYPE II IMMUNOPATHOLOGY TPE II IMMUNOPATHOLOG TPE II. This form of immunopathology is due to the actions of antibodies directed against a specific target tissue or cell; so it is one of the forms of autoimmunity. Type III immunopathology,

More information

Requirements in the Development of an Autoimmune Disease Amino Acids in the Shared Epitope

Requirements in the Development of an Autoimmune Disease Amino Acids in the Shared Epitope + T cell MHC/self-peptide MHC/Vβ Induction of + T H 1 mediated autoimmunity: A paradigm for the pathogenesis of rheumatoid arthritis, multiple sclerosis and type I diabetes APC Activated autoreactive +

More information

Immune System. Biol 105 Lecture 16 Chapter 13

Immune System. Biol 105 Lecture 16 Chapter 13 Immune System Biol 105 Lecture 16 Chapter 13 Outline Immune System I. Function of the Immune system II. Barrier Defenses III. Nonspecific Defenses A. Immune system cells B. Inflammatory response C. Complementary

More information

Determinants of Immunogenicity and Tolerance. Abul K. Abbas, MD Department of Pathology University of California San Francisco

Determinants of Immunogenicity and Tolerance. Abul K. Abbas, MD Department of Pathology University of California San Francisco Determinants of Immunogenicity and Tolerance Abul K. Abbas, MD Department of Pathology University of California San Francisco EIP Symposium Feb 2016 Why do some people respond to therapeutic proteins?

More information

TCR, MHC and coreceptors

TCR, MHC and coreceptors Cooperation In Immune Responses Antigen processing how peptides get into MHC Antigen processing involves the intracellular proteolytic generation of MHC binding proteins Protein antigens may be processed

More information

Adaptive Immunity: Specific Defenses of the Host

Adaptive Immunity: Specific Defenses of the Host 17 Adaptive Immunity: Specific Defenses of the Host SLOs Differentiate between innate and adaptive immunity, and humoral and cellular immunity. Define antigen, epitope, and hapten. Explain the function

More information

- Transplantation: removing an organ from donor and gives it to a recipient. - Graft: transplanted organ.

- Transplantation: removing an organ from donor and gives it to a recipient. - Graft: transplanted organ. Immunology Lecture num. (21) Transplantation - Transplantation: removing an organ from donor and gives it to a recipient. - Graft: transplanted organ. Types of Graft (4 types): Auto Graft - From a person

More information

Chapter 24 The Immune System

Chapter 24 The Immune System Chapter 24 The Immune System The Immune System Layered defense system The skin and chemical barriers The innate and adaptive immune systems Immunity The body s ability to recognize and destroy specific

More information

Immunology - Lecture 2 Adaptive Immune System 1

Immunology - Lecture 2 Adaptive Immune System 1 Immunology - Lecture 2 Adaptive Immune System 1 Book chapters: Molecules of the Adaptive Immunity 6 Adaptive Cells and Organs 7 Generation of Immune Diversity Lymphocyte Antigen Receptors - 8 CD markers

More information

Body Defense Mechanisms

Body Defense Mechanisms BIOLOGY OF HUMANS Concepts, Applications, and Issues Fifth Edition Judith Goodenough Betty McGuire 13 Body Defense Mechanisms Lecture Presentation Anne Gasc Hawaii Pacific University and University of

More information

Immunological Tolerance

Immunological Tolerance Immunological Tolerance Definition: Making sure antibodies or T cells recognizing self components are either eliminated or brought under tight control. Failure of tolerance can lead to autoimmunity. (Also

More information

Adaptive Immunity: Humoral Immune Responses

Adaptive Immunity: Humoral Immune Responses MICR2209 Adaptive Immunity: Humoral Immune Responses Dr Allison Imrie 1 Synopsis: In this lecture we will review the different mechanisms which constitute the humoral immune response, and examine the antibody

More information

Lecture 2. Immunoglobulin

Lecture 2. Immunoglobulin Lecture 2 Immunoglobulin Objectives; Define secretary IgA Describe structure & functions of IgM Compare the antigenic receptor of B lymphocyte Assess the role of IgE in Atopy Distinguish between Isotype,

More information

When IT All Goes Wrong and Your Immune System Attacks Its Own Body

When IT All Goes Wrong and Your Immune System Attacks Its Own Body When IT All Goes Wrong and Your Immune System Attacks Its Own Body Bonnie N. Dittel, PhD Senior Investigator Blood Research Institute, BloodCenter of Wisconsin, a part of versiti Department of Microbiology

More information

Lecture 2. Immunoglobulin

Lecture 2. Immunoglobulin Lecture 2 Immunoglobulin Objectives; To study the secretary IgA To know the structure & functions of IgM The antigenic receptor of B lymphocyte The role of IgE in Atopy The difference between Isotype,

More information

Effector T Cells and

Effector T Cells and 1 Effector T Cells and Cytokines Andrew Lichtman, MD PhD Brigham and Women's Hospital Harvard Medical School 2 Lecture outline Cytokines Subsets of CD4+ T cells: definitions, functions, development New

More information

Chapter 16 Disorders in Immunity

Chapter 16 Disorders in Immunity Chapter 16 Disorders in Immunity Immunopathology The study of disease states associated with underactivity and overactivity of the immune response Allergy (hypersensitivity) an exaggerated, misdirected

More information

Immune System. Biol 105 Chapter 13

Immune System. Biol 105 Chapter 13 Immune System Biol 105 Chapter 13 Outline Immune System I. Function of the Immune system II. Barrier Defenses III. Nonspecific Defenses A. Immune system cells B. Inflammatory response C. Complementary

More information