PHYSICS 2: HSC COURSE 2 nd edition (Andriessen et al) CHAPTER 20 Radioactivity as a diagnostic tool (pages 394-5)

Size: px
Start display at page:

Download "PHYSICS 2: HSC COURSE 2 nd edition (Andriessen et al) CHAPTER 20 Radioactivity as a diagnostic tool (pages 394-5)"

Transcription

1 PHYSICS 2: HSC COURSE 2 nd edition (Andriessen et al) CHAPTER 20 Radioactivity as a diagnostic tool (pages 394-5) 1. (a) A radioisotope is an isotope that is unstable and will emit particles from the nucleus until it becomes stable. (b) Radioactive decay is the emission of particles from the nucleus of a radioactive element. (c) Emissions from radioactive nuclei are alpha or beta particles or gamma radiation which come out of the nuclei as they decay. 2. (a) The half-life of a radioisotope is the time it takes for half the radioactive material in the sample to decay. For example, the half-life of thallium-201 is 3.05 days. This means that if we start with 2 grams of thallium-201, in 3.05 days we will have 1 gram of thallium-201, the other 1 gram having decayed into a new element. (b) Exposure to the radioactive emissions could be reduced by limiting the dose to the patient to the minimum needed for the scan. The doctor or radiographer performing the test using the thallium-201 should not stay in the same room as the patient except when it is necessary. They should handle the radioisotope only while it is in a leadlined container or syringe. Because they are exposed to radioisotopes in the course of their work, they should wear a detector to monitor their exposure to radioactive emissions, to ensure it does not exceed safe limits. 3. Technetium-99m is attached to a pharmaceutical containing polyphosphate ions. This process is called labelling and the labelled pharmaceutical is called a radiopharmaceutical. The radiopharmaceutical is injected into the patient. It travels through the bloodstream and within an hour accumulates in the bone. Where the blood flow is greater, more radioisotope accumulates and the amount of emission from the decay of the radioisotope is greater. These areas are called hot spots and are frequently regions where there are tumours. 4. This radioisotope is not suitable for use in medical diagnosis as the half-life is too long. After waiting a suitable time for the radiopharmaceutical to accumulate in the target organ, the rate of emission will be low, because the half-life is 100 days. Hence Medical Physics Chapter 20 1

2 a clear image will not be able to be made. A larger dose of radioisotope could be given to increase the rate of emission but this will mean more radioisotope will either remain in the patient s body or be excreted into the sewage system. Issue For Against Amount of emissions produced Will be small (unless a larger dose is given) Image will not be clear enough Size of dose (will need to be large to give high enough rate of emissions) Image will be clearer More radioisotope may remain in the patient s body harmful for patient; or more may be excreted to sewage system environmental problem 5. The amount of emissions produced may have decreased below a useful level for producing an image before the radiopharmaceutical has accumulated in the target organ. Once the radiopharmaceutical has accumulated in the target organ, the emissions may need to be monitored for a period of time and a short half-life will mean that the emission rate will be too low by the time the examination has finished. 6. (a) In 1 half-life the activity will drop to 2.0 MBq and in another half-life the activity will drop to 1 MBq. Hence the isotope will take 2 half lives, or 4.0 minutes, to reach an activity of 1.0 MBq. (b) Halving the activity each half-life, we see it will take 4 half-lives for the activity to reach 0.25 MBq. The time involved will be 4 x 2.0 minutes or 8.0 minutes. 7. Xenon should not be used in preference to krypton for investigations of lung function. In the investigation, the radioactive gas would be inhaled and accumulate in the lungs. The γ rays produced as the radioisotope decays would be detected with a gamma camera. As the radioisotope collects in the lungs very quickly, krypton-81m with a short half-life of 13 seconds would be adequate. A small dose would produce significant activity as the half-life is very small. If xenon-133 were used, a larger dose would be needed to produce the same activity and any residual radioisotope, which was not excreted, would remain in the body for many days because the half-life is 5.3 Medical Physics Chapter 20 2

3 days. Xenon-133 would also produce β particles as it decayed and these would penetrate the tissue with which they were in contact and cause damage to the tissue. 8. (a) Isotope Where it is used Justification Iodine-123 To examine the thyroid gland It is taken up by the thyroid gland. The amount of γ radiation given out is a measure of whether or not the thyroid gland is functioning normally because the uptake of a normal thyroid gland is known. Technetium-99m To examine bone Polyphosphate ions labelled with technetium-99m accumulate in bone and the gamma rays produced show the flow of blood. High blood flow and hence high gamma ray activity are called hot spots and are often associated with disease. (b) Radioisotopes used in medical imaging are taken into the body and the γ rays which are produced are detected outside the body. If α particles are produced, they will penetrate some of the internal tissue before being absorbed and causing ionisation which is damaging. They will not be detected outside the body as they will be absorbed before they emerge. Hence they would be useless for imaging; and they are also harmful. 9. One factor is the half-life of the radioisotope and the other is the organ that is to be studied because some organs are taken up by a particular radioisotope while others are not. Medical Physics Chapter 20 3

4 10. Graph of activity on the vertical axis and time on the horizontal axis. Activity of carbon-11 drops off more quickly than bromine-75 showing the different half-lives. The graphs start from the same point on the vertical axis. The decay curve for each is exponential for C-11 the activity halves every 20 minutes while Br-75 s activity halves every 100 minutes. 11. (a) A study to measure the volume of blood in the body uses a radioactive tracer which mixes with the blood. (b) A study to detect blockage in the lungs uses a tracer which is trapped in the fine capillaries in the lung. If the tracer cannot become trapped it may be because the lung is blocked. 12. Sample of molybdenum-99 decays to technetium-99m saline solution added technetium-99m is flushed out and removed. 13. Technetium-99m has a relatively short half-life (6 hours), it emits γ rays only when it decays, and it readily attaches to different compounds to form radioactive tracers. These different compounds, when labelled, are metabolised by a number of different organs and hence technetium-99m can be used to image many organs. 14. The radioisotope fluorine-18 replaces a hydrogen atom on some molecules of β- D-glucose and the radiopharmaceutical so formed is called FDG. This radiopharmaceutical is injected into the bloodstream. The molecules are of a suitable size to reach the brain. Fluorine-18 decays, with a half-life of minutes, emitting positrons. After travelling a short distance from their place of emission a positron encounters an electron and the pair of particles annihilate one another producing 2 gamma photons of energy 0.51 Mev. These travel in opposite directions from the site of annihilation and emerge from the head, to be detected by the gamma cameras surrounding the patient s head. The intensities of pairs of gamma rays is measured, and by comparison with known attenuation for gamma rays travelling through tissue, the site of the annihilation can be determined. About half a million gamma ray pairs are needed to make a useful image, and so a computer has a valuable role in analysing the collected data. The concentration of glucose in the brain for healthy brain function Medical Physics Chapter 20 4

5 is known. Tumours require more oxygen and hence more glucose. A site of a tumour could show up as a site where more gamma rays than expected were detected, because more positron emitting radioisotopes circulated there. It is important to give the patient a dose of the radiopharmaceutical that is large enough to last for the duration of the test but not so large that it will remain in the patient s body longer than necessary and expose the patient to unnecessary radiation. The radiographer should avoid contact with the gamma radiation produced or with the positrons emitted from the fluorine-18 by using a shield to absorb any harmful radiation and by moving away from the region where radiation would be produced. 15. (a) A positron is a positively charged beta particle. (b) Positrons may be obtained when a proton disintegrates into a neutron and a positron. (c) Positron-electron interaction results in the annihilation of the pair and the production of two gamma rays of energy 0.51 MeV travelling in opposite directions. In medical diagnosis, the pairs of gamma rays, produced inside the body, are detected and their location determined from knowledge about the attenuation of the gamma rays as they pass through tissue. By locating the source of gamma rays, the source of the radiopharmaceutical can be determined. Often a different amount of radiopharmaceutical from what is expected indicates disease. 16. The healthy kidney shows uniform colour throughout the kidney. It is assumed that the colour indicates release of gamma rays from a radioisotope in the urine, which is being filtered from the blood in the kidneys. In the diseased kidney, there is colour showing normal function at the top of the kidney, but in the lower section the colour is absent. We can deduce that the lower section is not functioning and the urine is not being filtered out. This could be due to a cancer in this part of the kidney. 17. (a) The top study shows both lungs because they are functioning normally. The radioisotope will reach the capillaries around the alveoli in the perfusion study and the radioisotope will reach the spaces in the alveoli in the ventilation study. The bottom studies show only the right lung in the perfusion study. Both lungs are visible in the ventilation study. Medical Physics Chapter 20 5

6 (b) In the bottom study, the radioisotope does not reach the capillaries because they are blocked in the left lung. (This is a front view of the lungs.) The perfusion study shows the blocked capillaries. The radioisotope can reach the spaces in the alveoli in the ventilation study and so both the lungs show up on the image. The ventilation study would show blocked alveoli, not blocked capillaries. 18. (a) The X-ray shows the bone as whiter on the outside. The inside of the bone is a similar shade to the surrounding tissue. The bone scan shows the bone brighter at the ends of the long bones in the legs - possibly due to these areas being where the bone grows. The X-ray shows a distinct break in one bone. The bone scan shows white patches on bones in the spine, ribs, shoulder and upper legs of the skeleton which has tumours. (b) The X-ray produces an image because X-rays are absorbed by bone and tissue through which they pass. The bone is denser than the surrounding tissue and so bone absorbs more X-rays. A shadow of the bone forms on the X-ray photo and this shadow shows a break in the bone. In the bone scan, a radiopharmaceutical is injected into the bloodstream and accumulates in bone. Where there is increased blood flow, more gamma radiation from the decaying radioisotope is detected. The areas of high blood flow show up as white spots on the scan and often indicate tumours. 19. A printed image of the organs should be made. The activity in the diseased organ may be greater than in the healthy organ, as the bone scan shows on page 388. The activity may be less in the diseased organ due to blockage of the radioisotope from the diseased area, as in figure 20.9, page 388. Make sure you compare the images you find. Medical Physics Chapter 20 6

Radioactivity. Alpha particles (α) :

Radioactivity. Alpha particles (α) : Radioactivity It is the property of an element that causes it to emit radiation Discovered by Becquerel (1896) Radiation comes from the nucleus of the atom There are three types of radiation : alpha particles

More information

Option D: Medicinal Chemistry

Option D: Medicinal Chemistry Option D: Medicinal Chemistry Basics - unstable radioactive nuclei emit radiation in the form of smaller particles alpha, beta, positron, proton, neutron, & gamma are all used in nuclear medicine unstable

More information

Radionuclides in Medical Imaging. Danielle Wilson

Radionuclides in Medical Imaging. Danielle Wilson Radionuclides in Medical Imaging Danielle Wilson Outline Definitions History and development Radionuclide applications & techniques in imaging Conclusion Definition #1 : Radionuclide An unstable nucleus

More information

COMENIUS-Project: SM&CLIL Radiation & Medicine

COMENIUS-Project: SM&CLIL Radiation & Medicine Medical imaging refers to the techniques and processes used to create images of the human body (or parts thereof) for clinical purposes. Thanks to modern mathematics and computer technology, medical imaging

More information

Medical Use of Radioisotopes

Medical Use of Radioisotopes Medical Use of Radioisotopes Therapy Radioisotopes prove to be useful in the application of brachytherapy, the procedure for using temporary irradiation close to the area of disease (i.e. cancer) 10% Medical

More information

Medical Physics 4 I3 Radiation in Medicine

Medical Physics 4 I3 Radiation in Medicine Name: Date: 1. This question is about radiation dosimetry. Medical Physics 4 I3 Radiation in Medicine Define exposure. A patient is injected with a gamma ray emitter. The radiation from the source creates

More information

An investigation of the effect of ionising radiation on nurses and their patients during dialysis

An investigation of the effect of ionising radiation on nurses and their patients during dialysis International Scholars Journals African Journal of Nursing and Midwifery ISSN 2198-4638 Vol. 2 (7), pp. 548-552, September, 2015. Available online at www.internationalscholarsjournals.org International

More information

The Physics of Medical Imaging

The Physics of Medical Imaging VEA Bringing Learning to Life Program Support Notes Senior Secondary The Physics of Medical Imaging 27mins Program Support Notes by Ian Walter, Dip.App.Chem.; G.Dip.Ed.Admin.; TTTC Produced by VEA Pty

More information

Topic 6 Benefits and drawbacks of using radioactive materials

Topic 6 Benefits and drawbacks of using radioactive materials Topic 6 Benefits and drawbacks of using radioactive materials CHANGING IDEAS When radioactivity was first discovered in the late 1800s, scientists did not know it was dangerous: o Becquerel handled radioactive

More information

Hazards + uses of emissions; Background radiation

Hazards + uses of emissions; Background radiation Hazards + uses of emissions; Background radiation Question Paper 1 Level GCSE (9-1) Subject Physics Exam Board AQA Topic 4.4 Atomic structure Sub-Topic Hazards uses of emissions; Background radiation Difficulty

More information

Positron Emission Tomography Computed Tomography (PET/CT)

Positron Emission Tomography Computed Tomography (PET/CT) Positron Emission Tomography Computed Tomography (PET/CT) What is Positron Emission Tomography Computed Tomography (PET/CT) Scanning? What are some common uses of the procedure? How should I prepare for

More information

Radiation physics and radiation protection. University of Szeged Department of Nuclear Medicine

Radiation physics and radiation protection. University of Szeged Department of Nuclear Medicine Radiation physics and radiation protection University of Szeged Department of Nuclear Medicine Radiation doses to the population 1 Radiation doses to the population 2 Sources of radiation 1 Radiation we

More information

Radiopharmacy. Prof. Dr. Çetin ÖNSEL. CTF Nükleer Tıp Anabilim Dalı

Radiopharmacy. Prof. Dr. Çetin ÖNSEL. CTF Nükleer Tıp Anabilim Dalı Prof. Dr. Çetin ÖNSEL CTF Nükleer Tıp Anabilim Dalı What is Nuclear Medicine? Nuclear Medicine is the branch of medicine concerned with the use of radionuclides in the study and the diagnosis of diseases.

More information

Molecular Imaging and Breast Cancer

Molecular Imaging and Breast Cancer Molecular Imaging and Breast Cancer Breast cancer forms in tissues of the breast usually in the ducts, tubes that carry milk to the nipple, and lobules, the glands that make milk. It occurs in both men

More information

Itroduction to the Nuclear Medicine: biophysics and basic principles. Zámbó Katalin Department of Nuclear Medicine

Itroduction to the Nuclear Medicine: biophysics and basic principles. Zámbó Katalin Department of Nuclear Medicine Itroduction to the Nuclear Medicine: biophysics and basic principles Zámbó Katalin Department of Nuclear Medicine NUCLEAR MEDICINE Application of the radioactive isotopes in the diagnostics and in the

More information

ADVANCES IN RADIATION TECHNOLOGIES IN THE TREATMENT OF CANCER

ADVANCES IN RADIATION TECHNOLOGIES IN THE TREATMENT OF CANCER ADVANCES IN RADIATION TECHNOLOGIES IN THE TREATMENT OF CANCER Bro. Dr. Collie Miller IARC/WHO Based on trends in the incidence of cancer, the International Agency for Research on Cancer (IARC) and WHO

More information

Molecular Imaging and Cancer

Molecular Imaging and Cancer Molecular Imaging and Cancer Cancer causes one in every four deaths in the United States, second only to heart disease. According to the U.S. Department of Health and Human Services, more than 512,000

More information

Molecular Imaging and the Brain

Molecular Imaging and the Brain Molecular imaging technologies are playing an important role in neuroimaging, a branch of medical imaging, by providing a window into the living brain. Where CT and conventional MR imaging provide important

More information

Nuclear Medicine and PET. D. J. McMahon rev cewood

Nuclear Medicine and PET. D. J. McMahon rev cewood Nuclear Medicine and PET D. J. McMahon 150504 rev cewood 2018-02-15 Key Points Nuclear Medicine and PET: Imaging: Understand how Nuc Med & PET differ from Radiography & CT by the source of radiation. Be

More information

Applications of radioactivity in medicine

Applications of radioactivity in medicine Lec.3 Applications of radioactivity in medicine -Nuclear medicine (N.M) -Applications of radioactive material in medicine Nuclear Medicine:- The clinical uses of radioactivity for the diagnosis of disease.

More information

Radio-isotopes in Clinical Medicine

Radio-isotopes in Clinical Medicine Radio-isotopes in Clinical Medicine Radiactive isotopes, whether naturally occurring or artificially produced, have a number of different uses in clinical medicine. These include: (1) Diagnostic and research

More information

Nuclear pulmonology. Katalin Zámbó Department of Nuclear Medicine

Nuclear pulmonology. Katalin Zámbó Department of Nuclear Medicine Nuclear pulmonology Katalin Zámbó Department of Nuclear Medicine Imaging techniques Morphology Physiology Metabolism Molecules X-ray / CT MRI NM - SPECT/ PET MR spectroscopy fmri Ultrasound Hybrid imaging:

More information

AN INTRODUCTION TO NUCLEAR MEDICINE

AN INTRODUCTION TO NUCLEAR MEDICINE AN INTRODUCTION TO NUCLEAR MEDICINE WITH RESPECT TO THYROID DISORDERS By: B.Shafiei MD Nuclear Physician Taleghani Medical Center Radioactive: An element with Unstable Nucleus (Excess Energy), can achieve

More information

Isotopes in Functional Cancer Imaging

Isotopes in Functional Cancer Imaging Seeing and Believing: i Medical Isotopes in Functional Cancer Imaging François Bénard, MD, FRCPC BCCancer Cancer Agency and University of British Columbia Nuclear Medicine 101 A radioactive atom is produced

More information

Basics of nuclear medicine

Basics of nuclear medicine Basics of nuclear medicine Prof. dr. Davor Eterović Prof. dr. Vinko Marković Radioisotopes are used both in diagnostics and in therapy Diagnostics gamma emitters are used since gamma rays can penetrate

More information

Ionizing Radiation. Alpha Particles CHAPTER 1

Ionizing Radiation. Alpha Particles CHAPTER 1 CHAPTER 1 Ionizing Radiation Ionizing radiation is radiation that has sufficient energy to remove electrons from atoms. In this document, it will be referred to simply as radiation. One source of radiation

More information

BIOLOGICAL EFFECTS OF

BIOLOGICAL EFFECTS OF BIOLOGICAL EFFECTS OF RADIATION Natural Sources of Radiation Natural background radiation comes from three sources: Cosmic Radiation Terrestrial Radiation Internal Radiation 2 Natural Sources of Radiation

More information

General Nuclear Medicine

General Nuclear Medicine General Nuclear Medicine What is General Nuclear Medicine? What are some common uses of the procedure? How should I prepare? What does the equipment look like? How does the procedure work? How is the procedure

More information

Radiation Safety Information for Students in Courses given by the Nuclear Physics Group at KTH, Stockholm, Sweden

Radiation Safety Information for Students in Courses given by the Nuclear Physics Group at KTH, Stockholm, Sweden Radiation Safety Information for Students in Courses given by the Nuclear Physics Group at KTH, Stockholm, Sweden September 2006 The aim of this text is to explain some of the basic quantities and units

More information

Medical imaging. Medical imaging uses electromagnetic radiation, sound or ingestion of radioactive substances. 10/6/2011 Medical imaging 1

Medical imaging. Medical imaging uses electromagnetic radiation, sound or ingestion of radioactive substances. 10/6/2011 Medical imaging 1 Medical imaging Medical imaging uses electromagnetic radiation, sound or ingestion of radioactive substances 10/6/2011 Medical imaging 1 0 Ultrasound Imaging Transducer Reflector Use high-frequency sound

More information

Information for patients having an isotope kidney (renal) scan (also known as a DMSA scan)

Information for patients having an isotope kidney (renal) scan (also known as a DMSA scan) Information for patients having an isotope kidney (renal) scan (also known as a DMSA scan) The leaflet tells you about having an isotope kidney (renal) scan. It is also known as a DMSA scan. It explains

More information

Nuclear Medicine Imaging of Liver, Spleen and Gallbladder

Nuclear Medicine Imaging of Liver, Spleen and Gallbladder Nuclear Medicine Imaging of Liver, Spleen and Gallbladder An Introductory Guide For Patients And Their Families You may be wondering why your doctor ordered a nuclear medicine scan of your liver and spleen

More information

Radiation Exposure to Staff Using PET/CT Facility

Radiation Exposure to Staff Using PET/CT Facility Egyptian J. Nucl. Med., Vol. 8, No. 2, December 2013 1 Editorial Radiation Exposure to Staff Using PET/CT Facility Taalab, Kh; and Mohsen, Z Department of Nuclear Medicine, International Medical Center;

More information

RULES AND REGULATIONS

RULES AND REGULATIONS RI-12 RI-12 BIOASSAYS FOR INTERNAL RADIOACTIVITY PURPOSE This procedure specifies the requirements, responsibilities and methods for performing and reporting measurements for detecting and verifying the

More information

HSC Physics. Module 9.6. Medical Physics

HSC Physics. Module 9.6. Medical Physics HSC Physics Module 9.6 Medical Physics Contextual Outline 9.6 Medical Physics (28 indicative hours) The use of other advances in technology, developed from our understanding of the electromagnetic spectrum,

More information

OTHER NON-CARDIAC USES OF Tc-99m CARDIAC AGENTS Tc-99m Sestamibi for parathyroid imaging, breast tumor imaging, and imaging of other malignant tumors.

OTHER NON-CARDIAC USES OF Tc-99m CARDIAC AGENTS Tc-99m Sestamibi for parathyroid imaging, breast tumor imaging, and imaging of other malignant tumors. DEFINITION OF CARDIAC RADIOPHARMACEUTICAL: A radioactive drug which, when administered for purpose of diagnosis of heart disease, typically elicits no physiological response from the patient. Even though

More information

Palliative treatment of bone metastases with samarium-153

Palliative treatment of bone metastases with samarium-153 APPROVED BY: Z. Yang Page 1 of 5 Palliative treatment of bone metastases with samarium-153 Primary Indications: Rationale: To treat bone pain resulting from osteoblastic metastases as defined by bone scan.

More information

Nature of Radiation and DNA damage

Nature of Radiation and DNA damage Nature of Radiation and DNA damage Index 1. What is radiation? 2. Ionizing Radiation 3. Interaction of Gamma-radiation with Matter 4. Radiobiology 5. Direct and Indirect action of radiation 6. Steps of

More information

Determination of Beta Radiation Dose to the Thyroid Gland from the Ingestion of 131 I by Patients

Determination of Beta Radiation Dose to the Thyroid Gland from the Ingestion of 131 I by Patients American Journal of Environmental Protection 2016; 5(6): 168-178 http://www.sciencepublishinggroup.com/j/ajep doi: 10.11648/j.ajep.20160506.14 ISSN: 2328-5680 (Print); ISSN: 2328-5699 (Online) Determination

More information

Understanding Radiation and Its Effects

Understanding Radiation and Its Effects Understanding Radiation and Its Effects Prepared by Brooke Buddemeier, CHP University of California Lawrence Livermore National Laboratory Presented by Jeff Tappen Desert Research Institute 1 Radiation

More information

Biological Effects of Ionizing Radiation & Commonly Used Radiation Units

Biological Effects of Ionizing Radiation & Commonly Used Radiation Units INAYA MEDICAL COLLEGE (IMC) RAD 232 - LECTURE 2 & 3 Biological Effects of Ionizing Radiation & Commonly Used Radiation Units DR. MOHAMMED MOSTAFA EMAM How does radiation injure people? - High energy radiation

More information

Positron Emission Tomography - Computed Tomography (PET/CT)

Positron Emission Tomography - Computed Tomography (PET/CT) Scan for mobile link. Positron Emission Tomography - Computed Tomography (PET/CT) Positron emission tomography (PET) uses small amounts of radioactive materials called radiotracers, a special camera and

More information

PAGE 1 OF 5 HEALTH, SAFETY & ENVIROMENTAL MANUAL PROCEDURE: S560 Radiation Safety REV /14/2012

PAGE 1 OF 5 HEALTH, SAFETY & ENVIROMENTAL MANUAL PROCEDURE: S560 Radiation Safety REV /14/2012 PAGE 1 OF 5 RADIATION SAFETY PURPOSE: A wide usage of x-ray machines and isotopes for examination of steel plate fabricated and erected structures require a knowledge of the radiation hazard and the precautionary

More information

Physical Bases : Which Isotopes?

Physical Bases : Which Isotopes? Physical Bases : Which Isotopes? S. Gnesin Institute of Radiation Physics, Lausanne University Hospital, Lausanne, Switzerland 1/53 Theranostic Bruxelles, 2 Octobrer 2017 Theranostic : use of diagnostic

More information

Biological Effects of Ionizing Radiation & Commonly Used Radiation Units

Biological Effects of Ionizing Radiation & Commonly Used Radiation Units INAYA MEDICAL COLLEGE (IMC) RAD 232 - LECTURE 3, 4 & 5 Biological Effects of Ionizing Radiation & Commonly Used Radiation Units DR. MOHAMMED MOSTAFA EMAM How does radiation injure people? - High energy

More information

Neutrons. ρ σ. where. Neutrons act like photons in the sense that they are attenuated as. Unlike photons, neutrons interact via the strong interaction

Neutrons. ρ σ. where. Neutrons act like photons in the sense that they are attenuated as. Unlike photons, neutrons interact via the strong interaction Neutrons Neutrons act like photons in the sense that they are attenuated as I = I 0 e μx where Unlike photons, neutrons interact via the strong interaction μ = The cross sections are much smaller than

More information

Nuclear Radiation Today

Nuclear Radiation Today CHAPTER 10 13 SECTION Nuclear Changes Nuclear Radiation Today KEY IDEAS As you read this section, keep these questions in mind: Where are some common sources of radiation? What are some beneficial uses

More information

Radiation Safety - Things You Need to Know

Radiation Safety - Things You Need to Know Radiation Safety - Things You Need to Know Michael Casey Ph.D. Phlebotomy Autumn Seminar 13 th October 2012 Radiation is a form of energy transport What is Radiation? It is caused by electrical disturbances

More information

7. Radioisotopes in Medicine

7. Radioisotopes in Medicine 7. Radioisotopes in Medicine Radionuclides were first used for therapeutic purposes almost 100 years following the observation by Pierre Curie that radium sources brought into contact with the skin produced

More information

Sodium Iodide I 131 Solution. Click Here to Continue. Click Here to Return to Table of Contents

Sodium Iodide I 131 Solution. Click Here to Continue. Click Here to Return to Table of Contents Sodium Iodide I 131 Solution Package inserts are current as of January, 1997. Contact Professional Services, 1-888-744-1414, regarding possible revisions Click Here to Continue Click Here to Return to

More information

Children's (Pediatric) Nuclear Medicine

Children's (Pediatric) Nuclear Medicine Scan for mobile link. Children's (Pediatric) Nuclear Medicine Children s (pediatric) nuclear medicine imaging uses small amounts of radioactive materials called radiotracers, a special camera and a computer

More information

Targeted Alpha Particle Therapy: Imaging, Dosimetry and Radiation Protection

Targeted Alpha Particle Therapy: Imaging, Dosimetry and Radiation Protection Targeted Alpha Particle Therapy: Imaging, Dosimetry and Radiation Protection Michael Lassmann Klinik und Poliklinik für Nuklearmedizin Direktor: Prof. Dr. A. Buck Targeted Therapy Basic Principles 2 Influence

More information

CEREBRAL BLOOD FLOW AND METABOLISM

CEREBRAL BLOOD FLOW AND METABOLISM Supported by: HURO/0901/069/2.3.1 HU-RO-DOCS CEREBRAL BLOOD FLOW AND METABOLISM Part 3 Modern imaging methods SPECT, PET, nmri History of Nuclear Medicine Starts with the invention of the X-ray 1946: radioactive

More information

Nuclear medicine studies of the digestiv system. Zámbó Katalin Department of Nuclear Medicine

Nuclear medicine studies of the digestiv system. Zámbó Katalin Department of Nuclear Medicine Nuclear medicine studies of the digestiv system Zámbó Katalin Department of Nuclear Medicine Imaging tehniques Anatomy Physiology Metabolism Molecular Rtg. / CT PET / SPECT MRI MR spectroscopy fmri Ultrasound

More information

DRAXIMAGE SODIUM IODIDE I 131 CAPSULES, USP DIAGNOSTIC. For Oral Use DESCRIPTION

DRAXIMAGE SODIUM IODIDE I 131 CAPSULES, USP DIAGNOSTIC. For Oral Use DESCRIPTION DRAXIMAGE SODIUM IODIDE I 131 CAPSULES, USP DIAGNOSTIC For Oral Use DESCRIPTION Sodium Iodide I 131 Capsules, USP are color-coded capsules containing sodium iodide I 131 for diagnostic use by oral administration.

More information

Austin Radiological Association Ga-68 NETSPOT (Ga-68 dotatate)

Austin Radiological Association Ga-68 NETSPOT (Ga-68 dotatate) Austin Radiological Association Ga-68 NETSPOT (Ga-68 dotatate) Overview Ga-68 dotatate binds to somatostatin receptors, with highest affinity for subtype 2 receptors (sstr2). It binds to cells that express

More information

Click Here to Continue. Click Here to Return to Table of Contents

Click Here to Continue. Click Here to Return to Table of Contents TechneScan Gluceptate Package inserts are current as of January, 1997. Contact Professional Services, 1-888-744-1414, regarding possible revisions. Click Here to Continue Click Here to Return to Table

More information

Sources of ionizing radiation Atomic structure and radioactivity Radiation interaction with matter Radiation units and dose Biological effects

Sources of ionizing radiation Atomic structure and radioactivity Radiation interaction with matter Radiation units and dose Biological effects INTRODUCTION TO RADIATION PROTECTION Sources of ionizing radiation Atomic structure and radioactivity Radiation interaction with matter Radiation units and dose Biological effects 3/14/2018 1 Wilhelm C.

More information

Click Here to Continue. Click Here to Return to Table of Contents

Click Here to Continue. Click Here to Return to Table of Contents Hippuran I 131 Injection Package inserts are current as of January, 1997. Contact Professional Services, 1-888-744-1414, regarding possible revisions Click Here to Continue Click Here to Return to Table

More information

A-level APPLIED SCIENCE

A-level APPLIED SCIENCE Please write clearly in block capitals. Centre number Candidate number Surname Forename(s) Candidate signature A-level APPLIED SCIENCE Unit 8 Medical Physics Tuesday 24 May 2016 Morning Time allowed: 1

More information

Ingenuity TF PET/CT. Comfort and quality care in one. Your PET/CT scan with Philips Ingenuity TF PET/CT

Ingenuity TF PET/CT. Comfort and quality care in one. Your PET/CT scan with Philips Ingenuity TF PET/CT Ingenuity TF PET/CT Comfort and quality care in one Your PET/CT scan with Philips Ingenuity TF PET/CT What s a PET/CT scan, an A PET/CT scan provides your doctor and medical specialists with valuable information

More information

Nuclear Medicine Head and Neck Region. Bán Zsuzsanna, MD University of Pécs, Department of Nuclear Medicine

Nuclear Medicine Head and Neck Region. Bán Zsuzsanna, MD University of Pécs, Department of Nuclear Medicine Nuclear Medicine Head and Neck Region Bán Zsuzsanna, MD University of Pécs, Department of Nuclear Medicine Thyroid scintigraphy Parathyroid scintigraphy F18-FDG PET examinations in head and neck cancer

More information

Radiopharmaceuticals. Radionuclides in NM. Radionuclides NUCLEAR MEDICINE. Modes of radioactive decays DIAGNOSTIC THERAPY CHEMICAL COMPOUND

Radiopharmaceuticals. Radionuclides in NM. Radionuclides NUCLEAR MEDICINE. Modes of radioactive decays DIAGNOSTIC THERAPY CHEMICAL COMPOUND Univerzita Karlova v Praze - 1. Lékařská fakulta Radiation protection NUCLEAR MEDICINE Involving the application of radioactive substances in the diagnosis and treatment of disease. Nuclear medicine study

More information

Lymphoscintigraphy is a special type of nuclear medicine imaging that provides pictures called scintigrams of the lymphatic system.

Lymphoscintigraphy is a special type of nuclear medicine imaging that provides pictures called scintigrams of the lymphatic system. Scan for mobile link. Lymphoscintigraphy Lymphoscintigraphy helps evaluate your body s lymphatic system for disease using small amounts of radioactive materials called radiotracers that are typically injected

More information

Nuclear Medicine: Manuals. Nuclear Medicine. Nuclear imaging. Emission imaging: study types. Bone scintigraphy - technique

Nuclear Medicine: Manuals. Nuclear Medicine. Nuclear imaging. Emission imaging: study types. Bone scintigraphy - technique Nuclear Medicine - Unsealed radioactive preparations the tracer mixes with the patients body fluids on a molecular level (e.g. after intravenous injection) - 3 main fields: - In vitro : measuring concentrations

More information

Radiotherapy. Marta Anguiano Millán. Departamento de Física Atómica, Molecular y Nuclear Facultad de Ciencias. Universidad de Granada

Radiotherapy. Marta Anguiano Millán. Departamento de Física Atómica, Molecular y Nuclear Facultad de Ciencias. Universidad de Granada Departamento de Física Atómica, Molecular y Nuclear Facultad de Ciencias. Universidad de Granada Overview Introduction Overview Introduction Brachytherapy Radioisotopes in contact with the tumor Overview

More information

DRAXIMAGE SODIUM IODIDE I 131 SOLUTION USP DIAGNOSTIC. For Oral Use DESCRIPTION

DRAXIMAGE SODIUM IODIDE I 131 SOLUTION USP DIAGNOSTIC. For Oral Use DESCRIPTION DRAXIMAGE SODIUM IODIDE I 131 SOLUTION USP DIAGNOSTIC For Oral Use DESCRIPTION Sodium Iodide I 131 Solution is an aqueous solution of sodium iodide I-131 for diagnostic use by oral administration. The

More information

45 Hr PET Registry Review Course

45 Hr PET Registry Review Course 45 HR PET/CT REGISTRY REVIEW COURSE Course Control Document Timothy K. Marshel, MBA, R.T. (R), (N)(CT)(MR)(NCT)(PET)(CNMT) The PET/CT Training Institute, Inc. SNMMI-TS 028600-028632 45hr CEH s Voice Credits

More information

Cardiology and Nuclear Medicine Patient Information Leaflet

Cardiology and Nuclear Medicine Patient Information Leaflet Myocardial Perfusion Scan Cardiology and Nuclear Medicine Patient Information Leaflet What is a myocardial perfusion scan? A myocardial perfusion scan uses a small amount of a radioactive chemical to see

More information

Nuclear Medicine Cardiac (Heart) Stress-Rest Test

Nuclear Medicine Cardiac (Heart) Stress-Rest Test Nuclear Medicine Cardiac (Heart) Stress-Rest Test An Introductory Guide For Patients And Their Families You may be wondering why your doctor ordered this exam. You might have questions such as: How does

More information

IONIZING RADIATION, HEALTH EFFECTS AND PROTECTIVE MEASURES

IONIZING RADIATION, HEALTH EFFECTS AND PROTECTIVE MEASURES May 2011 IONIZING RADIATION, HEALTH EFFECTS AND PROTECTIVE MEASURES KEY FACTS Ionizing radiation is a type of energy released by atoms in the form of electromagnetic waves or particles. People are exposed

More information

Martin Law, PhD, DABSNM, DABMP Physicist ic Radiology/QMH

Martin Law, PhD, DABSNM, DABMP Physicist ic Radiology/QMH A practical measure in personnel dose reduction for 90 Y-micropsheres liverdirected radioembolization: from radiology department to patient ward Martin Law, PhD, DABSNM, DABMP Physicist ic Radiology/QMH

More information

GLUCEPTATE. Technetium Tc 99m Gluceptate Kit DIAGNOSTIC DESCRIPTION

GLUCEPTATE. Technetium Tc 99m Gluceptate Kit DIAGNOSTIC DESCRIPTION 27194 0001E m TM GLUCEPTATE Technetium Tc 99m Gluceptate Kit DIAGNOSTIC DESCRIPTION The kit consists of reaction vials which contain the sterile, non-pyrogenic, nonradioactive ingredients necessary to

More information

Cardiac Nuclear Medicine

Cardiac Nuclear Medicine Cardiac Nuclear Medicine What is Cardiac Nuclear Medicine? What are some common uses of the procedure? How should I prepare? What does the equipment look like? How does the procedure work? How is the procedure

More information

I131 Radioactive Iodine to Treat Thyroid Cancer

I131 Radioactive Iodine to Treat Thyroid Cancer UW MEDICINE PATIENT EDUCATION I131 Radioactive Iodine to Treat Thyroid Cancer Information, instructions, and precautions This handout gives instructions for patients who will receive radioactive iodine

More information

Mobile PET Center Project

Mobile PET Center Project Journal of Physics: Conference Series PAPER OPEN ACCESS Mobile PET Center Project To cite this article: O Ryzhikova et al 2017 J. Phys.: Conf. Ser. 784 012051 View the article online for updates and enhancements.

More information

Lecture 13 Radiation Onclolgy

Lecture 13 Radiation Onclolgy Lecture 13 Radiation Onclolgy Radiation Oncology: Tumors attacked with ionizing radiation Photons (gamma rays) High Energy Electrons Protons Other particles Brachytherapy: implants of beta emitters Ionizing

More information

IAEA BULLETIN DIAGNOSES & TREATMENTS. Radiation Medicine & Technology: INTERNATIONAL ATOMIC ENERGY AGENCY December

IAEA BULLETIN DIAGNOSES & TREATMENTS. Radiation Medicine & Technology: INTERNATIONAL ATOMIC ENERGY AGENCY December IAEA BULLETIN INTERNATIONAL ATOMIC ENERGY AGENCY 55-4-December 2014 www.iaea.org/bulletin Radiation Medicine & Technology: DIAGNOSES & TREATMENTS IAEA BULLETIN INTERNATIONAL ATOMIC ENERGY AGENCY 55-4-December

More information

Nuclear Medicine - Hepatobiliary

Nuclear Medicine - Hepatobiliary Scan for mobile link. Nuclear Medicine - Hepatobiliary Hepatobiliary nuclear medicine imaging helps evaluate the parts of the biliary system, including the liver, gallbladder and bile ducts, using small

More information

Internal Dosimetry of Human Brain for 99m tc and 131 I Using Nuclear Imaging in Bangladesh

Internal Dosimetry of Human Brain for 99m tc and 131 I Using Nuclear Imaging in Bangladesh Sri Lankan Journal of Physics, Vol. 6 (2005) 33-41 Institute of Physics - Sri Lanka Internal Dosimetry of Human Brain for 99m tc and 131 I Using Nuclear Imaging in Bangladesh M. M. Alam a, M. I. Kabir

More information

Dollars and Sense: Are We Overshielding Imaging Facilities? Part 2

Dollars and Sense: Are We Overshielding Imaging Facilities? Part 2 Disclosure Dollars and Sense: Are We Overshielding Imaging Facilities? Part 2 Bryon M. Murray, M.S., DABR Paid consultant to NELCO Worldwide Owner, CEO ZapIT! Medical Objectives Understand methods for

More information

Medical imaging X-ray, CT, MRI, scintigraphy, SPECT, PET Györgyi Műzes

Medical imaging X-ray, CT, MRI, scintigraphy, SPECT, PET Györgyi Műzes Medical imaging X-ray, CT, MRI, scintigraphy, SPECT, PET Györgyi Műzes Semmelweis University, 2nd Dept. of Medicine Medical imaging: definition technical process of creating visual representations about

More information

I131 Radioactive Iodine to Treat Thyroid Cancer

I131 Radioactive Iodine to Treat Thyroid Cancer UW MEDICINE PATIENT EDUCATION I131 Radioactive Iodine to Treat Thyroid Cancer What to expect and how to prepare This handout gives instructions for patients who will receive radioactive iodine to help

More information

Parathyroid Scan. Patients must also read their appointment letter and any enclosures carefully

Parathyroid Scan. Patients must also read their appointment letter and any enclosures carefully Parathyroid Scan Patients must also read their appointment letter and any enclosures carefully What is a Parathyroid Scan? A parathyroid scan is a diagnostic procedure, which looks at the function of the

More information

Chapter 8. Ionizing and Non-Ionizing Radiation

Chapter 8. Ionizing and Non-Ionizing Radiation Chapter 8 Ionizing and Non-Ionizing Radiation Learning Objectives By the end of the chapter the reader will be able to: Define the terms ionizing radiation and nonionizing radiation State the differences

More information

Human Body Systems. Human Body Project Notes

Human Body Systems. Human Body Project Notes Human Body Systems Human Body Project Notes Human Body Organ Systems for the Project Big Idea: Organ systems are composed of organs that are made of more than one type of tissue. Tissues are made of one

More information

Theragnostics for bone metastases. Glenn Flux Royal Marsden Hospital & Institute of Cancer Research Sutton UK

Theragnostics for bone metastases. Glenn Flux Royal Marsden Hospital & Institute of Cancer Research Sutton UK Theragnostics for bone metastases Glenn Flux Royal Marsden Hospital & Institute of Cancer Research Sutton UK NPL 2015 Ra-223 Biodistribution & dosimetry Ra-223: 11.4 days half-life, range of 100 µm Six

More information

Radiation Safety for New Medical Physics Graduate Students

Radiation Safety for New Medical Physics Graduate Students Radiation Safety for New Medical Physics Graduate Students John Vetter, PhD Medical Physics Department UW School of Medicine & Public Health Background and Purpose of This Training This is intended as

More information

Radiation in Everyday Life

Radiation in Everyday Life Image not found Rincón http://www.rinconeducativo.org/sites/default/files/logo.jpg Educativo Published on Rincón Educativo (http://www.rinconeducativo.org) Inicio > Radiation in Everyday Life Recursos

More information

Radiation Safety in the Workplace. v1.0

Radiation Safety in the Workplace. v1.0 Radiation Safety in the Workplace v1.0 Outline What is radiation? Different types of radiation Activity and Half-life Units of radiation dose Health effects of exposure to radiation Dose limits Common

More information

MEDICAL CYCLOTRON FACILITIES

MEDICAL CYCLOTRON FACILITIES TftN HÏIS-mf 10103 MEDICAL CYCLOTRON FACILITIES a report by the NATIONAL HEALTH TECHNOLOGY ADVISORY PANEL SEPTEMBER 1984 MEDICAL CYCLOTRON FACILITIES A report by the National Health Technology Advisory

More information

MRI and CT of the CNS

MRI and CT of the CNS MRI and CT of the CNS Dr.Maha ELBeltagy Assistant Professor of Anatomy Faculty of Medicine The University of Jordan 2018 Computed Tomography CT is used for the detection of intracranial lesions. CT relies

More information

INDICATIONS AND USAGE

INDICATIONS AND USAGE 1. INDICATIONS AND USAGE a) Axumin is indicated for positron emission tomography (PET) in men with suspected prostate cancer recurrence based on elevated blood prostate specific antigen (PSA) levels following

More information

Biological Effects of Radiation KJ350.

Biological Effects of Radiation KJ350. Biological Effects of Radiation KJ350 deborah.oughton@nmbu.no 2111 2005 Radiation Biology Interaction of radiation with biological material Doses (Gy, Sv) and effects Scientific Controversy Radiation Protection

More information

PET-CT for radiotherapy planning in lung cancer: current recommendations and future directions

PET-CT for radiotherapy planning in lung cancer: current recommendations and future directions PET-CT for radiotherapy planning in lung cancer: current recommendations and future directions Gerry Hanna Centre for Cancer Research and Cell Biology Queen s University of Belfast @gerryhanna Talk Outline

More information

chapter 2 Other Forms of Diagnostic Technology

chapter 2 Other Forms of Diagnostic Technology chapter 2 Other Forms of Diagnostic Technology CASE STUDY CONTINUED: Francine Has Questions About Radiation Francine knew now that the doctor s initial request for an x-ray was to obtain a quick diagnosis.

More information

STATE ENTERPRISE «RADIOPREPARAT» Generator of 99 Mo/ 99m Tc TECHNICAL DESCRIPTION AND INSTRUCTIONS ТSH

STATE ENTERPRISE «RADIOPREPARAT» Generator of 99 Mo/ 99m Tc TECHNICAL DESCRIPTION AND INSTRUCTIONS ТSH INSTITUTE OF NUCLEAR PHYSICS, ACADEMY OF SCIENCE OF UZBEKISTAN STATE ENTERPRISE «RADIOPREPARAT» Generator of 99 Mo/ 99m Tc TECHNICAL DESCRIPTION AND INSTRUCTIONS ТSH 42-006-2008 Description and Composition

More information

RADIATION RISK ASSESSMENT

RADIATION RISK ASSESSMENT RADIATION RISK ASSESSMENT EXPOSURE and TOXITY ASSESSMENT Osipova Nina, associated professor, PhD in chemistry, Matveenko Irina, Associate professor, PhD in philology TOMSK -2013 The contents 1.What is

More information

Radiation Detection and Measurement

Radiation Detection and Measurement Radiation Detection and Measurement Range of charged particles (e.g.,!: µm; ": mm) Range of high energy photons (cm) Two main types of interactions of high energy photons Compton scatter Photoelectric

More information