Case Report Cerebral Hyperperfusion Syndrome following Protected Carotid Artery Stenting

Similar documents
Cerebral hyperperfusion syndrome after carotid angioplasty

Post-op Carotid Complications A Nursing Perspective of What to Watch Out for

Intracranial Hemorrhage after Stenting and Angioplasty of Extracranial Carotid Stenosis

Case Report Successful Implantation of a Coronary Stent Graft in a Peripheral Vessel

A Patient with Stenosis of the Cervical Internal Carotid Artery in Whom Hyperperfusion Syndrome Occurred after Staged Angioplasty

Hyperperfusion syndrome after MCA embolectomy a rare complication?

Carotid Endarterectomy for Symptomatic Complete Occlusion of the Internal Carotid Artery

Research Article Abdominal Aortic Aneurysms and Coronary Artery Disease in a Small Country with High Cardiovascular Burden

Extracranial Carotid Artery Stenting With or Without Distal Protection Device

Percutaneous Transluminal Angioplasty and Stenting for Chronic Total Occlusion of Intracranial Carotid Artery A Case Report

Carotid Embolectomy and Endarterectomy for Symptomatic Complete Occlusion of the Carotid Artery as a Rescue Therapy in Acute Ischemic Stroke

Tom Eisele, Benedikt M. Muenz, and Grigorios Korosoglou. Department of Cardiology & Vascular Medicine, GRN Hospital Weinheim, Weinheim, Germany

Nicolas Bianchi M.D. May 15th, 2012

Endovascular treatment for pseudoocclusion of the internal carotid artery

Case Report Asymptomatic Pulmonary Vein Stenosis: Hemodynamic Adaptation and Successful Ablation

Department of Internal Medicine, Saitama Citizens Medical Center, Saitama , Japan

Comparison of Five Major Recent Endovascular Treatment Trials

TCD AND VASOSPASM SAH

Carotid Revascularization

Case Report Coronary Artery Perforation and Regrowth of a Side Branch Occluded by a Polytetrafluoroethylene-Covered Stent Implantation

Spontaneous Recanalization after Complete Occlusion of the Common Carotid Artery with Subsequent Embolic Ischemic Stroke

Clinical Study Endovascular Recanalization for Chronic Symptomatic Intracranial Vertebral Artery Total Occlusion

HEART AND SOUL STUDY OUTCOME EVENT - MORBIDITY REVIEW FORM

Recanalization of Chronic Carotid Artery Occlusion Objective Improvement Of Cerebral Perfusion

DEPARTMENT OF HEALTH & HUMAN SERVICES Public Health Service

Vivek R. Deshmukh, MD Director, Cerebrovascular and Endovascular Neurosurgery Chairman, Department of Neurosurgery Providence Brain and Spine

This quiz is being published on behalf of the Education Committee of the SNACC.

Conference Paper Antithrombotic Therapy in Patients with Acute Coronary Syndromes: Biological Markers and Personalized Medicine

Effect of Intracranial Stenosis Revascularization on Dynamic and Static Cerebral Autoregulation

Case Report Internal Jugular Vein Thrombosis in Isolated Tuberculous Cervical Lymphadenopathy

Carotid Stenosis 1/24/2019. Review of Primary Studies. NASCET- Moderate stenosis. ACAS (Asymptomatic Carotid Atherosclerosis Study) NASCET

Cerebrovascular Disease. RTC Conference Resident Presenter: Dr. Christina Bailey Faculty: Dr. Jeff Dattilo October 2, 2009

Carotid Artery Disease and What s Pertinent JOSEPH A PAULISIN DO

Disclosures. CREST Trial: Summary. Lecture Outline 4/16/2015. Cervical Atherosclerotic Disease

Slide 1. Slide 2 Conflict of Interest Disclosure. Slide 3 Stroke Facts. The Treatment of Intracranial Stenosis. Disclosure

CEREBRO VASCULAR ACCIDENTS

Isolated Cranial Nerve-III Palsy Secondary to Perimesencephalic Subarachnoid Hemorrhage

Neuro Quiz 29 Transcranial Doppler Monitoring

Case Report Anomalous Left Main Coronary Artery: Case Series of Different Courses and Literature Review

Redgrave JN, Coutts SB, Schulz UG et al. Systematic review of associations between the presence of acute ischemic lesions on

Pre-and Post Procedure Non-Invasive Evaluation of the Patient with Carotid Disease

Subclavian and Vertebral Artery Angioplasty - Vertebro-basilar Insufficiency: Clinical Aspects and Diagnosis

Case Report A Rare Case of Complete Stent Fracture, Coronary Arterial Transection, and Pseudoaneurysm Formation Induced by Repeated Stenting

During the last 2 decades, percutaneous transluminal angioplasty

CAROTID ARTERY ANGIOPLASTY

ACUTE ISCHEMIC STROKE. Current Treatment Approaches for Acute Ischemic Stroke

Research Article Predictions of the Length of Lumbar Puncture Needles

Brain Attack. Strategies in the Management of Acute Ischemic Stroke: Neuroscience Clerkship. Case Medical Center

Clinical Study Circle of Willis Variants: Fetal PCA

Extracranial to intracranial bypass for intracranial atherosclerosis

Carotid Stenting and Surgery in 2016 in Russia

Carotid artery stenting for long CTO and pseudo occlusion of carotid artery -2 case reports-

WHI Form Report of Cardiovascular Outcome Ver (For items 1-11, each question specifies mark one or mark all that apply.

Case Report Tortuous Common Carotid Artery: A Report of Four Cases Observed in Cadaveric Dissections

Two Cases of Carotid Artery Stenting Combined Balloon- and Self-expanding Stent for the Spontaneous Internal Carotid Artery Dissections

The learning curve associated with intracranial angioplasty and stenting: analysis from a single center

Carotid Artery Stenting (CAS) Pathophysiology. Technical Considerations. Plaque characteristics: relevant concepts. CAS and CEA

Alex Abou-Chebl, MD Medical Director, Stroke Baptist Health, Louisvile. Alex Abou-Chebl, MD

SAMMPRIS. Stenting and Aggressive Medical Management for Preventing Recurrent Stroke and Intracranial Stenosis. Khalil Zahra, M.D

Alan Barber. Professor of Clinical Neurology University of Auckland

Treatment Considerations for Carotid Artery Stenosis. Danielle Zielinski, RN, MSN, ACNP Rush University Neurosurgery

Case Report Endovascular Repair of a Large Profunda Femoris Artery Pseudoaneurysm

INSTITUTE OF NEUROSURGERY & DEPARTMENT OF PICU

From the Cerebrovascular Imaging and Intervention Committee of the American Heart Association Cardiovascular Council

SCAI Fall Fellows Course Subclavian/Innominate Case Presentation

Case Report Intracranial Capillary Hemangioma in the Posterior Fossa of an Adult Male

Cerebrovascular Disorders. Blood, Brain, and Energy. Blood Supply to the Brain 2/14/11

11/1/2018. Disclosure. Imaging in Acute Ischemic Stroke 2018 Neuro Symposium. Is NCCT good enough? Keystone Heart Consultant, Stock Options

GUIDELINE FOR RECOVERY ROOM MANAGEMENT OF PATIENTS AFTER CAROTID ENDARTERECTOMY

Surgical Procedures for. Symptomatic Post-CAS Carotid. Restenosis: Experiences and. Mid-Term Outcomes. Lefeng Qu M.D., Ph.D. Professor of Surgery

Chapter 4 Section 9.1

Lecture Outline: 1/5/14

UPSTATE Comprehensive Stroke Center. Neurosurgical Interventions Satish Krishnamurthy MD, MCh

TIA AND STROKE. Topics/Order of the day 1. Topics/Order of the day 2 01/08/2012

Why I m afraid of occlusive devices

Carotid Artery Surgery for the Prevention and Treatment of Ischemic Stroke Update 2015

Significant carotid stenosis or occlusion increases the incidence

Peter I. Kalmar, 1 Peter Oberwalder, 2 Peter Schedlbauer, 1 Jürgen Steiner, 1 and Rupert H. Portugaller Introduction. 2.

/ / / / / / Hospital Abstraction: Stroke/TIA. Participant ID: Hospital Code: Multi-Ethnic Study of Atherosclerosis

Chapter 4 Section 9.1

with susceptibility-weighted imaging and computed tomography perfusion abnormalities in diagnosis of classic migraine

Intra-arterial nimodipine for the treatment of vasospasm due to aneurysmal subarachnoid hemorrhage

Subclavian artery Stenting

Case Report Late Type 3b Endoleak with an Endurant Endograft

What is the mechanism of the audible carotid bruit? How does one calculate the velocity of blood flow?

BY VINCENT V. TRUONG, MD, AND ALEX ABOU-CHEBL, MD

ENDOVASCULAR THERAPIES FOR ACUTE STROKE

Case Report Simultaneous Two-Vessel Subacute Stent Thrombosis Caused by Clopidogrel Resistance from CYP2C19 Polymorphism

TRAUMATIC CAROTID &VERTEBRAL ARTERY INJURIES

Clinical Decision Making: Hyperacute Management of Symptomatic Carotid Artery Disease

Surgical treatment and perioperative management of intracranial aneurysms in Chinese patients with ischemic cerebrovascular diseases: a case series

Diffusion-Weighted Imaging Abnormalities after Percutaneous Transluminal Angioplasty and Stenting for Intracranial Atherosclerotic Disease

Mechanical Thrombectomy of Large Vessel Occlusions Using Stent Retriever Devices

Aortic arch pathology. Cerebral ischemia following carotid artery stenosis.

Small in-stent Low Density on CT Angiography after Carotid Artery Stenting

Changes in middle cerebral artery blood flow after carotid endarterectomy as monitored by transcranial Doppler

Carotid Artery Revascularization: Current Strategies. Shonda Banegas, D.O. Vascular Surgery Carondelet Heart and Vascular Institute September 6, 2014

Case Report Ocular Symptomatology, Management, and Clinical Outcome of a Giant Intracranial Aneurysm

Updated Society for Vascular Surgery guidelines for management of extracranial carotid disease: Executive summary

Algorithmic selection of emboli protection device during the procedure of carotid artery stunting

Transcription:

Case Reports in Vascular Medicine Volume 2013, Article ID 207602, 4 pages http://dx.doi.org/10.1155/2013/207602 Case Report Cerebral Hyperperfusion Syndrome following Protected Carotid Artery Stenting Rainer Knur Department of Cardiology and Angiology, Allgemeines Krankenhaus Viersen, Hoserkirchweg 63, 47147 Viersen, Germany Correspondence should be addressed to Rainer Knur; drrknur@gmx.de Received 2 May 2013; Accepted 26 June 2013 Academic Editors: K. A. Filis and N. Papanas Copyright 2013 Rainer Knur. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The cerebral hyperperfusion syndrome is a very rare complication after revascularization of the carotid artery and accompanied by postoperative or postinterventional hypertension in almost all patients. We report a case of a 77-year-old man who developed a complete aphasia and increased right-sided weakness following endovascular treatment of severe occlusive disease of the left internal carotid artery. We discuss the risk and management of cerebral hyperperfusion syndrome after carotid artery stenting. 1. Introduction Neurological complications following carotid artery stenting (CAS)areusuallyischemicinnature,duetoembolizationor occlusionofthecarotidartery.however,inasmallsubset of patients, cerebral hyperperfusion causes postinterventional neurological dysfunction, characterized by ipsilateral headache, focal seizure activity, focal neurological deficit, and ipsilateral intracerebral edema or hemorrhage. A high clinical suspicion and early diagnosis will allow early initiation of therapy and preventing fatal brain swelling or bleeding in patients with peri- and postinterventional cerebral hyperperfusion syndrome (CHS). 2. Case Report A 77-year-old man was referred for endovascular treatment after a transient ischemic attack with a right-sided facial and limb weakness. This episode occurred while the patient was undergoing medical treatment consisting of 100 mg acetylsalicylic acid and 75 mg clopidogrel 4 weeks after coronary stenting of the left anterior descending artery. The patient had a history of hyperlipidemia, hypertension, and familiar disposition with coronary heart disease. The neurological examination during the ischemic event revealed a mild right-sided hemiparesis. Brain CT and MRI showed no abnormalities. All hematological and biochemical tests were normal, with a normal platelet count and coagulation screen. When assessed in our hospital, his blood pressure sometimes jumped up to 180/100 mm Hg. Therefore, the antihypertensive medication consisting of β-blocker, diuretic, and AT1-antagonist was intensified. Another neurological examination was normal. Color Doppler ultrasound showed a severe stenosis of the left internal carotid artery (ICA) with elevation of the peak systolic velocity at 3.9 m/s and an end diastolic velocity of 1.4m/s (Figure 1). The patient gotaloadingdoseof500mgassand300mgclopidogrel and underwent left carotid stenting the next day via a femoral approach under local anesthesia. The angiography confirmed 95% stenosis of the left ICA (Figure 2(a)). CAS was frictionless performed with distal filter protection, pre- and postdilation, and a self-expandable closed-cell design stent (Figure 2). The peri-interventional blood pressure varied between 140/85 to 160/95 mm Hg. The clinically stable patient was transferred to the intermediate care unit for monitoring. 20 minutes later the patient vomited, described ipsilateral headache, and became very anxious. He then developed a complete aphasia and increased right-sided weakness and became delirious. Blood pressure varied between 160/90 and 200/110 mm Hg. Immediately color Doppler ultrasound of theccaandicarevealedavisiblypatentvessel.brain edema and bleeding could be excluded by an urgent cranial CT. Followup within 24 hours with cranial MRI and

2 Case Reports in Vascular Medicine Table1:RiskfactorsforCHS[6 8]. Hypertension High-grade stenosis with poor collateral flow Decreased CVR Increased peak flow velocity Contralateral carotid occlusion or high-grade stenosis Recent contralateral CAS or CEA within 3 months Periprocedural ischemia Presence of cerebral microangiopathy CAS: carotid artery stenting, CEA: carotid endarterectomy, CHS: cerebral hypertension syndrome, and CVR: cerebrovascular reactivity. Figure 1: Color Doppler ultrasound of the left internal carotid artery (ICA). Severe stenosis of the left internal carotid artery with elevation of the peak systolic velocity at 3.9 m/s and an end diastolic velocity of 1.4 m/s. angiography showed totally normal findings. The patient was transferred to the intensive care to control the hypertension and to monitor the vital parameters. Under intensified treatment of the blood pressure with a β-blocker, diuretic, AT1-, and Ca-antagonist, and temporary intravenous application of nitroglycerin and urapidil the neurological symptoms were totally regressed within few days. The patient was discharged after 10 days from the hospital. Follow-up examinations after 3 and 6 months were normal. 3. Discussion In 1981, Sundt et al. [1] described a triad of complications that included atypical migrainous phenomena, transient focal seizureactivity,andintracerebralhemorrhageafterceaand used the term cerebral hyperperfusion syndrome (CHS). The first report on CHS after CAS was published by Schoser et al. [2]. They described a 59-year-old woman with ipsilateral putaminal hemorrhage that was diagnosed on the 3rd day after CAS of a high-grade stenosis of the left ICA. Outcome in this case was not fatal. The patient recovered with a mild upper limb paresis. McCabe et al. [3] werethefirsttoreport theoccurrenceoffatalichsoonaftercas.onlyafewhours after the procedure, neurological symptoms occurred without any prodromata (severe headache, nausea, and seizures) postulated by Sundt et al. [1] tobeanobligatecomponent of CHS. CT of the brain revealed extensive ICH and the patient died 18 days later. Abou-Chebl et al. [4] reporteda retrospective single-center study on 450 patients who had beentreatedwithcas.threepatients(0.67%)developed ICH after the intervention. Further reports on results and complications after CAS have been published [5]. Nearly all reports on CHS after carotid revascularizations in general and CASinparticularhaveincommonpatientswhohadhighgrade stenoses in the treated vessel. CHS following surgical or endovascular treatment of severe carotid occlusive disease is thought to be the result of impaired cerebral autoregulation, hypertension, ischemia-reperfusion injury, oxygen-derived free radicals, baroreceptor-dysfunction, and intraprocedural ischemia [6]. Chronic cerebral hypoperfusion due to critical stenosis leads to production of vasodilatory substances. Autoregulatory failure results in the cerebral arterioles being maximally dilated over a long period of time, with subsequent loss of their ability to constrict when normal perfusion pressure is restored. The degree of microvascular dysautoregulation is proportional to the duration and severity of ischemia determined by the severity of ipsilateral stenosis and poor collateral flow. Hypertension plays an important role in the development of CHS. In the absence of cerebral autoregulation, cerebral blood flow is directly dependent on the systemic blood pressure. The restoration of normal blood flow to chronically underperfused brain can result in edema, capillary breakthrough, and perivascular and macroscopic hemorrhages aggravated by peri- and postinterventional hypertension [6, 7]. The risk factors for CHS after CAS are summarized in Table 1. The classic clinical presentation includes ipsilateral headache, seizures or focal neurological deficit, and ipsilateral intracerebral edema or hemorrhage. The diagnosis can be made readily with color Doppler ultrasound of the carotid artery and especially with transcranial Doppler (TCD) of the middle cerebral artery [9]. An increase in peak blood flow velocity of >100% is predictive of postinterventional hyperperfusion. Diffusion weighted MRI or single photon emission computed tomography (SPECT) could also be performed for diagnosis [10]. Angiography normally shows normal findings. The prognosis of CHS depends on timely recognition of hyperperfusion and adequate treatment of hypertension before cerebral edema or hemorrhage develops. The prognosis following intracerebral bleeding is very poor, with mortality over 50% and significant morbidity of 80% in the survivors [4, 6]. The prognosis of CHS in patients without cerebral edema or hemorrhage is clearly better especiallywhentheyareidentifiedandtreatedearly.themost important aspects in preventing and treating this syndrome are early identification, careful monitoring, and control of blood pressure ideally in a high-dependency unit setting. In our special case, early diagnosis of CHS and immediate intensive medical treatment of blood pressure could prevent devastating cerebral edema or hemorrhage following CAS.

Case Reports in Vascular Medicine 3 (a) (b) (c) (d) (e) (f) (g) (h) Figure 2: Carotid angiogram demonstrating carotid artery stenting (CAS) with distal filter protection in a 77-year-old symptomatic patient. (a) Preprocedural angiogram showing a high-grade stenosis of the left internal carotid artery. (b) After the filter is positioned distal to the lesion the stenosis is predilated with a 3 mm balloon. (c) The self-expanding stent is deployed. (d) Stent after deployment. (e) The stent is postdilated with a 5 mm balloon. (f) The final angiogram shows that the stented site is widely patent. (g), (h) Final angiogram of the intracranial vessels.

4 Case Reports in Vascular Medicine 4. Conclusion CHS, which is characterized by ipsilateral headache, hypertension, seizures, and focal neurological deficits, is a rare but devastating complication following carotid artery stenting. Hypertension is the most important risk factor. The diagnosis can be confirmed quickly by TCD, DWI, or SPECT. Especially peri- or postinterventional TCD monitoring should be available to identify patients with hyperperfusion who may benefit from intensive blood pressure management ideally in a specialized intensive care unit. Abbreviations CAS: Carotid artery stenting CCA: Common carotid artery CEA: Carotid endarterectomy CHS: Cerebral hyperperfusion syndrome CT: Computed tomography CVR: Cerebrovascular reactivity DWI: Diffusion-weighted imaging ICA: Internal carotid artery ICH: Intracerebral haemorrhage MRI: Magnetic resonance imaging SPECT: Single photon emission computed tomography TCD: Transcranial Doppler. stenosis, American Neuroradiology, vol. 21, no. 10, pp. 1911 1916, 2000. [8] R.Gupta,A.Abou-Chebl,C.T.Bajzer,H.C.Schumacher,andJ. S. Yadav, Rate, predictors, and consequences of hemodynamic depression after carotid artery stenting, the American College of Cardiology,vol.47,no.8,pp.1538 1543,2006. [9] M. B. Sánchez-Arjona, G. Sanz-Fernández, E. Franco-Macias, and A. Gil-Peralta, Cerebral hemodynamic changes after carotid angioplasty and stenting, American Neuroradiology,vol.28,pp.640 644,2007. [10] Y. Kaku, S. I. Yoshimura, and J. Kokuzawa, Factors predictive of cerebral hyperperfusion after carotid angioplasty and stent placement, American Neuroradiology, vol. 25, pp. 1403 1408, 2004. Conflict of Interests There is no conflict of interests existing. References [1] T. M. Sundt Jr., F. W. Sharbrough, and D. G. Piepgras, Correlation of cerebral blood flow and electroencephalographic changes during carotid endarterectomy. With results of surgery and hemodynamics of cerebral ischemia, Mayo Clinic Proceedings,vol.56,no.9,pp.533 543,1981. [2] B.G.H.Schoser,C.Heesen,B.Eckert,andA.Thie, Cerebral hyperperfusion injury after percutaneous transluminal angioplasty of extracranial arteries, Neurology, vol.244, no. 2, pp. 101 104, 1997. [3] D. J. H. McCabe, M. M. Brown, and A. Clifton, Fatal cerebral reperfusion hemorrhage after carotid stenting, Stroke, vol. 30, no. 11, pp. 2483 2486, 1999. [4] A.Abou-Chebl,J.S.Yadav,J.P.Reginelli,C.Bajzer,D.Bhatt, and D. W. Krieger, Intracranial hemorrhage and hyperperfusion syndrome following carotid artery stenting: risk factors, prevention, and treatment, the American College of Cardiology,vol.43,no.9,pp.1596 1601,2004. [5] J.-H. Buhk, L. Cepek, and M. Knauth, Hyperacute intracerebral hemorrhage complicating carotid stenting should be distinguished from hyperperfusion syndrome, American Neuroradiology,vol.27,no.7,pp.1508 1513,2006. [6] V. Adhiyaman and S. Alexander, Cerebral hyperperfusion syndrome following carotid endarterectomy, QJM, vol. 100, no. 4, pp. 239 244, 2007. [7] W. F. Morrish, S. Grahovac, A. Douen et al., Intracranial hemorrhage after stenting and angioplasty of extracranial carotid

MEDIATORS of INFLAMMATION The Scientific World Journal Gastroenterology Research and Practice Diabetes Research International Endocrinology Immunology Research Disease Markers Submit your manuscripts at BioMed Research International PPAR Research Obesity Ophthalmology Evidence-Based Complementary and Alternative Medicine Stem Cells International Oncology Parkinson s Disease Computational and Mathematical Methods in Medicine AIDS Behavioural Neurology Research and Treatment Oxidative Medicine and Cellular Longevity