Kim M. Cornish, PhD* Darren R. Hocking, PhD* Simon A. Moss, PhD Cary S. Kogan, PhD

Similar documents
Journal of Psychiatric Research

FRAGILE X-ASSOCIATED TREMOR/ATAXIA SYNDROME (FXTAS)

+ Fragile X Tremor Ataxia Syndrome (FXTAS)

Funding: NIDCF UL1 DE019583, NIA RL1 AG032119, NINDS RL1 NS062412, NIDA TL1 DA

The Fragile X-Associated Tremor Ataxia Syndrome (FXTAS) READ ONLINE

Corporate Medical Policy

Do women with fragile X syndrome have problems in switching attention: Preliminary findings from ERP and fmri

Are we Close to Solve the Mystery of Fragile X Associated Premature Ovarian Insufficiency (FXPOI) in FMR1 Premutation Carriers?

CHAPTER 1 INTRODUCTION

Population Screening for Fragile X Syndrome

NIH Public Access Author Manuscript J Clin Psychiatry. Author manuscript; available in PMC 2009 July 3.

Molecular and imaging correlates of the fragile X associated tremor/ ataxia syndrome

ORIGINAL RESEARCH ARTICLE American College of Medical Genetics and Genomics

Fragile X-associated Tremor/Ataxia Syndrome (FXTAS) an older face of the fragile X gene

Fragile X Syndrome & Recent Advances in Behavioural Phenotype Research Jeremy Turk

The fragile X-associated tremor ataxia syndrome (FXTAS) in Indonesia

Fragile X Syndrome and Infertility Case Example - Not One, but Three

Age- and CGG Repeat-Related Slowing of Manual Movement in Fragile X Carriers: A Prodrome of Fragile X-Associated Tremor Ataxia Syndrome?

Fragile X One gene, three very different disorders for which Genetic Technology is essential. Significance of Fragile X. Significance of Fragile X

Susan M. Rivera, Ph.D.

doi: /brain/awq368 Brain 2011: 134;

The cognitive neuropsychological phenotype of carriers of the FMR1 premutation

Genetic Testing for FMR1 Variants (Including Fragile X Syndrome)

FXTAS: a bad RNA and a hope for a cure

A Quantitative Assessment of Tremor and Ataxia in FMR1 Premutation Carriers Using CATSYS

FRAGILE X 101. A guide for the newly-diagnosed and those already living with Fragile X. fragilex.org

ORIGINAL CONTRIBUTION. Screen for Excess FMR1 Premutation Alleles Among Males With Parkinsonism

NIH Public Access Author Manuscript Brain Imaging Behav. Author manuscript; available in PMC 2009 May 7.

Fragile X-associated disorders: Don t miss them

Ana Apolónio (ARSA)& Vítor Franco (U. Évora)

ORIGINAL CONTRIBUTION. FMR1 Premutations Associated With Fragile X Associated Tremor/Ataxia Syndrome in Multiple System Atrophy

Research Advances in Fragile X-X Associated Tremor/Ataxia Syndrome (FXTAS)

Fragile X syndrome is the most common known singlegene

FEP Medical Policy Manual

Next-generation Diagnostics for Fragile X disorders

Helping Patients and Families Understand Fragile X Syndrome

This fact sheet describes the condition Fragile X and includes a discussion of the symptoms, causes and available testing.

New blood test measures levels of fragile X protein

A Neuropsychiatric Approach to Developmental Disorders

Implications of the FMR1 Premutation for Children, Adolescents, Adults, and Their Families

Behavior From the Inside Out. Marcia L Braden, PhD PC Licensed Psychologist Special Educator

Fragile X Associated Tremor/Ataxia Syndrome Influence of the FMR1 Gene on Motor Fiber Tracts in Males With Normal and Premutation Alleles

Fragile X Syndrome. Genetics, Epigenetics & the Role of Unprogrammed Events in the expression of a Phenotype

OBSERVATION. The Fragile X Premutation Presenting as Essential Tremor

NEUROLOGICAL DISORDER AMONG PREMUTATION CARRIERS OF FRAGILE X SYNDROME AT SEMIN, GUNUNG KIDUL REGENCY

An Introduction to Neuroscience. A presentation by Group 3

Motor Abilities of Children Diagnosed With Fragile X Syndrome With and Without Autism

A Multimodal Imaging Analysis of Subcortical Gray Matter in Fragile X Premutation

Fragile-X Associated Tremor/Ataxia Syndrome (FXTAS) in Females

Working Memory: Critical Constructs and Some Current Issues. Outline. Starting Points. Starting Points

Ages of Onset of Mood and Anxiety Disorders in Fragile X Premutation Carriers

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and

Autism phenotype in fragile X premutation males is not associated with FMR1 expression: a preliminary evaluation

6. The prevalence of FXS is higher in A. boys. B. girls.

Neuropsychological Testing Coverage Guidelines

Penetrance of the Fragile X Associated Tremor/Ataxia Syndrome in a Premutation Carrier Population JAMA. 2004;291:

Review. Advances in clinical and molecular understanding of the FMR1 premutation and fragile X-associated tremor/ataxia syndrome

Title: Pinpointing resilience in Bipolar Disorder

Daily Health Symptoms of Mothers of Adolescents and Adults with Fragile X Syndrome and Mothers of Adolescents and Adults with Autism Spectrum Disorder

Impaired Visuospatial Processing in Young Adult Female Fragile X Premutation Carriers and Emerging Trends in Children

FRAGILE X MOLECULAR DIAGNOSTICS ORDERING INFORMATION. FragilEaseTM FRAGILEASETM ASSAY CHARACTERISTICS WORKFLOW. PCR Purification.

Detecting neurocognitive impairment in HIV-infected youth: Are we focusing on the wrong factors?

Diffusion Tensor Imaging in Male Premutation Carriers of the Fragile X Mental Retardation Gene

UNIVERSITY OF WESTERN ONTARIO

Genetic diagnosis in clinical psychiatry: A case report of a woman with a 47,XXX karyotype and Fragile X syndrome

Fragile X-associated disorders: a clinical overview

Neuroplasticity: functional MRI techniques M.A. Rocca

Copyright 2002 American Academy of Neurology. Volume 58(8) 23 April 2002 pp

Investor Presentation. 2 June 2017

REVIEW ARTICLE The Fragile-X Premutation: A Maturing Perspective

Mirror Neurons in Primates, Humans, and Implications for Neuropsychiatric Disorders

Neuropsychology and Metabolic Conditions: The Neurocognitive Profile of FOD/OAA and the benefits of neuropsychological assessment

SREBCS: Neurodevelopmental Disorders Lab Home institution: Otterbein University. Amanda Zamary Dr. Lindsay McCary Dr. Jane Roberts

Associated features in females with an FMR1 premutation

BINGES, BLUNTS AND BRAIN DEVELOPMENT

Pathways Toward Translational Research Programs for ASD. Helen Tager-Flusberg, Ph.D. Boston University NJ Governor s Council Conference April 9, 2014

Contraction of a Maternal Fragile X Mental Retardation 1 Premutation Allele

Experts call for universal fragile X screening

Iron Accumulation and Dysregulation in the Putamen in Fragile X-Associated Tremor/Ataxia Syndrome

Is theory of mind understanding impaired in males with fragile X Syndrome? Grant, C., Apperly, I. & Oliver, C

NEUROCOGNITIVE, OUTCOMES IN PKU: IT S TIME TO RAISE THE BAR

Hill, Elisabeth L Executive dysfunction in autism. Trends in Cognitive Sciences, 8(1), pp ISSN [Article]

NeuroTracker Published Studies & Research

Amygdala dysfunction in men with the fragile X premutation

A solution to limitations of cognitive testing in children with intellectual disabilities: the case of fragile X syndrome

Policies, Procedures, Guidelines and Protocols

Partially Methylated Alleles, Microdeletion and Tissue Mosaicism in a Fragile X Male with

A CONVERSATION ABOUT NEURODEVELOPMENT: LOST IN TRANSLATION

ASFMR1 splice variant

THE ROLE OF ACTIVITIES OF DAILY LIVING IN THE MCI SYNDROME

CLINICAL NEUROPSYCHOLOGY Course Syllabus, Spring 2015 Columbia University

alleles in high-functioning FM and PM males determined by both reference methods were also unmethylated

Overt vs. Covert Responding. Prior to conduct of the fmri experiment, a separate

Fragile X full mutation expansions are inhibited by one or more AGG interruptions in premutation carriers

Emerging topics in FXTAS. Hall et al. Hall et al. Journal of Neurodevelopmental Disorders 2014, 6:31

Association of maternal stress levels and the CRHR1 gene among mothers of a child with FXS

Standing strong in the roaring 40s ANZFPS November HOBART. Credit: Tourism Tasmania and Garry Moore

Nature, prevalence and clinical significance. Barcelona, Spain

Transcription:

ARTICLES Selective executive markers of at-risk profiles associated with the fragile X premutation Kim M. Cornish, PhD* Darren R. Hocking, PhD* Simon A. Moss, PhD Cary S. Kogan, PhD Address correspondence and reprint requests to Dr. Kim Cornish, Monash Institute for Brain Development and Repair, School of Psychology and Psychiatry, Monash University, Clayton Road, Clayton, Victoria 3800, Australia kim.cornish@monash.edu ABSTRACT Objective: This study determined whether CGG repeat length moderates the relationship between age and performance on selective measures of executive function in premutation carriers (PM) who are asymptomatic for a recently described late-onset neurodegenerative disorder, fragile X associated tremor/ataxia syndrome (FXTAS). Methods: Forty PM men aged 18 69 years with a family history of fragile X syndrome underwent neuropsychological tests of inhibition and working memory. We examined only men who are asymptomatic for FXTAS. Multiple regression analyses were conducted to examine the moderating role of CGG repeat length on the relation between age and performance on inhibition and working memory tasks. Results: With increasing age and only in men with an FMR1 expansion in the upper premutation range ( 100 CGG repeats) was there an association between age and poorer task performance on selective executive function measures involving inhibition (p 0.05) and executive working memory (p 0.01). Men in the lower premutation range ( 100 CGG repeats) were relatively risk-free from any cognitive aging effects associated with CGG repeat expansions. Conclusions: We conclude that neural networks in the prefrontal cortex may be highly susceptible to age-related neurotoxic effects in the upper size range of the FMR1 premutation. Future longitudinal studies will be needed to determine whether specific executive markers may serve to distinguish those at greatest risk for severe cognitive decline or dementia associated with FXTAS. Neurology 2011;77:618 622 GLOSSARY DLPFC dorsolateral prefrontal cortex; FXS fragile X syndrome; FXTAS fragile X associated tremor/ataxia syndrome; PASAT Paced Auditory Serial Addition Test; PM premutation carrier. Editorial, page 612 Fragile X syndrome (FXS) is the leading cause of inherited intellectual disability worldwide and one of the few known single-gene causes of autism. 1 The condition is caused by a large expansion of the trinucleotide CGG repeat region ( 200 CGG repeats) within the 5 untranslated region of the fragile X mental retardation 1 gene (FMR1), located at the long arm of the X chromosome. FMR1 is distinctive in that expansions can occur across successive generations, with individuals classified as demonstrating normal (7 44 CGG repeats), intermediate or gray-zone alleles (45 54), or moderate (55 200) repeat expansions. Individuals with moderate expansions of the FMR1 gene are referred to as premutation carriers (PM), and until a decade ago were assumed to be free of a deleterious phenotype; that is, without any discernible cognitive or brain impairment. It is now well-documented that approximately 30% 40% of PM males and 8% of PM females will develop a recently described late-onset neurodegenerative disorder, fragile X associated tremor/ataxia syndrome (FXTAS), which is associated with progressive dementia ( 55 years and predominantly in men), intention tremor, ataxia, and parkinsonism alongside mood and executive function deficits. 2 4 Podcast *These authors share first authorship. From the Developmental Neuroscience and Genetic Disorders Laboratory (K.M.C., D.R.H.), School of Psychology and Psychiatry, Faculty of Medicine, Melbourne; Monash Institute for Brain Development and Repair (MIBDR) (K.M.C., D.R.H.), School of Psychology and Psychiatry (S.A.M.), Faculty of Medicine, Monash University, Melbourne; and School of Psychology (C.S.K.), University of Ottawa, Ottawa, Canada. Study funding: Supported by the Wellcome Trust UK (KC) and a Monash University Research Fellowship (D.H.). Disclosure: The authors report no disclosures. 618 Copyright 2011 by AAN Enterprises, Inc.

Table 1 Although previous studies have identified a more generalized executive function impairment or dysexecutive syndrome in older men ( 50 years) with FXTAS, 5,6 other studies in asymptomatic PM carriers have found distinct executive function signatures of inhibitory and executive working memory decline that progressively deteriorate with increasing age, and correlate with increasing CGG repeat length. 7,8 However, it remains unclear whether asymptomatic carriers have selective executive function impairments. 9,10 Here we explore the possibility that recent findings may reflect a higher CGG repeat threshold within which a subgroup of asymptomatic carriers may be especially vulnerable to selective executive cognitive impairments. METHODS Participants. We recruited a total of 40 PM men with a family history of FXS ranging in age from 18 to 69 years through the UK Clinical Genetics Services and the UK Fragile X Society. Of these individuals, data from 7 participants were removed because of the confounding effects of FXTASrelated symptoms screened by a validated neurologic questionnaire. 11 Thus, the final sample comprised 33 asymptomatic PM men aged between 20 and 68 years. Table 1 shows the distribution of CGG repeat length and descriptive statistics. Intellectual level was assessed using the Wechsler Abbreviated Scale of Intelligence, 12 which comprises 4 subtests that tap both verbal and performance domains (see table 1). Fragile X DNA testing. The repeat region in the 5 end of the FMR1 gene was identified for each participant using direct PCR techniques and quantified through comparison to a female control of known repeat size using PAGE gel electrophoresis. 13 A premutation is defined here as an allele ranging in size from 55 CGG repeats up to approximately 200 repeats without any evidence of abnormal methylation, which is indicative of gene silencing as occurs in full mutation FXS. Neuropsychological testing. In the cognitive domain of inhibition, we selected measures previously identified as most sensitive in the inhibition composite score 7 : the Hayling Sentence Completion and the Stroop Color-Word Tests. Several cognitive measures in the domain of working memory were chosen in Age, IQ, and CGG repeat length in individuals with moderate expansions of the FMR1 gene without FXTAS Mean SD (n 33) Range Age, y 45.33 14.87 20 68 Full-scale IQ 104.10 14.93 72 136 CGG length 99.53 28.56 55 161 CGG repeat distribution 100 CGG repeats 100 CGG repeats No. of participants 16 17 CGG repeat range 55 97 101 161 Abbreviation: FXTAS fragile X associated tremor/ataxia syndrome. particular, letter-number sequencing and Paced Auditory Serial Addition Test (PASAT) because they represent quite distinct neural circuits during performance. 14,15 Statistical analysis. Multiple regression analyses were conducted to test the moderating role of CGG repeat length on the relation between age and performance on inhibition or working memory tasks. The primary criterion measures were selected as the most sensitive inhibitory (Hayling category B errors, Stroop Color-Word interference score) and working memory (letternumber sequencing and PASAT accuracy scores) measures identified in our previous composite measures, 7,8 and the predictor variables were age, CGG repeat, and their interaction. Preliminary analyses indicated no significant effects involving full-scale, verbal, or performance IQ as covariates, and thus we excluded IQ scores from subsequent analyses. CGG repeat length and age were centered prior to regression analyses and multiplied together to represent this interaction according to previously established guidelines. 16 RESULTS Response inhibition measures. For Hayling category B errors, there was a significant association with age as well as an interaction between age and CGG repeat length (see table 2 for standardized B and t values). This analysis showed that CGG repeat length moderates the relationship between age and inhibitory control. Following previously established guidelines, 16 we graphed the interaction by calculating standardized values that represent the relationship between age and Hayling category B errors at high ( 1 SD) and low ( 1 SD) values of CGG repeat length using equations derived from the standardized B values (figure, A). The positive association between age and Hayling category B errors diminished as CGG repeats declined. Thus, when CGG repeats were relatively high ( 1 SD), there was a deterioration in inhibitory control with increasing age. When CGG repeats were relatively low ( 1 SD), this relationship diminished and there was no deterioration with increasing age. For Stroop Color-Word interference scores, there was a significant association with age but no interaction emerged between age and CGG repeat length (see table 2). Working memory measures. For letter-number sequencing correct responses, there was a significant association with age as well an interaction between CGG repeat size and age (see table 2). The relationship between age and letter-number sequencing score becomes stronger with increasing CGG repeat length (figure, B). When CGG repeats were relatively high ( 1 SD), letter-number sequencing was inversely associated with age. When CGG repeats were relatively low ( 1 SD), the relationship between age and performance on letter-number sequencing was diminished and performance did not deteriorate with increasing age. For PASAT accuracy scores, there was Neurology 77 August 16, 2011 619

Table 2 Standardized B and t values for the continuous moderator variable of CGG repeat length in the multiple regression analyses for Hayling category B errors, Stroop Color-Word interference scores, letter-number sequencing, and PASAT accuracy scores Hayling category B errors Stroop Color-Word interference score Letter-number sequencing score PASAT accuracy score Standardized B t Value Standardized B t Value Standardized B t Value Standardized B t Value Constant 1.05 10.28 a 7.38 a 6.33 a CGG repeat length 0.22 1.31 0.41 2.86 b.12 0.78 0.30 1.88 Age 0.35 2.19 c 0.55 3.92 a.47 3.14 b 0.42 2.66 c CGG repeat age 0.37 2.25 c 0.24 1.67.44 2.87 b 0.33 2.05 R 2 0.28 c 0.44 b 0.38 b 0.35 b Adjusted R 2 0.20 c 0.39 b 0.32 b 0.28 b Abbreviation: PASAT Paced Auditory Serial Addition Test. a p 0.001. b p 0.01. c p 0.05. a significant association with age, but no interaction emerged between CGG repeat and age (see table 2). DISCUSSION Our findings are the first to demonstrate that individuals in the upper size range of the FMR1 premutation may be at risk from an agerelated decline in selective inhibitory and working memory measures (Hayling task and letter-number sequencing, respectively). Furthermore, these findings suggest that specific executive markers may incur variable degrees of risk for developing a recently identified late-onset neurodegenerative disorder, FX- TAS, which is associated with global executive function deficits, intention tremor, and gait ataxia. The identification of specific executive markers in an at-risk subgroup of the FMR1 premutation suggests that executive function tasks that place demands on focal processing may be more vulnerable to the effects FMR1 mrna toxicity. This interpretation is in line with the extant studies that show larger CGG repeat sizes result in up to a 10-fold increase in FMR1 mrna levels, which appear to be toxic to neurons. 17,18 We conjecture that the toxic effects of high levels of FMR1 mrna and moderately lowered FMRP levels in patients with larger CGG repeat sizes 17 19 initially affect vulnerable prefrontal circuits resulting in the subtle yet specific impairments described here. This is consistent with numerous studies that imply toxicity increases with increasing CGG repeat length in patients with FXTAS, with significant correlations between CGG repeat size and age at onset of motor signs, 20 the presence of intranuclear inclusions throughout the brain, 21 MRI changes in carriers with and without FXTAS, 22 and the onset of marked cognitive impairments. 23 The current findings of an age-related cognitive decline using selective measures of inhibition and working memory indicate the greater sensitivity in the FMR1 premutation to deficits in specific neural networks. Functional imaging has demonstrated that performance on the Hayling task activates the left dorsolateral prefrontal cortex (DLPFC) underlying executive processes, 24 whereas the Stroop task has been shown to activate a broadly distributed network of integrated cortical regions that extend beyond the prefrontal cortex. 25 27 In contrast, functional imaging studies indicate that performance on letter-number sequencing activates a distinct pattern of neural activation in the orbital frontal lobe, DLPFC, and posterior parietal cortex underlying the executive working memory network. 14 Cortical activation during performance on the PASAT involves more extensive networks underlying verbal working memory and semantic memory retrieval networks. 15 Together, these findings indicate that the sensitivity in detecting an age-related decline may only become discernible in asymptomatic male carriers on measures that tap central executive functions that is, when performing complex mental operations such as planning, manipulation, and organization. We therefore posit that only central executive functions that require increasing demands to inhibitory and working memory control may confer at-risk profiles in asymptomatic carriers. The cross-sectional design of this study is a limitation in predicting whether cognitive decline manifested in the preclinical state may eventually develop into FXTAS. Therefore, whether specific executive markers may serve as cognitive precursors to the later onset of FXTAS should remain tentative in light of developmental cognitive problems proposed to be associated with the FMR1 premutation including autism and attention-deficit/hyperactivity disorder. 28,29 620 Neurology 77 August 16, 2011

Figure Relationship between age and inhibitory control or working memory at high and low values of CGG repeat length (A) Relationship between Hayling category B errors and age at high (z 1) and low (z 1) levels of CGG repeat length, and (B) relationship between letter-number sequencing score and age at high (z 1) and low (z 1) levels of CGG repeat length. Declarative learning and memory recall problems have been described in asymptomatic carriers of premutation alleles 6,30 ; however, it remains unclear whether these impairments are an indication of developmental changes as they manifest across the lifespan or presymptomatic vulnerability to later neurodegenerative decline associated with FXTAS. Our results provide the first evidence that the agerelated decline in inhibitory control and working memory in the FMR1 premutation may only become discernible in an at-risk premutation repeat range. Future longitudinal studies will be needed to determine whether selective executive markers may be precursors to more severe forms of dementia reported in patients with FXTAS. AUTHOR CONTRIBUTIONS Dr. Cornish conceptualized and designed the study, wrote the first draft of the manuscript, and provided intellectual input into the interpretation of the data. Dr. Hocking analyzed the data, provided intellectual input into the interpretation of the data, and co-wrote the first draft of the manuscript. Dr. Moss provided statistical analysis and input on the interpretation of the study findings. Dr. Kogan provided intellectual input into the interpretation of the data and co-wrote the first draft of the manuscript. ACKNOWLEDGMENT The authors thank the regional genetic centers that took part in the study, the Fragile X Society UK for their support in recruitment, and the families who participated. Received November 23, 2010. Accepted in final form February 1, 2011. REFERENCES 1. Cornish KM, Turk J, Hagerman R. The fragile X continuum: new advances and perspectives. J Intellect Disabil Res 2008;52:469 482. 2. Hagerman PJ, Hagerman RJ. Fragile X-associated tremor/ ataxia syndrome: an older face of the fragile X gene. Nat Clin Pract Neurol 2007;3:107 112. 3. Hagerman RJ, Leehey M, Heinrichs W, et al. Intention tremor, parkinsonism, and generalized brain atrophy in male carriers of fragile X. Neurology 2001;57:127 130. Neurology 77 August 16, 2011 621

4. Jacquemont S, Hagerman RJ, Leehey M, et al. Fragile X premutation tremor/ataxia syndrome: molecular, clinical, and neuroimaging correlates. Am J Hum Genet 2003;72: 869 878. 5. Brega AG, Goodrich G, Bennett RE, et al. The primary cognitive deficit among males with fragile X-associated tremor ataxia syndrome is a dysexecutive syndrome. J Clin Exp Neuropsychol 2008;30:853 869. 6. Grigsby J, Brega AG, Engle K, et al. Cognitive profile of fragile X premutation carriers with and without fragile X-associated tremor ataxia syndrome. Neuropsychology 2008;22:48 60. 7. Cornish KM, Li L, Kogan CS, et al. Age-dependent cognitive changes in carriers of the fragile X syndrome. Cortex 2008;44:628 636. 8. Cornish KM, Kogan CS, Li L, Turk J, Jacquemont S, Hagerman RJ. Lifespan changes in working memory in fragile X premutation males. Brain Cogn 2009;69:551 558. 9. Hunter JE, Allen EG, Abramowitz A, et al. No evidence for a difference in neuropsychological profile among carriers and noncarriers of the FMR1 premutation in adults under the age of 50. Am J Hum Genet 2008;83:692 702. 10. Hunter JE, Abramowitz A, Rusin M, Sherman SL. Is there evidence for neuropsychological and neurobehavioral phenotypes among adults without FXTAS who carry the FMR1 premutation? A review of current literature. Genet Med 2009;11:79 89. 11. Jacquemont S, Hagerman RJ, Leehey MA, et al. Penetrance of the fragile X-associated tremor/ataxia syndrome in a premutation carrier population. JAMA 2004;291: 460 469. 12. Wechsler D. Wechsler Abbreviated Scale of Intelligence. San Antonio, TX: The Psychological Corporation; 1999. 13. Kogan CS, Turk J, Hagerman RJ, Cornish KM. Impact of the fragile X mental retardation 1 (FMR1) gene premutation on neuropsychiatric functioning in adult males without fragile X-associated tremor/ataxia syndrome: a controlled study. Am J Med Genet B Neuropsychiatr Genet 2008;147B:859 872. 14. Haut MW, Kuwabara H, Leach S, Arias RG. Neural activation during performance of number-letter sequencing. Appl Neuropsychol 2000;7:237 242. 15. Audoin B, Ibarrola D, Au Duong MV, et al. Functional MRI study of PASAT in normal subjects. MAGMA 2005; 18:96 102. 16. Aiken LS, West SG. Multiple Regression: Testing and interpreting interactions. Newbury Park, CA: Sage; 1991. 17. Tassone F, Hagerman RJ, Taylor AK, Gane LW, Godfrey TE, Hagerman PJ. Elevated levels of FMR1 mrna in carrier males: a new mechanism of involvement in the fragile-x syndrome. Am J Hum Genet 2000;66:6 15. 18. Tassone F, Hagerman RJ, Loesch DZ, Lachiewicz A, Taylor AK, Hagerman PJ. Fragile X males with unmethylated, full mutation trinucleotide repeat expansions have elevated levels of FMR1 messenger RNA. Am J Med Genet 2000; 94:232 236. 19. Kenneson A, Zhang F, Hagedorn CH, Warren ST. Reduced FMRP and increased FMR1 transcription is proportionally associated with CGG repeat number in intermediate-length and premutation carriers. Hum Mol Genet 2001;10:1449 1454. 20. Tassone F, Adams J, Berry-Kravis EM, et al. CGG repeat length correlates with age of onset of motor signs of the fragile X-associated tremor/ataxia syndrome (FXTAS). Am J Med Genet 2007;144B:566 569. 21. Greco CM, Berman RF, Martin RM, et al. Neuropathology of fragile X-associated tremor/ataxia syndrome (FXTAS). Brain 2006;129:243 255. 22. Cohen S, Masyn K, Adams J, et al. Molecular and imaging correlates of the fragile X-associated tremor/ataxia syndrome. Neurology 2006;67:1426 1431. 23. Sevin M, Kutalik Z, Bergman S, et al. Penetrance of marked cognitive impairment in older male carriers of the FMR1 gene premutation. J Med Genet 2009;46:818 824. 24. Nathaniel-James DA, Frith CD. The role of the dorsolateral prefrontal cortex: evidence from the effects of contextual constraint in a sentence completion task. Neuroimage 2002;16:1094 1102. 25. Leung HC, Skudlarski P, Gatenby JC, Peterson BS, Gore JC. An event-related functional MRI study of the Stroop Color Word interference task. Cereb Cortex 2000;10: 552 560. 26. Peterson BS, Skudlarski P, Gatenby JC, Zhang H, Anderson AW, Gore JC. An fmri study of Stroop word-color interference: evidence for cingulate subregions subserving multiple distributed attentional systems. Biol Psychiatry 1999;45:1237 1258. 27. Peterson BS, Kane MJ, Alexander GM, et al. An eventrelated functional MRI study comparing interference effects in the Simon and Stroop tasks. Brain Res Cogn Brain Res 2000;13:427 440. 28. Farzin F, Perry H, Hessl D, et al. Autism spectrum disorders and attention-deficit/hyperactivity disorder in boys with the fragile X premutation. J Dev Behav Pediatr 2006; 27:S137 S144. 29. Aziz M, Stathopulu E, Callias M, et al. Clinical features of boys with fragile X premutations and intermediate alleles. Am J Med Genet 2003;121B:119 127. 30. Koldewyn K, Hessl D, Adams J, et al. Reduced hippocampal activation during recall is associated with elevated FMR1 mrna and psychiatric symptoms in men with fragile x premutation. Brain Imaging Behav 2008;2:105 116. 622 Neurology 77 August 16, 2011