Heavy Metal Contamination of Soils around Painted Buildings in Selected Local Governments in Benue and Taraba States of Nigeria

Similar documents
Pelagia Research Library

VOL. 5, NO. 6, June 2015 ISSN ARPN Journal of Science and Technology All rights reserved.

Environment, health and risk assessment: a case study of the use of an abandoned municipal waste dump site for agricultural purposes

Trace Metal Contamination of Some Edible Oils Consumed in Benue and Taraba States of Nigeria

Assessment of Trace Metals Pollution in Auto-Mechanic Workshop in Some Selected Local Government Area of Benue State, Nigeria

DETERMINATION OF SOME HEAVY METALS IN SPINACH AND LETTUCE FROM SELECTED MARKETS IN KADUNA METROPOLIS Z. N.

Journal of Chemical and Pharmaceutical Research

Health Risk Assessment of Heavy Metals in Soil, Irrigation Water and Vegetables Grown around Kubanni River, Nigeria

International Journal of Engineering Research & Science (IJOER) ISSN: [ ] [Vol-2, Issue-12, December- 2016]

Accumulation of Heavy Metals in Soil and Tree Leaves in Heavy Traffic Affected Area of Agra city


Assessment of Heavy Metals in Trona from Yobe State, Nigeria

ISSN (Print), ISSN (online) 1 Okeke O.R. and 2 Okeke M.U.

JORIND 9(2) December, ISSN

Transfer of Some Major and Trace Elements From Phosphate Rock to Super-Phosphate Fertilizers

Available online at Pelagia Research Library. Advances in Applied Science Research, 2011, 2 (5):

Determination of Five Heavy Metals in White Yam (Dioscorea Rotundata) and Three- Leaved Yam (Dioscorea Dumetorum) from Farms in Khana, Rivers State

Assessment of heavy metal contaminants from protein sources.

Heavy Metals Concentration in Cassava Tubers and Leaves froma Galena Mining Area inishiagu, IVO L.G.A ofebonyi State Nigeria

Determination of available nutrients in soil using the Agilent 4200 MP-AES

Elemental analysis in clinical practice

Heavy and Trace Elements in Some Brands of Rice Consumed in Delta State, Nigeria

Metal concentration of some microelements found in some fruits and vegetables, commonly consumed in Zaria metropolis

Bio-accessibility of Trace Metals Using Chemical Fractionation and In Vitro Extraction Methods

ELEMENTS WITH MORE TOXIC EFFECTS

RemovalofToxicMetalsContaminatedSoilusingDifferentAmendmentsandSunflowerSpeciesHelianthusAnnuus

Lead and Cadmium Levels in Some Commercially Available Local and Imported Peach Juice Samples in Alkoms City

Uptake of Heavy Metals by Rice Plants in Ranau Valley Paddy Field (Sabah)

Bottom Ash Data Week 49

Analysis the Effect of Heavy and Toxic Metals in Various Vegetables Grown in Vellore District (South India)

Contribution of Drinking Water to Dietary Requirements of Essential Metals

Economic recovery of zinc from Mining Influenced Water (MIW)

The 1 th International and The 4 th National Congress on Recycling of Organic Waste in Agriculture April 2012 in Isfahan, Iran

Heavy metal distribution in Rewa City, MP, India

Trace Elements in Manure

PROXIMATE AND MINERAL ANALYSIS OF KOLANUTS (Cola nitida and Cola acuminata) A.O. Mustapha,0. Olaofe and Ibrahim, H. O.

Detection of heavy metals in honey samples using Inductively Coupled Plasma Mass Spectrometry (ICP-MS)

HEAVY METAL RESIDUES OF CHICKEN MEAT AND GIZZARD AND TURKEY MEAT CONSUMED IN SOUTHERN NIGERIA

"WORKING WITH LEAD EXPOSURE IN CONSTRUCTION ENVIRONMENTS"

Bottom Ash Data Week 30

Bottom Ash Data Week 8

Module Bi. Health Hazards of Lead

Application note. Determination of metals in soil by microwave plasma - atomic emission spectrometry (MP-AES) using DTPA extraction.

Bottom Ash Data Week 37

Available online at Int. J. Biol. Chem. Sci. 9(3): , June 2015

Bottom Ash Data Week 38

ANALYSIS OF POTENTIAL CARCINOGENIC CONTAMINANTS IN GRAIN AND VEGETABLES WITH FOCUS ON HEAVY METALS

IMPLICATIONS OF LEAD TOXICITY

Bottom Ash Data Week 12

Multi Analyte Custom Grade Solution

Section 1: Identification of the substance or mixture and the company

Bottom Ash Data Week 40

GIS IRS-P6LISS-III . IRS-LISS III : 100. IRS-LISS III IRS-LISS III. GIS

Heavy Metal Levels in Roadside Soils of some Major Roads in Maiduguri, Nigeria

Bottom Ash Data Week 1

Lead Paint Alliance Toolkit for Establishing Laws to Control the Use of Lead in Paint. Patrick Huber US Environmental Protection Agency

Toolkit for Establishing Laws to Control the Use of Lead in Paint Module Bi

Mount Sinai Pediatric Environmental Health Specialty Unit WTC Lead Fact Sheet

Bottom Ash Data Week 17

Bottom Ash Data Week 9

Environmental Health Information

Comparative Analysis of Heavy Metals in Processed Tomato Paste and Fresh Tomatoes Sold in Markets in Ibadan, Nigeria

A study of heavy metal presence in cow milk of different dairy farms near Karnafuli paper mills, Chittagong, Bangladesh

MULTI-COMPONENT ANALYSIS OF HEAVY METALS

by Oguguah, N. M. and Olakolu, F. C. Marine Biology section, Fisheries Resources Department, Nigerian Institute for Oceanography and Marine Research

Matrix Reference Materials - SCP SCIENCE

The Facts About Phosphorus

Determination of selected micro and macronutrients in sugarcane growing soils at Kakamega North District, Kenya

M.S. Mshelia, Z.N. Ali and Y. Abba

RESPONSE OF TOMATO AND CORN PLANTS TO INCREASING Cd LEVELS IN NUTRIENT CULTURE

Heavy Metal Uptake in Lake Macatawa Fish

Evaluation of the Heavy Metals Level in Selected Industrially Packaged Food Spices

EVALUATING THE HEAVY METALS IN DUST POLLUTION IN CABBAGES IN KASTRIOT, KOSOVO

Speciation Analysis and Removal of Heavy Metals Zn, Cu, Cd from Sludge by Organic Acid

By Authority Of THE UNITED STATES OF AMERICA Legally Binding Document

Journal of Chemical, Biological and Physical Sciences

Material Safety Data Sheet

FACTORS AFFECTING WATER QUALITY

Soils and Soil Fertility Management

USER SPECIFICATIONS FOR QUINTOLUBRIC 888 Series DESCRIPTION OF THE MOST IMPORTANT PROPERTIES AND THE POSSIBLE VARIATIONS AND TOLERANCES

Received: 4 th April-2014 Revised: 24 th May-2014 Accepted: 26 th May-2014 Research article

Content of Copper in Maize and Soil Collected from Selected Agricultural Areas in Kaduna, Nigeria

TOXIC AND ESSENTIAL ELEMENTS

Heavy Metals Content of Two Red Soils in Samar, Philippines

Lead in Construction (And Other Heavy Metals In Paint) Cadmium Chromium

Lead Toxicity. How does it get from those forms inside humans?

Comparative studies on the effect of sun, smoke and oven drying methods on the nutrient contents of four wild edible mushrooms in Nigeria

NUTRIENT UPTAKE BY PLANTS FROM DIFFERENT LAND TYPES OF MADHUPUR SOILS

Bioavailability of Cd to Food Crops in

By Andrew & Erin Oxford, Bethel

Childcare Providers Training: LEAD POISONING PREVENTION

Evaluation of heavy metals in orange, pineapple, avocado pear and pawpaw from a farm in Kaani, Bori, Rivers State Nigeria

BASELINE SURVEY OF TRACE METALS IN CHICKEN AT THE SURROUNDINGS OF THE TUMMALAPALLE URANIUM MINING SITE

S A F E T Y D A T A S H E E T IntelliBond Vital 3

Physiological and Behavioral Parameters Affecting the Hair Element Content of Young Italian Population

Determination of Heavy Metals in Canned Dry-Milk and Fish from Supermarkets in Addis Ababa, Ethiopia. Kefyalew Muleta Tetemke Mehari (PhD)

Mercury, Cadmium and Lead Levels in Three Commercially Important Marine Fish Species of in Sri Lanka

Soil research in Europe with special reference to that in Finland A Review

ON HEAVY METAL LEVELS VARIATION IN TARNAVA MARE RIVER DURING 2003

Transcription:

IOSR Journal of Applied Chemistry (IOSR-JAC) e-issn: 2278-5736. Volume 6, Issue 4 (Nov. Dec. 2013), PP 40-44 Heavy Metal Contamination of Soils around Painted Buildings in Selected Local Governments in Benue and Taraba States of Nigeria Odo Raphael; Oko, Odiba John and Adelagun Ruth Olubukola Ajoke Department of chemical sciences, Federal University Wukari, Taraba State Abstract: Soils around painted buildings in Gboko and katsina-ala (Benue state) and Ibi and Wukari (Taraba State) were collected and analysed for heavy metal contamination using standard methods. The study revealed that the level of contamination in Gboko and Katsina-Ala was in the order of Pb>Zn>Cd>Cr while for Ibi and Wukari the order was Pb>Cd>Zn>Cr. The levels of contamination of Mn, Ni and Cu in the soil samples around the painted buildings were low. The high contamination of the soil with lead is a serious threat to man especially the children who play with soils around the environment. Blood monitoring for lead and other metals is therefore recommended for individuals living in and around painted buildings. Keywords: blood monitoring, Contamination, Heavy metals, Painted buildings, soil I. Introduction For many decades public health authorities have considered mineral contamination of soil and water as a matter of concern [1].Although some metals are essential for life, all metals are toxic at sufficiently high concentrations; for there is a narrow window between what is essential and what is toxic [2]. The persistent accumulation of heavy metals in soil is of great concern because they constitute health threat and toxicity problem to human life and environment. Heavy metal especially Pb is prominently recognized as a major toxicant due to its adverse effects even at very low concentration [3], and known nutritional, biochemical or physiological benefits or uses or advantages have not yet been established for it. Furthermore, Fergusson [2], reported that it is almost impossible to find surface soils which can be reasonably described as completely free from Pb-contamination. It was however observed that soil contamination may be considered when concentrations of an element in soils were two-to-three time greater than the average background levels [4]. The health concern for heavy metal contaminated soils arise primarily because of plant uptake, dust or soil ingestion by grazing animals and humans, particularly children. Reports of lead poisoning of children in urban areas due to ingestion of contaminated soils or lead based paints have been presented [5]. Pb effects on human reproduction, loss of energy and learning ability especially in children have also been well documented [6].The exposure of people to the increasing levels of pollutant metals in various compartments of their environment represents a growing health hazard that is yet to receive due attention. What is worrisome is that many people may be more susceptible to environmental metal poisoning because of their lifestyle and living condition especially as it relates to agricultural practices, vehicular exhausts and bush burning [7].The narrow streets and overcrowding in urban areas, the shelter location of polluting industries, the vibrant outdoor lifestyle, the open type of dwellings, the endemic dusty environment, the prevalence of the contaminated dusts outdoor as well as indoor, poor nutrition and health, poor hygienic practices and various type of painted buildings both private and public buildings can combine to increase the level of exposure and susceptibility to lead and other metal poisoning [8]. Highly elevated Pb concentrations have been reported in roadside soils and vegetation in Nigeria [9, 10]. The discharge of large quantities of toxic metals into soils, air and water inevitably results in the transfer of pollutant metals to the human food chain. An assessment of environmental metal poisoning in Africa especially Nigeria is thus made difficult by the multiplicity of sources in any given area. House painting is one of the most attractive parts of building in Africa, particularly Nigeria, where many houses are built every year due to increase in the population. Painting is not only limited to the new houses but old houses are also painted and repainted with one form of paint or another. Some companies advertise their product through painting of public and private buildings and other objects along the road or in the strategic places. In view of these developments, painted houses (public, private and any other objects) would represent a major source of trace heavy metals especially in public buildings like schools, churches, and mosques, where some of these buildings are painted and repainted. Heavy metal poisoning is a medical condition caused by increased level of heavy metals such as lead in the body. Lead interfere with a variety of body processes and is toxic to many organs and tissues including the heart, bones, intestines, kidneys and reproductive and nervous systems. It interfere with the development of the 40 Page

nervous system and is therefore toxic particularly to children, causing potentially permanent learning and behaviour disorders, symptoms include abdominal pain, headache, anaemia, irritability, and in severe cases seizures, coma and death. Routes of exposure to heavy metals include contaminated air, water, soil, food and consumer products. Occupational exposure is a common cause of lead poisoning in adults. One of the largest threats to children is lead paint that exists in many homes, especially older ones, thus children in older houses with chipping paint are at great risk. Lead poisoning can present a variety of symptoms and signs which vary depending on the individual and the duration of lead exposure. Symptoms are non-specific and may be subtle, and someone with elevated lead levels may have no symptoms. Symptoms may be different in adults and children, the main symptoms in adults are headache, abdominal pain, memory loss, kidney failure, male reproductive problems, and weakness, pain or tingling in the extremities. The classic signs and symptoms in children are loss of appetite, abdominal pain, vomiting, weight loss, constipation, anemia, kidney failure, irritability, lethargy, learning disabilities, and behaviour problems. Children may also experience hearing loss, delayed growth, drowsiness, clumsiness, or loss of new abilities, especially speech skills. Symptoms may appear in children at lower blood lead levels than in adults. Although, numerous investigations have been carried out on health impacts of lead and other heavy metals on humans, soils in the vicinity of painted houses which are intimately linked to children s environment have not really been investigated as one of the sources of lead, cadmium, and other heavy metals. The absence of any known study on heavy metals in soils in the vicinity of the painted buildings coupled with the fact that these painted houses dominate children environment propels the need for this research. This study was therefore designed to ascertain the levels of cadmium, chromium, copper, manganese, nickel, lead and zinc of soils in the vicinity of painted houses in the study area. II. Materials and methods 2.1 Sample collection Soil samples were collected from four local governments cut across two states i.e Gboko, Katsina-ala, in Benue state and Wukari and Ibi local government in Taraba state. Soil samples were collected from commercial places (Schools, churches, mosques) and private (residential places). Sampling spots of about 10-20m apart from each other were mapped out for sample collection using clean stainless steel trowel from about 0-15cm depth. Soil sample for control sites were collected from where farming, mining, industrial and building activities were absent. The collected sub-samples were then pooled together to form a composite of each individual sample. The samples were mixed thoroughly and stored in polyethylene bags. 2.2 Sample preparation The soil samples were air-dried for weeks, to remove excess moisture. Large soil clogs were also crushed to facilitate the drying. The dried soil samples were crushed in a porcelain mortar using a pestle. Portions of the crushed soil sample were further pulverized to fine powder and passed through a 0.5mm sieve for total metal content analysis. 2.3 Method The method developed by the United State Environmental Protection Agency for (total sobbed) heavy metals in soil, sediments, and sludge [11] was used in the preparation of the samples for the determination of total metal contents in this study. One gram (1.000g) of the soil samples was weighed into a beaker for acid digestion. Analar grade nitric acid, hydrogen peroxide (about 30%) and concentrated hydrochloric acid were used for the digestion. The digest was filtered through what man filter paper. Each filtrate was collected in 100ml volumetric flask and deionised water was used to rinse the filter paper into a volumetric flask. Each filtrate was later made up to 100ml with deionised water. Standards were prepared with serial dilution techniques within the range of each metal determined. The standards used were analar grade; the instrument was first calibrated with stock solutions of the prepared standards before analysis using Flame Atomic Absorption Spectrophotometer. After every five samples analyzed using FAAS, the first sample was repeated for quality check. Only when the result was within 10% of earlier readings did the analysis proceed further. The data obtained in the study were analyzed using mean, standard deviation and Pearson correlation analysis. The enrichment factors (EF) of elements in the soils were calculated according to the following equation. Efc=(C x /C Fe ) soil /(C x /C Fe ) Earth s crust Where (C x /C Fe ) soil is the ratio of concentration of the element being determined (C x ) to that of Fe (C Fe ) in the soil sample and (C x /C Fe )earth s crust is the ratio in the reference Earth s crust [12, 13]. Enrichment factors were calculated for each sample relative to the abundance of the elements in the Earth s crust [14]. Fe was chosen as reference element due to its dominance in the earth crust. The iron content of soils does not change 41 Page

owing to its high levels in the Earth s crust, example, 0.5-10%, unless there is a large point source around a specific environment. An enrichment factor of unity would indicate that the relative concentration of a given metal is identical to that which is present in unpolluted soil. III. Results and discussion Generally, in the four areas studied as presented in tables 1 and 2, the concentration of the heavy metals were extremely high especially Pb, Cd, Zn and Cr, this is an indication that these heavy metals are the primary contaminants in the soils around painted buildings which was also reflected in the low level of these heavy metals obtained from the control sites when compared with those obtained from the study sites. Also the degree of heavy metal concentration in soil around painted buildings which were determined by its enrichment factors was also high. From the mean values and enrichment factor values, there is a clear indication that Pb, Cd, Zn and Cr are the great contaminants in the soils around painted buildings where washing of the paint from such buildings into surrounding soils easily occurred either by rains or winds causing metal accumulations especially lead in the immediate environment. The enrichment factor in soils from Gboko and Katsina-Ala were found to be in the order of Pb>Zn>Cd>Cr while those of Ibi and Wukari was found to be in the order Pb>Cd>Zn>Cr. In all cases the enrichment factor of lead in the soils was far more than the other metals studied in the soil. In accordance with contamination categories presented by Sutherland [15] whereby enrichment factors were categorised as Ef <2 (depletion to mineral enrichment), 2<Ef < 5 (moderate enrichment),5< EF<20(significant enrichment), 20< EF<40 (very high enrichment) it was glaring that the soils were highly enriched with lead. Zinc, cadmium and chromium enriched the soils significantly; Copper and Nickel moderately while manganese depleted to mineral enrichment. The concentrations of Cu, Ni and Mn were low in soils around painted buildings, so also their enrichment factor values, which do not have much variation although their enrichment factor values were greater than unity; this indicates that the metal is abundant in the soil relative to that found in the earth s crust. Correlation was observed between the various heavy metals under consideration (Table 3). There was strong positive correlation between Pb and Cd on one hand and Cr and Zn on the other at p<0.1 in the Gboko sample. This is an indication that there was a significant influence of one metal on another suggesting the possibility of the metals coming from the same source. The correlation coefficient between Pb and Cd and Cr and Zn in the soils around the painted buildings was statistically significant. Though a weak correlation was established for the metals in all the other sites,it can be argued that Pb,Cd,Cr and Zn were contaminants which were probably released into the soils from the painted buildings. However, when the levels of these heavy metals obtained in this study were compared with values reported in literature, Pb and Cd levels were found to be above a concentration range of 30.000-300.000 mg/g and 3.000mg/g respectively [16] and well above permissible recommended levels for soils [17]. Nickel (Ni), and chromium (Cr) were found to be below the critical permissible concentration of 50.000 and 400.000mg/g respectively [18] and [19]. Though these heavy metal concentrations fell below the critical permissible concentration level, their persistence in the soils around painted buildings may lead to increased uptake of these heavy metals by humans especially children playing in such environment. There is no doubt that many children in painted houses receive highest doses of lead contaminated dusts compared to their counterparts in the unpainted houses. IV. Conclusion The results obtained from the analysis of soils around the painted buildings in various locations in Gboko, Katsina- ala, Wukari and Ibi local government areas of Benue and Taraba states in Nigeria indicated that the concentrations of Cd, Cr, Cu, Mn, Ni, Pb and Zn were higher than those of soils from control areas. The degree of contamination of Pb was the highest. Cd, Zn, and Cr also showed high degree of contamination in the soils around the painted buildings. From this reason, it could be predicted that the contaminations of Pb, Cd, Zn, and Cr are probably from anthropogenic sources, while those of Cu, Ni, and Mn may not be much, as its contribution from anthropogenic sources. The observed contaminants were Pb, Cd, Zn and Cr and their concentrations and enrichment factors were high in all the soils studied. Hence, overall, levels of Pb, Cd, Zn and Cr contaminations are those which call for closer monitoring in sites under considerations. Table 1: Total metal contents (mg/g) of soils around painted buildings in the study areas Gboko, n=15 Range 2.400-15.500-43.000-109.000-15.000-25.000 205.000-321.000 122.000-213.000 3.500 2.853 0.338 34.000 24.313 6.086 70.000 55.533 8.830 233.000 191.800 29.238 20.0003.295 255.80035.718 191.06725.144 42 Page

Wukari, n=15 Range 2.890-18.500-49.550-199.760-14.800-21.860 214.670-298.560 121.110-167.770 4.450 34.100 62.110 299.540 3.813 26.805 56.023 257.736 18.4232.102 262.62527.215 5.732 5.009 33.414 0.474 142.493±16.617 Katsina-Ala, n=15 Range 2.700-15.200-40.500-198.400-15.500-28.500 198.000-284.520 110.950-132.880 4.500 35.600 75.500 298.000 3.620 0.628 24.727 7.055 61.987 10.453 247.840 35.103 18.4872.009 238.67430.270 122.3987.940 Ibi, n=15 Range 2.900-15.800-49.670-215.330-14.930-19.450 214.250-281.550 115.670-161.330 4.500 33.750 71.760 289.560 3.947 0.464 24.347 5.457 60.873 8.572 247.563 23.172 16.9531.631 245.65624.039 138.35614.343 Soil aggregate n=60 Range 2.400-15.200-40.500-109.000-14.800-25.000 198.540-321.000 110.950-4.500 3.558 0.638 35.600 25.048 6.044 75.500 58.604 8.725 299.540 236.235 39.673 213.000 18.4662.530 250.68930.315 148.581 30.797 Table 2: Factors of Accumulation of Heavy Metals around painted buildings in study areas Area: Gboko n=15 F.A 11.510 8.863 3.173 1.337 2.667 71.056 18.197 Area:Katsina-Ala n=15 F.A 12.067 9.121 1.712 2.370 2.370 68.193 13.928 Area: Ibi n=15 F.A 12.723 7.273 3.853 1.834 2.355 70.187 12.345 Area: Wukari n=15 F.A 15.252 8.874 3.458 1.815 2.456 77.243 12.954 Soil aggregate n=60 F.A 9.697 9.122 4.042 1.687 2.638 71.625 13.149 Table 3: Correlation between metal- metal contents in soils around painted buildings in the study areas. Point Cd Cr Cu Mn Ni Pb Zn 0.045-0.460 0.442-0.366 0.630-0.444 Gboko 0.303 0.276 0.403-0.085 0.276-0.029 0.395-0.436 0.545-0.099 0.432-0.252-0.394 0.187-0.361-0.026 0.003-0.007 0.187-0.152-0.196 Katsina Ala 0.031-0.273 0.219-0.409 0.202 0.418-0.079-0.218-0.249 0.089 0.039 0.344-0.154-0.046 43 Page

-0.021-0.156 0.006 0.198 0.055-0.417-0.297 Wukari -0.490 0.423 0.234 0.450 0.350-0.075 0.087-0.101-0.122 0.259-0.157-0.103 0.216-0.544 0.353 Ibi -0.468 0.495-0.120-0.299-0.104-0.053-0.526 0.213-0.179-0.505 0.521-0.051-0.249 0.088-0.312-0.216 0.054 0.377 0.106-0.039 References [1]. Odoh R., Agbaji E.B, Kagbu J.A. and Thomas S. A.,(2011); Heavy Metal Speciation in Agricultural Farmland in some selected local government areas of Benue state, Nigeria. Scholars Research Library, Archives of Applied Science Research, 3 (3) 560-573. [2]. Fergusson,J.E.(1990) Chemistry, Environmental impacts and Health Effects. Pergamon press oxford, 1990, 371-405. [3]. Oluyemi,E.A.,Fenyit,G.J., Oyekunle,J.A.O and Ogunfowokan,A.O.(2008) Seasonal Variations in heavy metal concentrations in soil and some selected crops at a land fill in Nigeria. African Journal of science and Technology. 2(5):89-96 [4]. Logan T.J. and Miller R.H. (1983) Soil contamination analysis Res. Circ. Ohio Agric. Res. Dev.Ctr.Wooster. 275: 3-15 [5]. Ohio state University (nd) Background levels of heavy metals in Ohio farm soils.http://www.ohioline.osu.edu/rc275/rc275_1.html. Accessed on 18 th June 2013. [6]. W.H.O (World health Organisation),(1995) Evaluation of certain food additives and contaminants(forty-first report of the joint FAO/WHO expert committee on food additives).who Technical report series No 837,WHO,Geneva. [7]. Ratha,D.S., Venkataraman,G., and Pahala-Kumar,S (1994).Soil contamination due to open cast mining in Goa. A statistical approach to environmental technology.15:853-862 [8]. Fatoki, O.S. (1996) Trace Zinc and copper concentration in roadside surface soils and vegetation measurement of local atmospheric pollution in Alice, South Africa. Environment International, 22(6):759-762. [9]. Ross, S.M (1994). Toxic metals in soil- plant systems. John Wiley,New- York [10]. Opaluwa,O.D and Umar,M.A (2010).Distribution and concentration of Heavy metal in some vegetables and soils from vegetable farms in Tudun Wada keffi, Nigeria. International journal of chemical sciences.3(1):71-77. [11]. United State Environmental Pollution Agency, USEPA (1986) U.S Government Office, Washington, D.C. [12]. Martin,H.W., Young,T.R., and Kaplem,D.I.(1996) Evaluation of three herbaceous index plant species for bioavailability of soil cadmium,chromium,nickel and vanadium plant and soil. 182:199-207 [13]. Holmgren,G.G.S., Meyer,M.W., Chimey,R.L., and Daniels, R.B.(1993)Cadmium,lead,zinc,copper and nickel in agricultural soils of the united states of America.Journal of Environmental Quality.22:335-348 [14]. Mcbride,M.B(1989) Reactions controlling heavy metal solubility in soils. Advances in soil science.10:1-56 [15]. Sutherland, R.A (2000) Bed sediment-associated trace metals in an urban stream, Oahu, Hawaii. Environmental Geology, 39:611-627 [16]. Kabata-Pendias, A. and Pendias,H. (1984) Trace elements in soils and plants CRC Press Boca Rat On Fla.85:107-1229 [17]. U.S Environmental Protection Agency (1986).Test methods of evaluation for solid waste (USEPA S/W 846 UEPA Washinton D.C [18]. MAFF and Welch office Agriculture department (1992) Code of Good agricultural practice for the protection of soil. Draft consultation Document, MAFF London. [19]. EC (Council of the European Communities) (1986): directive 86278 EEC on the protection of the Environment and in particular of the soil when sewage sludge is used.eec.brussels. -0.212 44 Page