Study of Effects of Blood Amino Acid and Hormone Level for Controlling Triglyceride Accumulation in the Liver of Rats Using Self-Organizing Map

Similar documents
Integrative Metabolism: Significance

Objective: You will be able to explain how the subcomponents of

1. Describe the relationship of dietary protein and the health of major body systems.

LAB#23: Biochemical Evidence of Evolution Name: Period Date :

Amino Acids. Amino Acids. Fundamentals. While their name implies that amino acids are compounds that contain an NH. 3 and CO NH 3

Free Amino Acid Changes in Serum throughout Rat Gestation and Lactation. Evolution of the Plasma/Serum Relationships

2. Which of the following amino acids is most likely to be found on the outer surface of a properly folded protein?

Supplementary Figure-1. SDS PAGE analysis of purified designed carbonic anhydrase enzymes. M1-M4 shown in lanes 1-4, respectively, with molecular

Biological systems interact, and these systems and their interactions possess complex properties. STOP at enduring understanding 4A

BIOCHEMISTRY REVIEW. Overview of Biomolecules. Chapter 4 Protein Sequence

Biochemical and Molecular Action of Nutrients

The Basics: A general review of molecular biology:

AMINO ACID METABOLISM. Sri Widia A Jusman Dept. of Biochemistry & Molecular Biology FMUI

Arginine side chain interactions and the role of arginine as a mobile charge carrier in voltage sensitive ion channels. Supplementary Information

EFFECTS OF AMINO ACID SUBSTITUTIONS FOR WHEY PROTEIN CONCENTRATE ON WEANLING PIG PERFORMANCE. Authors: J. Chung, S.D. Carter and J.C.

Metabolism of amino acids. Vladimíra Kvasnicová

Page 8/6: The cell. Where to start: Proteins (control a cell) (start/end products)

CS612 - Algorithms in Bioinformatics

Classification of amino acids: -

Optimizing Protein in a Carbohydrate World

Lipids: diverse group of hydrophobic molecules

Algal Biofuels Research: Using basic science to maximize fuel output. Jacob Dums, PhD candidate, Heike Sederoff Lab March 9, 2015

Proteins are sometimes only produced in one cell type or cell compartment (brain has 15,000 expressed proteins, gut has 2,000).

Amino acids-incorporated nanoflowers with an

Cells N5 Homework book

Moorpark College Chemistry 11 Fall Instructor: Professor Gopal. Examination # 5: Section Five May 7, Name: (print)

1. (38 pts.) 2. (25 pts.) 3. (15 pts.) 4. (12 pts.) 5. (10 pts.) Bonus (12 pts.) TOTAL (100 points)

Biology. Lectures winter term st year of Pharmacy study

Optimum levels of crystalline amino acids in diets for larval red sea bream (Pagrus major)

Short polymer. Dehydration removes a water molecule, forming a new bond. Longer polymer (a) Dehydration reaction in the synthesis of a polymer

Four Classes of Biological Macromolecules. Biological Macromolecules. Lipids

Properties of amino acids in proteins

Determination of Unbound Urinary Amino Acids Incorporated with Creatinine Normalization by LC-MS/MS Method with CLAM-2000 Online Sample Pre-treatment

Phenylketonuria (PKU) Structure of Phenylalanine Hydroxylase. Biol 405 Molecular Medicine

SIMPLE BASIC METABOLISM

Prof Velmurugu Ravindran Massey University, New Zealand

The composition of macromolecular cellular composition of mouse cell lines can be found

The Structure and Function of Macromolecules

Biomolecules: amino acids

Chemical Nature of the Amino Acids. Table of a-amino Acids Found in Proteins

9/6/2011. Amino Acids. C α. Nonpolar, aliphatic R groups

v. reitschlagerova Renal Amino Acid Excretion and Aging H. NADVORNlKOVA, O. SCHUCK, V. TEPLAN, D. TOMKOVA,

Towards a New Paradigm in Scientific Notation Patterns of Periodicity among Proteinogenic Amino Acids [Abridged Version]

(30 pts.) 16. (24 pts.) 17. (20 pts.) 18. (16 pts.) 19. (5 pts.) 20. (5 pts.) TOTAL (100 points)

Biomolecules Amino Acids & Protein Chemistry

EFFECTS OF REPLACING WHEY PROTEIN CONCENTRATE WITH CRYSTALLINE AMINO ACIDS ON WEANLING PIG PERFORMANCE

True Metabolizable Energy and Amino Acid Digestibility of Distillers Dried Grains with Solubles

Amino Acids. Review I: Protein Structure. Amino Acids: Structures. Amino Acids (contd.) Rajan Munshi

Midterm 2 Results. Standard Deviation:

Chapter 4: Information and Knowledge in the Protein Insulin

Protein Investigator. Protein Investigator - 3

Molecular Biology. general transfer: occurs normally in cells. special transfer: occurs only in the laboratory in specific conditions.

Proteins are a major component of dissolved organic nitrogen (DON) leached from terrestrially aged Eucalyptus camaldulensis leaves

Chemistry 121 Winter 17

Additional problems: 1. Match and label the conjugate acid and base pairs in the following reactions. Which one of these systems is a good buffer?

Figure S1. Effect of bafilomycin on EGF-induced Akt and Erk signaling. Effect of chloroquine on EGF-stimulated mtorc1, Akt and Erk

AA s are the building blocks of proteins

Introduction to Protein Structure Collection

MPRP Annual Report (January 2012)

Effects on liver and serum lipids of dietary supplements of methionine and excess lysine given to previously-starved rats

CHAPTER 21: Amino Acids, Proteins, & Enzymes. General, Organic, & Biological Chemistry Janice Gorzynski Smith

For questions 1-4, match the carbohydrate with its size/functional group name:

Sermorelin as an Alternative to hgh for Treating GH Insufficiency of Aging

PROTEINS. Amino acids are the building blocks of proteins. Acid L-form * * Lecture 6 Macromolecules #2 O = N -C -C-O.

Saccharomyces cerevisiae*

BASIC SCIENCES & BIOCHEMISTRY FOR BETZPAENIC BRIMBLERS

Macromolecules Structure and Function

Cahn - Ingold - Prelog system. Proteins: Evolution, and Analysis Lecture 7 9/15/2009. The Fischer Convention (1) G (2) (3)

The Structure and Function of Large Biological Molecules Part 4: Proteins Chapter 5

Identification of free amino acids in several crude extracts of two legumes

Copyright 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

endopeptidases aminopeptidases carboxypeptidases hydrolyzes a peptide bond somewhere in the middle of the polypeptide

Regulation. 1. Short term control 8-1

Proximate composition, amino acid and fatty acid composition of fish maws. Department of Biology, Lingnan Normal University, Zhanjiang, , China

Study of Amino Acids in DDGS

9/16/15. Properties of Water. Benefits of Water. More properties of water

Artificial Neural Networks (Ref: Negnevitsky, M. Artificial Intelligence, Chapter 6)

(65 pts.) 27. (10 pts.) 28. (15 pts.) 29. (10 pts.) TOTAL (100 points) Moorpark College Chemistry 11 Spring Instructor: Professor Gopal

paper and beads don t fall off. Then, place the beads in the following order on the pipe cleaner:

What is most limiting?

Atypical Natural Killer T-cell receptor recognition of CD1d-lipid antigens supplementary Information.

Bio 366: Biological Chemistry II Test #1, 100 points (7 pages)

Amino acid metabolism

For questions 1-4, match the carbohydrate with its size/functional group name:

AMERICAN NATIONAL SCHOOL General Certificate of Education Advanced Subsidiary Level and Advanced Level

Methionine (Met or M)

Amino Acids : Towards Precise Nutrition in Monogastric Animals

Four melanocyte-stimulating hormones have the following amino acid sequences:

Structural analysis of fungus-derived FAD glucose dehydrogenase

If you like us, please share us on social media. The latest UCD Hyperlibrary newsletter is now complete, check it out.

Head. Tail. Carboxyl group. group. group. air water. Hydrocarbon chain. lecture 5-sa Seth Copen Goldstein 2.

Electronic Supplementary Information. Table of Contents

AP Bio. Protiens Chapter 5 1

SUPPORTING INFORMATION FOR. A Computational Approach to Enzyme Design: Using Docking and MM- GBSA Scoring

This exam consists of two parts. Part I is multiple choice. Each of these 25 questions is worth 2 points.

Supplementary Information

PROTEINS. Building blocks, structure and function. Aim: You will have a clear picture of protein construction and their general properties

Acid/Base chemistry. NESA Biochemistry Fall 2001 Review problems for the first exam. Complete the following sentences

Organic molecules are molecules that contain carbon and hydrogen.

Transcription:

International Journal of Intelligent Information Systems 2016; 5(6): 88-93 http://www.sciencepublishinggroup.com/j/ijiis doi: 10.11648/j.ijiis.20160506.12 ISSN: 2328-7675 (Print); ISSN: 2328-7683 (Online) Study of Effects of Blood Amino Acid and Hormone Level for Controlling Triglyceride Accumulation in the Liver of Rats Using Self-Organizing Map Masato Masuda 1, Yasushi Nakabayashi 1, *, Ryuji Shioya 1, Hiroki Nishi 2, Shinichiro Takahashi 2, Fumihiko Hakuno 2 1 Center for Computational Mechanics Research, Toyo University, Kawagoe, Japan 2 Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan Email address: nakabayashi@toyo.jp (Y. Nakabayashi) * Corresponding author To cite this article: Masato Masuda, Yasushi Nakabayashi, Ryuji Shioya, Hiroki Nishi, Shinichiro Takahashi, Fumihiko Hakuno. Study of Effects of Blood Amino Acid and Hormone Level for Controlling Triglyceride Accumulation in the Liver of Rats Using Self-Organizing Map. International Journal of Intelligent Information Systems. Vol. 5, No. 6, 2016, pp. 88-93. doi: 10.11648/j.ijiis.20160506.12 Received: August 17, 2016; Accepted: November 11, 2016; Published: December 12, 2016 Abstract: Effects of blood amino acid and hormone level for triglyceride accumulation in the liver are revealed in some previous studies by experimental method. Since there are large individual differences in these effects, it needs a lot of rats for such experiments. Simulation can help, sometimes substitute experiment in various fields especially in engineering field. Recently, combining a supercomputer and Artificial Intelligence technique, simulation is expanding its scope. In this study, one of such a simulation technique, Self-Organizing Map (SOM), proposed by Kohonen and it is a kind of the Neural Networks and using for the competitive learning, is applied for classifying effects of blood amino acid and hormone level for controlling triglyceride accumulation in the liver of rats. Keywords: Amino Acid, Triglyceride, Artificial Intelligence, Self-Organizing Map, Neural Network 1. Introduction Metabolic syndrome is a rapidly growing concern in many countries around the world. It is usually associated with obesity, developing to the risk factors for type-2 diabetes mellitus, atherosclerosis, cardiovascular diseases and hepatic steatosis [1]. A fatty liver is roughly categorized into two types; an alcoholic fatty liver and a non-alcoholic fatty liver. While alcoholic one is caused mainly by continual intake of excess alcohol [2], there known to be many putative triggers for the other one, but the molecular basis is still unclear [3]. Non-alcoholic fatty liver disease (NAFLD), a series of hepatic dysfunctions, is one of the major symptoms of metabolic syndrome and thus there has been a great demand for a better/easier method to treat or diagnose fatty liver. In the field of nutrition, we and other groups previously reported that dietary protein-malnutrition or protein-restriction caused growth retardation accompanied by hepatic triglyceride (TG) accumulation which was considered to be a kind of NAFLD [4-7]. It is well established that growth retardation is caused at least in part by the reduction of plasma insulin-like growth factor-i (IGF-I) level and actually it was reduced in animals fed a diet with protein-malnutrition or restriction [4, 8]. However, the mechanisms underlying the hepatic TG accumulation remains to be elucidated. Given that TG accumulation in the liver can be observed only within a few days after the beginning of dietary protein restriction [7] and the liver is the first organ directly detecting the dietary amino acids absorbed in the gut, we hypothesized that the blood amino acid concentration would play important roles in hepatic TG accumulate. In this study, to evaluate the relationship between a blood amino acid profile and liver TG level, we utilized a machine learning algorithm, Self-Organizing Map (SOM). We fed rats various kinds of experimental diets which have various amino acid-compositions and the data of their blood amino acid concentrations and liver TG was obtained. These animals

89 Masato Masuda et al.: Study of Effects of Blood Amino Acid and Hormone Level for Controlling Triglyceride Accumulation in the Liver of Rats Using Self-Organizing Map showed a variety of blood amino acid profiles and liver TG levels, not only according to what they ate but also individually and the values had a relatively wide range of variance. Self-Organizing Map, one of the machine learning algorithm first proposed by Kohonen [9], can distinguish and classify such complexed multidimensional data, which we expect can help us understand the relationships between blood amino acid and hepatic TG accumulation. We believe that this approach should give us a novel point of view about fatty liver formation, which should contribute to unveiling the mechanism underlying the progression of NAFLD caused by dietary habits. And also it can lead to practical application to the alternative treatment or prevention of metabolic syndrome. The rest of the paper is organized as flollows. Section 2 presents experimental data, section 3 describe the detail of SOM. After showing some numerical result, the conclusion is in section 4. 2. Experimental Data We have already reported that protein malnutrition enhances insulin signaling in rat liver followed by accumulation of hepatic lipid [6, 7]. In addition, Aoyama et al. have reported that triacylglycerol was accumulated in rat liver fed with low-arginine diet [5]. From these backgrounds, we fed rats with various kinds of nutrition and measured level of blood amino acid, anmonia (NH3), Ornithine (Orn), β-alanine (b-ala), α-abscisic acid (a-aba), Citrulline (Cit), taurine (Tau), Urea and triacylglycerol in liver (Liver TG). 5-week-old male Wistar rats were purchased from Charles River Japan (Kanagawa, Japan). The rats were caged individually and kept in a room maintained at 24±1 C with 50-60% humidity and a 12h-light (8:00-20:00)/ 12h-dark (20:00-8:00) cycle. They were allowed free access to food and water throughout the experiment. All rats were fed control diet containing 15% (w/w) amino acids (detailed composition is shown in Table 1) for 4 days as a training and then divided into some experimental groups. For the next 7 days, each group was given either control diet or experimental diets in which total amino acids or only a specific amino acid was restricted to 1/3 of control diet (Table 1). In the experimental period, body weight and food intake of all rats were measured at 10:00 every day. In collecting the tissues, rats were anesthetized with isoflurane (DS Pharma Animal Health, Japan) and then blood and liver of each rat were obtained. Liver triglyceride was extracted with methanol: chloroform solution (1:2, v/v) according to the Folch s method [11] and quantified using Triglycerid E-test Wako (WAKO, Japan). Blood amino acid concentration was measured using Amino Acid Analyzer L-8900 (Hitachi Hi-Tech, Japan) according to the manufacturer s protocol. All animal care and experiments conformed to the Guidelines for Animal Experiments of The University of Tokyo and were approved by the Animal Research Committee of The University of Tokyo. Table 1. The composition of diets for rats: The composition of diet (g/kg) for each rat was shown. Soybean oil (50 g/kg), vitamin mixture (10 g/kg), mineral mixture (40 g/kg) and cellulose powder (100 g/kg) were added to each diet. Rat No. Ile Leu Lys Met Cys Phe Tyr Thr Trp Val His CN 1, 2, 3, 28, 29,30, 40, 41, 42, 43, 44 7.1 13.0 14.1 6.4 0.8 7.2 7.8 6.1 1.7 9.2 4.1 Arg 4, 5, 6, 55, 56, 57, 58, 59, 60, 61, 62, 63 7.1 13.0 14.1 6.4 0.8 7.2 7.8 6.1 1.7 9.2 4.1 R/SA 7, 8, 9 7.1 13.0 14.1 2.1 0.3 7.2 7.8 6.1 1.7 9.2 4.1 R/BCA 10, 11, 12 2.4 4.3 14.1 6.4 0.8 7.2 7.8 6.1 1.7 3.1 4.1 R/AA 13, 14, 15 7.1 13.0 14.1 6.4 0.8 7.2 7.8 6.1 1.7 9.2 4.1 R/BA 16, 17, 18 7.1 13.0 4.7 6.4 0.8 7.2 7.8 6.1 1.7 9.2 1.4 R/NA 19, 20, 21 7.1 13.0 14.1 6.4 0.8 2.4 2.6 2.0 0.6 9.2 4.1 5AA 22, 23, 24, 45, 46, 47, 48, 49 2.4 4.3 4.7 2.1 0.3 2.4 2.6 2.0 0.6 3.1 1.4 5AA+T 25, 26, 27 2.4 4.3 4.7 2.1 0.3 2.4 2.6 6.1 0.6 3.1 1.4 Tyr 31, 32, 33 7.1 13.0 14.1 6.4 0.8 7.2 2.6 6.1 1.7 9.2 4.1 H-Met 34, 35, 36 7.1 13.0 14.1 30.0 0.8 7.2 7.8 6.1 1.7 9.2 4.1 H-His 37, 38, 39 7.1 13.0 14.1 6.4 0.8 7.2 7.8 6.1 1.7 9.2 30.0 Lys 50, 51, 52, 53, 54 7.1 13.0 4.7 6.4 0.8 7.2 7.8 6.1 1.7 9.2 4.1 Table 1. Continue. Rat No. Arg Ala Asp Asn Glu Gly Pro Ser Gln corn starch CN 1, 2, 3, 28, 29,30, 40, 41, 42, 43, 44 5.2 4.1 5.1 5.8 14.6 2.6 15.0 8.1 14.6 647.5 Arg 4, 5, 6, 55, 56, 57, 58, 59, 60, 61, 62, 63 1.7 4.1 5.1 5.8 14.6 2.6 15.0 8.1 14.6 651.0 R/SA 7, 8, 9 1.7 4.1 5.1 5.8 14.6 2.6 15.0 8.1 14.6 655.7 R/BCA 10, 11, 12 1.7 4.1 5.1 5.8 14.6 2.6 15.0 8.1 14.6 670.4 R/AA 13, 14, 15 1.7 4.1 1.7 5.8 4.9 2.6 15.0 8.1 14.6 644.0 R/BA 16, 17, 18 1.7 4.1 5.1 5.8 14.6 2.6 15.0 8.1 14.6 633.0 R/NA 19, 20, 21 1.7 1.4 5.1 1.9 14.6 0.9 5.0 2.7 4.9 699.5 5AA 22, 23, 24, 45, 46, 47, 48, 49 1.7 1.4 5.1 1.9 4.9 0.9 5.0 2.7 4.9 749.1 5AA+T 25, 26, 27 1.7 1.4 5.1 1.9 4.9 0.9 5.0 2.7 4.9 745.1 Tyr 31, 32, 33 5.2 4.1 5.1 5.8 14.6 2.6 15.0 8.1 14.6 647.5 H-Met 34, 35, 36 5.2 4.1 5.1 5.8 14.6 2.6 15.0 8.1 14.6 647.5 H-His 37, 38, 39 5.2 4.1 5.1 5.8 14.6 2.6 15.0 8.1 14.6 647.5 Lys 50, 51, 52, 53, 54 5.2 4.1 5.1 5.8 14.6 2.6 15.0 8.1 14.6 656.9

International Journal of Intelligent Information Systems 2016; 5(6): 88-93 90 3. SOM 3.1. Outline of SOM SOM, which is one of neural networks and was proposed by T. Kohonen [9], is a two-layered unsupervised competitive learning model that does not have a hidden layer. In the learning algorithm of SOM, the characteristics of input data are Table 2. Input Vectors of Animals. learned through neighborhood learning. A map is formed so that similar kinds of data are located in the neighborhood and other data are located at distant places. Accordingly, it is possible to visualize high-dimensional vector data, and understand the relations among data intuitively. As an example [9], the animals were classified. These characteristics of Table 2 are classified on the map (Fig. 1). Name Small Middle Large Nocturnality 2Legs 4Legs Whiskers Ungulata Mane Feather Stripe Hunt Run Fly Swim Herbivory Dove 1 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0.5 Fox 0 1 0 0.5 0 1 1 0 0 0 0 1 0 0 0 0 Hen 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0.5 Lion 0 0 1 0 0 1 1 0 1 0 0 1 1 0 0 0 Goose 1 0 0 0 1 0 0 0 0 1 0 0 0 1 1 0.5 Eagle 0 1 0 0 1 0 0 0 0 1 0 1 0 1 0 0 Dog 0 1 0 0 0 1 1 0 0 0 0 0 1 0 0 0 Wolf 0 1 0 1 0 1 1 0 1 0 0 1 1 0 0 0 Zebra 0 0 1 0 0 1 1 1 1 0 1 0 1 0 0 1 Duck 1 0 0 0 1 0 0 0 0 1 0.3 0 0 1 1 0.5 Cat 1 0 0 0.5 0 1 1 0 0 0 0 1 0 0 0 0 Owl 1 0 0 1 1 0 0 0 0 1 0 1 0 1 0 0 Tiger 0 0 1 0.5 0 1 1 0 0 0 1 1 1 0 0 0 Horse 0 0 1 0 0 1 1 1 1 0 0 0 1 0 0 1 Hawk 1 0 0 0 1 0 0 0 0 1 0 1 0 1 0 0 Cow 0 0 1 0 0 1 1 1 0 0 0 0 0 0 0 1 Step 3: Calculate the Euclidean distance Dist between an input vector and the weight vector of a unit in the map layer (competitive layer). i i ( ) 2 Dist = x w (1) m class m i Here, m represents the number of units from 1 to M N, i represents the number of dimensions of vector x class. Step 4: Define the unit that minimizes the Euclidean distance obtained at Step 3 as the winning unit BMU (Best Matching Unit). BMU = arg mindist m (2) m Figure 1. Classification of Animals (16 kinds of animals with 16-dimensional characteristics). 3.2. SOM Algorithm SOM has a map with the M N units (M is the number of unit in horizontal direction, N is the number of unit in vertical derection), and weighted units exist (Fig. 2). Unit weights are updated in neighborhood learning. The algorithm of SOM [9, 10] is as follows: Step 1: Initialize the weight vector w of a unit. Step 2: Input the vector 1 2 3 I x = x, x, x,, x into input layer. Here, ( ) class class class class class class represents the number of input vectors, and I denotes the dimension of the input vector. Step 5: Update the weights of the winning unit and surrounding units only. i i ( (, ))( class wm ) w = h l BMU m x (3) 2 l h( l) = αexp 2 2σ Step 6: Repeat Steps 2 to 5 sufficiently. Here, l represents the distance between the winning unit and the unit whose weight is updated. h and σ denote the neighborhood function and the range of the influence of the neighborhood function (neighborhood radius), respectively. This is decreased according to learning steps. α is learning coefficient, ranging from 0 to 1. The learning coefficient α decreases as learning steps proceed. (4)

91 Masato Masuda et al.: Study of Effects of Blood Amino Acid and Hormone Level for Controlling Triglyceride Accumulation in the Liver of Rats Using Self-Organizing Map Figure 2. Conceptual Diagram of SOM (U is map unit, m is unit number, w is uniting weight, X is input signal)). 3.3. Input Data Input Data given to SOM is created from the experimental data. Used data are blood amino acid in the rats and quantity of Triglyceride in the liver (Liver TG). Amino acid has 22 kinds, and the input data has 23 characteristics together with Triglyceride in the liver. Input of SOM is 23 dimensions vector combined the blood amino acids and the Liver TG of each rat. Table 2 shows a part of input data. This can make it possible to estimate Liver TG by quantity of blood amino acid in a rat. Fig. 3 shows the average values, the maximum values, and minimum values of the data. Figure 3. Graph of Amino Acid and Liver TG (Dots are average values of each factor. Error bars respectively the maximum and minimum values). 3.4. Learning SOM In the SOM learning, map size was 30 30, and it was changed the neighborhood radius using RPSOM (Radius Parallel SOM) [12]. This method is similar to the temperature parallel Simulated Annealing Method. Several neighborhood radii are calculated in parallel, and the better neighborhood radius case is selected so as to satisfy the each evaluation value of the Fitness and the Interpolation. In this case, neighborhood radii were used three radii from 2.0 to 1.0, from 5.0 to 2.0 and from 8.0 to 3.0.

International Journal of Intelligent Information Systems 2016; 5(6): 88-93 92 3.5. Result Fig. 4 show the learning result. The height direction of the figure represents the value of the Liver TG. At the center bottom of the map, there is mass of rats from No.22 to 27. At the center of left, cluster of no.40~45 and 50~55 is formed. These are judged these have similar characteristics. Table 3 indicates the quantity of blood amino acid and Liver TG of No.22, 25, and 27 and No.40, 43, and 50. They are standardized at 0 to 1. Compared with No. 22, 25, and 27, Ser Table 3. Blood Amino acid and Liver TG of rats. and Ala are respectively different. In addition, there are several items different from other two in each individual. It can be concluded they are very similar vectors on the whole. No.40, 43, and 50 were compared. Similarly, these also have the slightly different item respectively. There is individual difference, but it is a vector that is roughly similar. And Liver TG is also generally similar. From the FIg. 4(b), the classification map of Liver TG that has transferred smoothly was made. Rat Number Blood Amino Acid Asp Thr Ser b-ala NH3 Orn Liver TG No.1 0.119 5.693 2.382 0.071 2.135 0.43 8.398 No.2 0.122 7.698 3.342 0.059 1.954 0.71 1.161 10 1 No.3 0.143 6.058 3.081 0.071 1.676 0.469 1.034 10 1 No.4 0.113 5.014 3.044 0.05 2.379 0.53 2.477 10 1 No.60 0.098 6.48 2.444 0.064 2.623 0.513 6.333 10 1 No.61 0.075 3.815 2.971 0.049 2.558 0.486 5.606 10 1 No.62 0.088 6.248 3.266 0.059 2.089 0.48 8.947 10 1 No.63 0.053 5.424 2.098 0.058 2.455 0.497 1.857 10 1 Table 4. Blood Amino acid and Liver TG of No.22, 25, 27 and No.41, 43, 55. Asp Thr Ser Gly Ala Val Met Ile Leu Tyr Phe Lys No.22 0.104 0.924 0.896 0.852 0.714 0.482 0.044 0.407 0.420 0.404 0.651 0.317 No.25 0.115 1.000 1.000 1.000 0.844 0.525 0.041 0.547 0.535 0.443 0.725 0.387 No.27 0.103 0.916 0.743 0.823 0.590 0.469 0.022 0.501 0.450 0.370 0.731 0.280 His Arg Pro Tau Urea Cit a-aba b-ala NH3 Orn Liver TG No.22 0.160 0.254 0.503 0.154 0.018 0.693 0.692 0.084 0.518 0.183 0.177 No.25 0.159 0.232 0.525 0.190 0.025 0.653 0.672 0.088 0.497 0.208 0.253 No.27 0.123 0.294 0.283 0.152 0.023 0.655 0.605 0.076 0.364 0.194 0.231 Asp Thr Ser Gly Ala Val Met Ile Leu Tyr Phe Lys No.40 0.950 0.086 0.378 0.671 0.469 0.476 0.035 0.744 0.567 0.711 0.782 0.456 No.43 0.835 0.127 0.395 0.543 0.478 0.506 0.029 0.793 0.603 0.654 0.857 0.524 No.50 0.915 0.156 0.542 0.609 0.537 0.668 0.045 0.880 0.649 0.591 0.812 0.111 His Arg Pro Tau Urea Cit a-aba b-ala NH3 Orn Liver TG No.40 0.118 0.773 0.000 0.877 0.151 0.607 0.343 0.646 0.776 0.169 0.083 No.43 0.122 0.896 0.000 0.818 0.113 0.698 0.338 0.766 0.629 0.582 0.153 No.50 0.108 0.718 0.451 0.904 0.483 0.648 0.529 1.000 0.663 0.562 0.077 (b) Color Map of Liver TG (a) All input relationship Figure 4. Result of RPSOM (Map Size is 30 30, Input Vectors are 23, Learning Iterations are 1,000 times. (a) Color thickness indicates the distance from an input vector. The thin line denotes the distance between adjacent units. As it is nearer, the color whitens, and vice versa. (b)height is Liver TG).

93 Masato Masuda et al.: Study of Effects of Blood Amino Acid and Hormone Level for Controlling Triglyceride Accumulation in the Liver of Rats Using Self-Organizing Map 4. Conclusion We tried to classify and estimate relation between the quantity of blood amino acid and Liver TG using the proposed method Radius Parallel SOM. As the results, we obtained the following remarks: (1) The Self-Organizing Map, which use the blood amino acid and Liver TG as input data and is classified by the RPSOM, was formed. (2) As rat No.22 to 27 and No.40 to 45, 50 to 55, when quantity of blood amino acid are similar, Liver TG are also similar. (3) The classification map of Liver TG that has transferred smoothly was made. (4) It was possible to visually understand the relationship of quantity of blood amino acid and Liver TG using RPSOM. And that was classified into a similar group. (5) In the future, it will be necessary to consider predicting Liver TG from unknown input data and prediction method. References [1] R. Bass and I. Eneli, Severe childhood obesity: an under-recognised and growing health problem, Postgr. Med J, vol. 91, no. 1081, pp. 639 645, 2015. [2] F. A. Lívero and A. Acco, Molecular basis of alcoholic fatty liver disease: From incidence to treatment, Hepatol. Res., 2015. [3] M. Hernandez-Rodas, R. Valenzuela, and L. Videla, Relevant Aspects of Nutritional and Dietary Interventions in Non-Alcoholic Fatty Liver Disease, Int. J. Mol. Sci., vol. 16, no. 10, pp. 25168 25198, 2015. [4] A. Takenaka, M. Mori, S. Yamada, J. Ohgane, S. Takahashi, and T. Noguchi, Nutritional regulation of gene expression of insulin-like growth factor-binding proteins and the acid-labile subunit in various tissues of rats, J Endocrinol, vol. 150, no. 1, pp. 33 41, 1996. [5] Y. Aoyama, A. Yoshida, and K. Ashida, Effect of Some Dietary Additions to Either an Arginine- Devoid Diet or a Diet Supplemented with Orotic Acid Refed after Starvation on Liver Lipid Content during Essential Fatty Acid Deficiency in Rats, J. Nutr., vol. 111, pp. 895 906, 1981. [6] Y. Toyoshima, R. Tokita, Y. Taguchi, N. Akiyama-akanishi, and A. Takenaka, Tissue-specific effects of protein malnutrition on insulin signaling pathway and lipid accumulation in growing rats, Endocr. J., vol. 61, no. 5, pp. 499 512, 2014. [7] Y. Ozaki, T. Takeda, N. Akanishi, F. Hakuno, Y. Toyoshima, S.-I. Takahashi, and A. Takenaka, Insulin injection restored increased insulin receptor substrate (IRS)-2 protein during short-term protein restriction but did not affect reduced insulin-like growth factor (IGF)-I mrna or increased triglyceride accumulation in the liver of rats., Biosci. Biotechnol. Biochem., vol. 78, no. 1, pp. 130 138, 2014. [8] A. Takenaka, N. Oki, S. I. Takahashi, and T. Noguchi, Dietary restriction of single essential amino acids reduces plasma insulin-like growth factor-i (IGF-I) but does not affect plasma IGF-binding protein-1 in rats., J. Nutr., vol. 130, no. September, pp. 2910 2914, 2000. [9] T. Kohonen, Self-Organized formation of topologically correct feature maps, Biological Cybernetics, Vol.43, pp.59-69, 1982. [10] T. Kohonen, Self-Organizing Maps, Springer-Verlag, 1995. [11] Folch J, Lees M, Sloane Stanley GH, A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 226: 497-509, (1957). [12] Masato MASUDA, Yasushi NAKABAYASHI and Genki YAGAWA, Radius Parallel Self- Organizing Map (RPSOM), Journal of Computational Science and Technology, Vol. 6, No. 1, 16-27, DOI: 10.1299/jcst.6.16 (2012).