Good Neurocognitive Performance Measured by the International HIV Dementia Scale in Early HIV-1 Infection

Similar documents
COGNITIVE DYSFUNCTION AMONG HIV-POSITIVE PATIENTS ATTENDING CCC AT KENYATTA NATIONAL HOSPITAL

Improvement in HIV-associated motor slowing after antiretroviral therapy including protease inhibitors

Approach to HIV Associated Neurocognitive disorders (HAND)

The prevalence of HIV-associated neurocognitive

International Symposium on. Barcelona, May 5 th and 6 th 2011

The Relationship Between Age and Cognitive Function in HIV-Infected Men

HIV Dementia Scale and Psychomotor Slowing The Best Methods in Screening for Neuro-AIDS

While great progress has been made in understanding

How to Implement this Assessment in the Clinical Prac5ce?

HIV-associated neurocognitive disorder in HIV-infected Koreans: the Korean NeuroAIDS Project

Dr Ria Daly. Birmingham Heartlands Hospital. 18 th Annual Conference of the British HIV Association (BHIVA)

ORIGINAL CONTRIBUTION. Factors Associated With Incident Human Immunodeficiency Virus Dementia

Differential diagnosis between depression and neurocognitive impairment in HIV-infected persons

HIV DISEASE! Neurobehavioral! Neuromedical. Igor Grant, MD, FRCP(C) Director HIV Neurobehavioral Research Program University of California, San Diego

3rd IAS Conference on HIV Pathogenesis and Treatment. Poster Number Abstract #

HIV-Associated Neurocognitive Disorders (HAND) Aroonsiri Sangarlangkarn, MD, MPH, Jonathan S. Appelbaum, MD, FACP

Depression in People Living with HIV/AIDS: Outcomes, Risks and Opportunities for Intervention

HIV associated CNS disease in the era of HAART

HIV 101: Overview of the Physiologic Impact of HIV and Its Diagnosis Part 2: Immunologic Impact of HIV and its Effects on the Body

The Association Between Comorbidities and Neurocognitive Impairment in Aging Veterans with HIV

ORIGINAL CONTRIBUTION

Progress in understanding the pathogenesis of HIV-1-

Cognitive impairment among Indonesia HIV naïve patients

Sustained cognitive decline in HIV infection: relationship to CD4+ cell count, plasma viremia and p24 antigenemia

International HIV Dementia Scale:

Central Nervous System Penetration of ARVs: Does it Matter?

The availability and cost are obstacles to using pvl in monitoring HIV treatment outcomes in resource-constrained settings

The prevalence and incidence of neurocognitive impairment in the HAART era

Definitional Criteria Working Group 1: Toward an Updated Nosology for HIVassociated Neurocognitive Disorders

Changes in viral suppression status among US HIV-infected patients receiving care

Distribution and Effectiveness of Antiretrovirals in the Central Nervous System

High rates of asymptomatic neurocognitive impairment are observed in perinatally HIV-infected adolescents

Forget me not: providing care for people living with HIV and dementia (What does the future hold for our elderly HIV patients?)

HIV Neurology Persistence of Cognitive Impairment Despite cart

HIV-1 Dual Infection and Neurocognitive Impairment

PART IV! CLINICAL IMPLICATIONS

Highly active antiretroviral (ARV) therapy (HAART) has dramatically

Dynamics of cognitive change in impaired HIV-positive patients initiating antiretroviral therapy

Prevalence and factors associated with probable HIV dementia in an African population: A cross-sectional study of an HIV/AIDS clinic population

Original Article. J Young Pharm, 2016; 8(3): A multifaceted peer reviewed journal in the field of Pharmacy

Systemic monocyte activation levels and developmental milestone attainment in HIV-infected. infants initiating antiretroviral therapy.

Table S1. Number of eligible individuals by cohort, HIV-CAUSAL and CNICS Collaborations,

Lambros Messinis PhD. Neuropsychology Section, Department of Neurology, University of Patras Medical School

Report Back from CROI 2010

HIV in the Brain MANAGING COMORBIDITIES IN PATIENTS WITH HIV

Effect of ageing on neurocognitive function by stage of HIV infection: evidence from the Multicenter AIDS Cohort Study

HIV/AIDS CLINICAL CARE QUALITY MANAGEMENT CHART REVIEW CHARACTERISTICS OF PATIENTS FACTORS ASSOCIATED WITH IMPROVED IMMUNOLOGIC STATUS

The Role of Cardiovascular Risk and Aging in Memory Performance in a Sample of Veterans with HIV

HIV/AIDS MEASURES GROUP OVERVIEW

Antiviral Therapy 2016; 21: (doi: /IMP3052)

Incidence and prevalence of neurological disorders associated with HIV since the introduction of highly active antiretroviral therapy (HAART)

COGNITIVE FUNCTIONING IN ADULTS AGING WITH HIV: EXPLORING COGNITIVE SUBTYPES AND INFLUENTIAL FACTORS PARIYA L. FAZELI

HIV Treatment Update. Awewura Kwara, MD, MPH&TM Associate Professor of Medicine and Infectious Diseases Brown University

Antiviral Therapy 2015; 20: (doi: /IMP2926)

ORIGINAL CONTRIBUTION. Prediction of Incident Neurocognitive Impairment by Plasma HIV RNA and CD4 Levels Early After HIV Seroconversion

Original Article. Noparat Oniem, M.D., Somnuek Sungkanuparph, M.D.

Neuropsychological assessment in HIV/AIDS and its challenges in Galati County

natural history of the disease, there is no rationale for limiting screening of cognitive

227 28, 2010 MIDTERM EXAMINATION KEY

Antiviral Therapy 14:

Neurocognitive impairment still occurs in HIV-infected individuals even in those treated with highly active

DOI: /hiv British HIV Association HIV Medicine (2013), 14, SHORT COMMUNICATION

Antiretroviral Treatment Strategies: Clinical Case Presentation

Malaysian Consensus Guidelines on Antiretroviral Therapy Cheng Joo Thye Hospital Raja Permaisuri Bainun Ipoh

Supplement for: CD4 cell dynamics in untreated HIV-1 infection: overall rates, and effects of age, viral load, gender and calendar time.

Neurologic disorders incidence in HIV+ vs HIV men : Multicenter AIDS Cohort Study,

A Comparison of Clinical Features among Patients Suffering from Depression in HIV Positive and HIV Negative Cases

Can high central nervous system penetrating antiretroviral regimens protect against the onset of HIV-associated neurocognitive disorders?

HIV AND LUNG HEALTH. Stephen Aston Infectious Diseases SpR Royal Liverpool University Hospital

Contemporary Issues in Adolescent Care. Mental Health

Pediatric Antiretroviral Resistance Challenges

Chin-Hui Yang, M.D. Hui-Rong Liu, Sung-Yin Chen, Yen-Fang Huang, Shih-Yan Yang Third Division, Centers for Disease Control, Department of Health,

HIV-associated cognitive disorders: Scientific discoveries through international collaborations in Thailand Valcour, Victor

Antiviral Therapy 2013; 18: (doi: /IMP2560)

Metabolic Syndrome is Associated with Neurocognitive Deficits in Persons Living with HIV

HIV-1 Subtypes: An Overview. Anna Maria Geretti Royal Free Hospital

Title: Analysis of the immunologic status of a newly diagnosed HIV positive population in China

Clinical Epidemiology of Frailty in HIV Infection. Joseph B. Margolick, MD, PhD Johns Hopkins Bloomberg School of Public Health

Comparing adherence items of missed doses with different timeframes and their associations with viral load in routine clinical care

Engagement is Key to Effectiveness of Individualized Texting for Adherence Building (itab) Among HIV+ Methamphetamine Users

HIV and Brain Func.on. Tristan J Barber Research Physician St Stephen s AIDS Trust Chelsea and Westminster Hospital

Predictors of Adherence to Antiretroviral Medications in Children and Adolescents With HIV Infection

11/7/2012. HIV disease: Chronic Disease Patients are aging with their HIV disease on effective antiretroviral therapy (ART)

Michael Healy August 8, 2012 Irving CRC Research Proposal. 1. Study Purpose and Rationale

Clinical notes: Management of HAART in patients with HAND

Low prevalence of neurocognitive impairment in early diagnosed and managed HIV-infected persons

CAB 59: HIV and neurocogni5ve impairment

HAND is Common and Important in Patients on ART

Definitions of antiretroviral treatment failure for measuring quality outcomes

CHAPTER 5 NEUROPSYCHOLOGICAL PROFILE OF ALZHEIMER S DISEASE

Imaging in Pediatric `neurohiv Dr Jackie Hoare Head of Liaison Psychiatry Groote Schuur Hospital, UCT

Resilience in Women with HIV: Relationships with Abuse History, Medication Adherence and HIV Viral Load

EPIDEMIOLOGY AND PREVENTION

PAEDIATRIC HIV INFECTION. Dr Ashendri Pillay Paediatric Infectious Diseases Specialist

Date of study period: April 12 May 7, 2010 and August September, 2010

Technical appendix to How should access to antiretroviral treatment be measured? Published in the Bulletin of the World Health Organization

A semantic verbal fluency test for English- and Spanish-speaking older Mexican-Americans

Opportunistic infections in the era of cart, still a problem in resource-limited settings

International Forum on HIV and Rehabilitation Research

HIV coinfection and HCC

Transcription:

BRIEF REPORT: CLINICAL SCIENCE Good Neurocognitive Performance Measured by the International HIV Dementia Scale in Early HIV-1 Infection Gustavo D. Lopardo, MD,* Emiliano Bissio, MD,* María del C. Iannella,* Alejandro D. Crespo, MD,* Daniela B. Garone, MD, and Lidia I. Cassetti, MD* Objective: To evaluate neurocognitive performance in patients with preserved immunological status using the International HIV Dementia Scale (IHDS) and compare patients on and off highly active antiretroviral therapy (HAART). Design: Cross-sectional study. Methods: Outpatients with more than 350 CD4 cells per cubic millimeter underwent evaluation by means of the IHDS, a cross-cultural scale designed to identify HIV-positive patients at risk for dementia. Results: A total of 260 patients were included, 158 on HAART and viral load,1000 copies per ml and 102 on treatment naïve. Mean age was 38.2 (SD 8.03) years, 86% were male. Mean score was 10.9 (SD 1.77). Only age correlated with a significantly different score; younger patients performed better. When patients on and off HAART were compared, we found no significant differences in age, sex, time from diagnosis, educational level, risk factor for HIV acquisition, and current CD4 count. CD4 nadir was lower for patients on HAART: 246.0 (200.95) vs. 492.7 (233.33), P, 0.001. There was no difference between the scores obtained by patients on and off HAART (mean 11.0, SD 2.08; mean 10.8, SD 1.17; respectively, P = 0.70). There was no difference according to efavirenz use. Conclusions: Patients with preserved immunity performed well on IHDS. It didn t seem to be any difference between patients on and off HAART regarding neurocognitive status. Key Words: HIV infection, HIV dementia, international HIV dementia scale, neurocognitive disorders (J Acquir Immune Defic Syndr 2009;52:522 526) INTRODUCTION Cognitive and motor impairment is still recognized as a common complication in HIV-1 infection, presenting as a wide spectrum of disorders ranging from HIV-associated Received for publication December 8, 2008; accepted April 30, 2009. From the *Fundación del Centro de Estudios Infectológicos, FUNCEI, Buenos Aires, Argentina; Department of Infectious Diseases, Hospital Profesor Bernardo Houssay, Vicente López, Argentina; and Helios Salud, Buenos Aires, Argentina. Conflicts of interest: none. Correspondence to: Gustavo D. Lopardo, MD, Fundación del Centro de Estudios Infectológicos, FUNCEI. French 3085 (C1425AWK), Buenos Aires, Argentina (e-mail: glopardo@intramed.net.ar). Copyright Ó 2009 by Lippincott Williams & Wilkins asymptomatic neurocognitive impairment (ANI) to severe forms of cognitive impairment, known as HIV-1 associated dementia (HAD). In early HIV-1 infection, prevalence of ANI is about 20%. 1 In patients with AIDS, prevalence of any cognitive impairment is 52% in those younger than 50 and more than 80% in those older than 50. 2,3 The role of HIV-1 proliferation on the development of HIV dementia is controversial. Although viral strains replicating in brain macrophages may play a role in the pathogenesis of brain injury, a heavy viral burden in brain has not been linked consistently with clinical HIV dementia. 2,3 Neurocognitive impairment should be diagnosed and assessed early in the course of HIV-1 infection because it is associated with increased mortality, 4,5 may interfere with adherence, 6 and may be treated with antiretroviral agents. Giancola et al 7 demonstrated that control of plasma levels of HIV-1 RNA in less advanced HIV patients affected by mild neurocognitive disorders could be sufficient to improve the deficits. As HIV is now a chronic and manageable disease, the relative importance of neurological morbidity has increased. Neuropsychological testing is a critical component of the diagnosis, but it is time consuming, language and educational dependent, and often not available in developing countries. Mini Mental State Exam by Folstein et al 8 was designed to screen for cortical dementia, it is therefore not sensitive for detecting subcortical dementia such as HIV dementia. 9 The HIV Dementia Scale was designed as a brief but sensitive screening instrument to identify HIV-1 infected patients at risk for dementia. However, it is difficult for nonneurologists to administer and includes subtests which may be difficult for individuals with a nonwestern educational background. Sacktor et al 10,11 developed a practical cross-cultural screening instrument, the International HIV Dementia Scale (IHDS). It offers several advantages: it is easy to perform, requires only 2 3 minutes by nonneurologists in an outpatient setting, requires no special instrumentation, and detects subcortical damage such as HIV dementia. It does not require knowledge of the English language. The sensitivity and specificity of the IHDS are comparable to the sensitivity (71%) and specificity (46%) of the Grooved Pegboard nondominant hand test, an established test for HIV dementia. 12 14 The IHDS identifies individuals at risk for HIV dementia within the International community, particularly in developing countries. However, it should not be used as a replacement for a full neuropsychological testing to confirm a diagnosis of HIV dementia. 522 www.jaids.com J Acquir Immune Defic Syndr Volume 52, Number 4, December 1, 2009

J Acquir Immune Defic Syndr Volume 52, Number 4, December 1, 2009 Neurocognitive Performance in HIV Infection According to the Department of Health and Human Services (DHHS) guidelines, most asymptomatic HIV-1 infected patients with CD4 cell count.350 cells per cubic millimeter would not require antiretroviral therapy. 15 Nevertheless, there is concern that patients who do not receive antiretroviral therapy may develop neurocognitive impairment despite preserved immunological status. The impact of continuing viral replication in this population is not known. The mean CD4 cell count for new cases of HIV dementia is increasing. 16 Sacktor et al 17 assessed the temporal trends in the incidence rates of HIV dementia from 1990 to 1998 in the Multicenter AIDS Cohort Study. They found that the incidence decreased dramatically since the introduction of highly active antiretroviral therapy (HAART) in 1996 compared with the incidence rates from 1990 to 1992. However, they also found that the proportion of new cases of HIV-1 associated dementia with higher CD4 count increased compared with the early 1990s. Our hypothesis was that asymptomatic HIV-infected patients with high CD4 cell count could be at risk of developing neurocognitive impairment, particularly for those who do not receive HAART. The objective of this study was to evaluate the presence of neurocognitive impairment in patients with preserved immunological status using the new IHDS in a developing country and to compare patients with controlled plasma viral load replication on HAART with those not receiving HAART. METHODS This was a cross-sectional study. The population consisted of outpatients with CD4 cell count higher than 350 cells per cubic millimeter from 2 HIV clinics and 1 hospital in Buenos Aires. The Ethics committee of the participating institutions approved the study, and participants signed informed consent to participate. Patients were eligible if they had confirmed HIV-1 infection, were older than 18 years, had a CD4 cell count above 350 cells per cubic millimeter, and HIV-1 viral load measured in the previous 3 months. Patients with a history of psychiatric disease, including depression, current use of recreational drugs, and current or previous opportunistic infections, and patients on HAART with viral load.3 log were excluded. All patients accomplishing inclusion criteria, who assisted to an outpatient visit, were offered to participate in the study. Patients were divided in 2 groups: those on HAART and VL,1000 and those treatment-naïve. All the patients underwent evaluation by means of IHDS, which consist of 3 subsets 9 : timed fingertapping, timed alternating hand sequence test, and recall of 4 words at 2 minutes (score #10 suggestive of dementia). Four different physicians, all specialists in infectious diseases, performed the test. The following variables were assessed: age, gender, educational level, risk factor for acquisition of HIV infection, time from diagnosis of HIV infection, current CD4 cell count, CD4 cell count nadir, and current viral load. Participants on HAART were stratified according to the use of efavirenz. We analyzed the scores according to different variables and then compared those patients on HAART with controlled plasma viral load replication with those not receiving HAART. Demographic variables, age, gender, educational level, risk factor for acquisition of HIV infection, time from diagnosis of HIV infection, current CD4 cell count, CD4 cell count nadir, and current viral load were analyzed between groups to ascertain homogeneity before performing statistical analysis of scores. For categorical variables, such as gender, educational level, risk for acquisition of HIV infection, time from diagnosis of HIV infection (,5 years, $5 years) x 2 or Fisher exact tests were used. Mean age, mean current CD4 cell count, and mean CD4 cell count nadir and mean maximal viral load were compared with Student t test for independent samples. Wilcoxon test was applied to analyze current viral load. Demographic variables were stratified; mean score and number of subjects per strata were computed and analyzed. x 2 or Fisher exact tests were applied. Univariate and multivariate analyses were performed. All the variables were tested for univariate analysis. Logistic regression was applied to identify risk factors associated to HIV dementia among the analyzed variables. IHDS score was considered the dependent variable. Educational level was excluded because of the homogeneity of the sample; also intravenous drug users as a risk factor for HIV acquisition was excluded due to the low number of patients in this group. All tests were 2 tailed; P, 0.05 was considered statistically significant. Software SPSS 15.0, Chicago, IL, 2007 was used. RESULTS During a 2-month period, 260 subjects were enrolled, 158 on HAART, and 102 treatment naive. Mean age was 38.2 years, (SD 8.03, r = 21 73), 86% were men, 96% acquired HIV sexually (64% men who have sex with men, 32% heterosexual) (Table 1). Mean score was 10.9 (SD 1.77). Of all the variables analyzed, only age was found to be associated with a different performance. The score was significantly higher in the group of patients 21 44 years old compared with those 45 73 years old. Mean scores were 11.1 and 10.2, respectively; P, 0.001, Fisher (Table 2). None of the other variables showed a statistically significant difference. Regarding educational level, most patients were highly educated, so it was not possible to perform the analysis. More than 90% of participants had finished high school or had a university degree. Eighty-three patients were on efavirenz, they did not perform different from the rest of the population (Table 1). Age, gender, risk factor for HIV acquisition, time from diagnosis of HIV infection, educational level, and current CD4 cell count were similar between groups. CD4 cell count nadir was lower for patients on HAART: 246.0 (200.95) and 492.7 (233.33) for patients off HAART, P, 0.001 (t test). Median current viral load was,50 copies per milliliter (interquartile range:,50 to,50) and 21,102 copies per milliliter (interquartile range: 6360 83,900), respectively. When we compared both groups, those on therapy with those off, we found no difference between the distribution of q 2009 Lippincott Williams & Wilkins www.jaids.com 523

Lopardo et al J Acquir Immune Defic Syndr Volume 52, Number 4, December 1, 2009 TABLE 1. Variables Analyzed in Patients on and Off HAART Total (N = 260) On HAART (n = 158) Off HAART (n = 102) P Male sex (n = 259), n (%) 222/259 (86) 131/158 (83) 91/102 (89) 0.21 (Fisher) Mean age (n = 259) 38.2 (8.03) 38.9 (7.78) (n = 157) 37.1 (8.31) (n = 102) 0.07 (t test) Risk factor for HIV acquisition IVDU, n (%) 9/241 (4) 6/141 (4) 3/100 (3) 0.09 (x 2, Pearson) Heterosexual, n (%) 78/241 (32) 53/141 (38) 25/100 (25) MSM, n (%) 154/241 (64) 82/141 (58) 72/100 (72) Current CD4 (n = 260) 620.2 (239.76) 632.1 (239.98) (n = 158) 601.8 (239.43) (n = 102) 0.32 (t test) Current viral load (n = 255), median (interquartile range) 50 (50 10,850) 50 (50 50) (n = 157) 21,102 (6360 83,900) (n = 98),0.001 (Wilcoxon, w = 12,686) CD4 cell count nadir (n = 250) 345.7 (246.13) 246.0 (200.95) (n = 149) 492.7 (233.33) (n = 101),0.001 (t test) Efavirenz use (n = 155), n (%) 83/155 (54) Educational level (n = 225) 209/225 (93) 118/128 (92) 91/97 (94) 0.80 (Fisher) (finished high school), n (%) Maximal viral load, mean (SD) (n = 233) 288,995.2 (843,002.00) 270,953.7 (319,552.31) (n = 136) 314,290.6 (1,254,076.90) (n = 97),0.001 (t test) MSM, men who have sex with men. scores: mean, 11.0 (2.08) and mean, 10.08 (1.17), respectively, P = 0.70 (Fisher). Finally, the score was classified as #10 points or.10 points. A logistic regression model analysis was performed to assess if any of the variables analyzed was an independent risk factor for a lower score. The score was considered the dependent variable. According to the logistic regression model, only age was related to the score. Advanced age was a significant risk factor for IHDS score #10 (odds ratio = 3.5, 95% confidence interval: 1.36 to 8.99; P, 0.01). Younger participants, those aged 21 44, performed better (Fig. 1). DISCUSSION The results of our study do not confirm our hypothesis. According to the IHDS, our population do not have a significant risk of HIV-associated dementia. Besides, the presence of controlled plasma viral load replication does not seem to show any benefit on the risk of developing HIV dementia in this population. In univariate and multivariate analysis, only older patients were at higher risk. Neither gender, risk factor, time from diagnosis of HIV-1 infection, current CD4 cell count and viral load, nor CD4 cell count nadir were associated with risk. It is well known that efavirenz may cause neurological side effects and could interfere in neurocognitive performance. 18 We did not find any difference in patients receiving efavirenz and those not. Epidemiological research initiatives identified an increased rate of HIV-associated dementia among older patients. 19 It is not clear if there is an additive or synergistic relationship between aging and HIV on neuropsychological TABLE 2. Neurological Performance According to Different Variables Variable Strata n Mean Score P Age (n = 259) 21 44 210 11.1 (1.85),0.001 (Fisher) 45 73 49 10.2 (1.17) Sex (n = 259) Men 222 11.0 (1.86) 0.45 (Fisher) Women 37 10.6 (1.06) Risk factor for acquisition of HIV-1 infection (n = 241) Heterosexual 78 10.5 (1.16) 0.003 (x 2, Pearson) MSM 154 11.0 (1.06) IVDU 9 10.1 (0.85) Time from diagnosis of HIV-1 infection (n = 251),5 yrs 84 10.8 (1.14) 0.48 (Fisher) $5 yrs 167 11.0 (2.05) Current CD4 cell count (n = 260) #500 mm 3 96 11.1 (2.50) 0.41 (Fisher).500 mm 3 164 10.8 (1.15) CD4 cell count nadir (n = 250) #200 mm 3 76 11.0 (2.36) 0.66 (Fisher).200 mm 3 174 10.8 (1.11) Current viral load (n = 246) $1000 copies/ml 91 10.8 (1.18) 0.67 (Fisher),1000 copies/ml 155 11.0 (2.04) Efavirenz as part of HAART (n = 155) Yes 83 11.1 (1.72) 0.13 (Fisher) MSM, men who have sex with men; IVDU, intravenous drug users. 524 www.jaids.com q 2009 Lippincott Williams & Wilkins

J Acquir Immune Defic Syndr Volume 52, Number 4, December 1, 2009 Neurocognitive Performance in HIV Infection FIGURE 1. Scattergram showing the distribution of IHDS scores by age in both groups. testing performance. The presence of coexisting diseases, particularly neurodegenerative disorders among older patients limits our ability to identify HIV-specific etiologies. HIV infection could increase the risk for other age-related neurodegenerative disorders. 20 Historically, there was little need to consider age-related neurodegenerative diseases as a contributing factor to neurocognitive impairment in HIV infection because the young age of HIV-infected population. Today, prolonged life expectancy, arise the issue of aging as a relevant factor in neurocognitive impairment. HIV infection could lower the threshold for the clinical presentation of other neurodegenerative diseases. Early diagnosis of HIV neurocognitive impairment is crucial, particularly, because it is a potentially treatable condition with antiretroviral therapy. The benefit of HAART on neuropsychological function in patients with advanced diseases is well known; neurocognitive improvement has been associated with a decline in cerebrospinal fluid HIV-1 RNA in patients who started HAART therapy after diagnosis of a cognitive deficit. 21,22 IHDS proved to be an easy to perform tool in a Spanish-speaking population from a developing country. Besides, it proved not to be time consuming and could be provided by nonneurologists. Within different regions, different subtypes (clades) of HIV-1 predominate, each with possible variations in disease progression and incidence of HAD. There has been some suggestions that the neurotoxicity of clade C is less than that of other clades. 23 So far, most studies about incidence and prevalence of HAD have been conducted in the developed world and in North America, in particular, where clade B predominates. In Argentina, clades B and BF are the predominant clades. Our study has several limitations. First, the population we studied has a preserved immune status and therefore the risk of HIV-associated dementia could be low. Second, IHDS has been developed to screen for HIV-associated dementia and probably is not sensitive enough to screen for HIV-1 associated minor cognitive disorders such as ANI or HIVassociated minor neurocognitive disorder. However, the most relevant limitation of IHDS has been shown to be specificity, not sensitivity. 10 The IHDS cannot be used to distinguish between different stages of HIV dementia, although progressively lower mean IHDS scores did correspond to greater dementia severity in a previous study. 10 Third, this was a crosssectional analysis, and the sample size was not big enough to be powered to show differences according to some of the analyzed variables such as risk factor for HIV infection. Fourth, our population was mainly composed by men who have sex with men and highly educated patients; education is known to be a protecting factor for neurocognitive impairment. 24 Finally, patients on HAART received drugs with different central nervous system penetration. According to our results, patients with preserved immune status do not seem to be at high risk of developing clinically significant neurocognite impairment measured by IHDS, and it does not seem to have any difference between those being on antiretroviral therapy with controlled plasma viral load and those who are not on antiretroviral therapy. Only older patients could be at higher risk. ACKNOWLEDGMENT The authors would like to thank Dr. Karl Goodkin for his substantial contribution to this paper. REFERENCES 1. Antinori A, Arendt G, Becker JT, et al. Updated research nosology for HIV-associated neurocognitive disorders. Neurology. 2007;69: 1789 1799. 2. Hinkin CH, Castellon SA, Atkinson JH, et al. Neuropsychiatric aspects of HIV infection among older adults. J Clin Epidemiol. 2001;54(Suppl 1): S44 S52. 3. Chiesi A, Vella S, Dally LG, et al. Epidemiology of AID S dementia complex in Europe. J Acquir Immune Defic Syndr. 1996;11:39 44. 4. McArthur JC, Cohen BA, Selnes OA, et al. Low prevalence of neurological and neuropsychological abnormalities in otherwise healthy HIV-1 infected individuals: results from the Multicenter AIDS Cohort Study. Ann Neurol. 1989;26:601 611. 5. Sacktor NC, Bacellar H, Hoover DR, et al. Psychomotor slowing in HIV infection. A predictor of dementia, AIDS and death. Neurovirol. 1996;2: 404 410. 6. Hinkin CH, Hardy DJ, Mason KI, et al. Medication adherence in HIVinfected adults: affect of patient age, cognitive status, and substance abuse. AIDS. 2004;18(Suppl 1):S19 S25. q 2009 Lippincott Williams & Wilkins www.jaids.com 525

Lopardo et al J Acquir Immune Defic Syndr Volume 52, Number 4, December 1, 2009 7. Giancola ML, Lorenzini P, Balestra P, et al. Neuroactive antiretroviral drugs do not influence neurocognitive performance in less advanced HIVinfected patientes responding to highly active antiretroviral therapy. J Acquir Immune Defic Syndr. 2006;41:332 337. 8. Folstein MF, Folstein SE, McHugh PR. Mini-Mental State : a practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res. 1975;12:189 198. 9. McArthur JC. Neurologic manifestations of AIDS. Medicine (Baltimore). 1987;66:407 437. 10. Sacktor NC, Wong M, Nakasujja N, et al. The international dementia scale: a new rapid screening test for HIV dementia. AIDS. 2005;19: 1367 1374. 11. Berger JR, Brew B. An international screening tool for HIV dementia. AIDS. 2005;19:2165 2166. 12. Davis HF, Skolasky RL Jr, Selnes OA, et al. Assessing HIV-associated dementia: modified HIV dementia scale versus the Grooved Pegboard. AIDS Read. 2002;12:29 31, 38. 13. MacArthur JC, Cohen BA, Selnes OA, et al. Low prevalence of neurological and neuropsychological abnormalities in otherwise healthy HIV-1 infected individuals: results from the Multicenter AIDS Cohort Study. Ann Neurol. 1989;26:601 611. 14. Miller EN, Selnes OA, MacArthur JC, et al. Neuropsychological performance in HIV-1 infected homosexual men: The Multicenter AIDS Cohortt Study (MACS). Neurology. 1990;40:197 203. 15. Department of Health and Human Services. Panel on Clinical Practices for Treatment of HIV infection convened by the US Department of Health and Human Services. Guidelines for the use of antiretroviral agents in HIV-1 infected adults and adolescents 2008. Available at: http://aidsinfo.nih.gov/contentfiles/adultandadolescentgl.pdf. Accessed December 7, 2008. 16. Sacktor NC. The epidemiology of human immunodeficiency virusassociated neurological disease in the era of highly active antiretroviral therapy. J Neurovirol. 2002;8(Suppl 2):115 121. 17. Sacktor N, Lyles RH, Skolasky R, et al. HIV-associated neurologic disease incidence changes: Multicenter AIDS Cohort Study, 1990 1998. Neurology. 2001;56:257 260. 18. Gazzard BG. Efavirenz in the management of HIV infection. Int J Clin Pract. 1999;53:60 64. 19. Valcour V, Shikuma C, Shiramizu B, et al. Higher frequency of dementia in older HIV-1 Cohort. Neurology. 2004;63:822 827. 20. Valcour V, Paul R. HIV infection and dementia in older adults. Clin Infect Dis. 2006;42:1449 1454. 21. Marra CM, Lockhart D, Zunt JR, et al. Changes in CSF and plasma HIV-1 RNA and cognition after starting potent antiretroviral therapy. Neurology. 2003;60:1388 1390. 22. Robertson KR, Robertson WT, Ford S, et al. Highly active antiretroviral therapy improves neurocognitive functioning. J Acquir Immune Defic Syndr. 2004;36:562 566. 23. Joska JA, Fincham DS, Stein DJ, et al. Clinical correlates of HIVassociated neurocognitive disorders in South Africa. AIDS Behav. Mar 27, 2009. E-pub ahead of print. 24. De Ronchi D, Faranca I, Berardi D, et al. Risk factors for cognitive impairment in HIV-1-infected persons with different risk behaviors. Arch Neurol. 2002;59:812 818. 526 www.jaids.com q 2009 Lippincott Williams & Wilkins