Studies on Stationary Phase Selectivity for Solid-Core Particles

Similar documents
Impact of Reversed-Phase Chiral Chromatography on the LC-MS Analysis of Drugs in Biological Fluids

Transfer and Speed-up of Methods to Fused-Core Particle Columns EPA Method 1694

SeQuant ZIC -HILIC For all who expect more...

SeQuant ZIC -HILIC For all who expect more...

Roc On with These Dependable LC Columns

The high efficiency of sub-2 µm UHPLC columns combined with the low pressure and high speed of monolith columns.

Phenyl-Hexyl. UHPLC Columns. lternate, complementary selectivity to C18 and C8 bonded phases

Aeris. Precision Engineered Core- Shell Particles for Ultra-High Resolution BioSeparations. Aeris PEPTIDE. Aeris WIDEPORE

Restek Ultra II HPLC Columns

Hyper-fast & Super-rugged

The Raptor HILIC-Si Column

Analytical and Preparative SFC Columns

Sepax Technologies, Inc.

A Novel Solution for Vitamin K₁ and K₂ Analysis in Human Plasma by LC-MS/MS

Maximizing Efficiency Using Agilent InfinityLab Poroshell 120 Columns

C30 ISOMERS HAVE MET THEIR MATCH

Separation of Macrocyclic Lactones (Avermectins) on FLARE C18 MM & FLARE C18+ Columns

ACE. For increased polar retention and alternative selectivity. Alternative selectivity for method development

Core-Shell Technology for Proteins and Peptides

COSMOSIL HILIC. HPLC Column for Hydrophilic Interaction

Ultimate Core Performance to Maximize Your Investment

Agilent Technologies Prep LC Columns

Extended Temperature Range Impact on HPLC Column Stability and Performance

Separation of Vitamin D and Vitamin D Metabolites on FLARE C18 MM (Mixed Mode) HPLC Column

Core-Shell / Solid core Particles: A Practical Substitute to Sub-2 Micron Particles: An overview

A New HILIC/RP Mixed-Mode Column and Its Applications in Surfactant Analysis

Gerry Hendrickx Regional Sales Manager Central Europe. Developments in Waters Column Chemistries : BEH Technology

For Far. Greater. UHPLC Column Performance You Must Have Kinetex Core-Shell UHPLC Columns.

Ultra Columns HPLC COLUMNS

Column Stability and Performance under High Temperature HPLC Conditions

Enrichment of Phospholipids from Biological Matrices with Zirconium Oxide-Modified Silica Sorbents

Effective use of Pharmacopeia guidelines to reduce cost of chromatographic analysis for Fluticasone propionate

Selectivity Comparison of Agilent Poroshell 120 Phases in the Separation of Butter Antioxidants

LC Columns - Exceed the limit. A premium inert range of LC columns delivering optimal peak shape. ProteCol -P PEEK lined

LC Columns with Liquid Separation Cell Technology

Increasing resolution using longer columns while maintaining analysis time Advantages of the wide power range of the Agilent 1290 Infinity LC System

APPLICATIONS TN Overview of Kinetex 2.6 µm Core-Shell Technology

Raptor HILIC-Si: Simplify the Switch to HILIC

Maximizing chromatographic peak capacity with the Agilent 1290 Infinity LC system

Analytical Method Development for USP Related Compounds in Paclitaxel Using an Agilent Poroshell 120 PFP

Converting a CHP Method for Insulin to Agilent Poroshell 120 Columns

APPLICATIONS TN A Comparison of Various Kinetex C18 Phases USP: L1

Using Hydrophilic Interaction Chromatography (HILIC) for the Retention of Highly Polar Analytes

11:00 a.m. EST Telephone Number: Chair Person: Tim Spaeder

Ultra Columns. also available. ordering note

Columns The FIRST and ONLY sub-2 µm core-shell columns on the market

ACE C18-AR Use the Power!

Reversed-Phase Columns (Other than ODS)

Fused-Core Particles:

APPLICATIONS TN µm Core-Shell Particle. (continued on page 2) Page 1 of 8. For additional technical notes, visit

Detection of Low Level of Chloramphenicol in Milk and Honey with MIP SPE and LC-MS-MS

Systematic Evaluation of Solid Phase Extraction (SPE) Chemistries for the Determination of Acidic, Neutral, and Basic Drugs

Choosing Preparative Columns

New HPLC Column Options for UHPLC

Biphenyl. Stationary Phase: Fast, Rugged Raptor Columns with Time-Tested Selectivity. Pure Chromatography. Selectivity Accelerated

Rapid and sensitive UHPLC screening for water soluble vitamins in sports beverages

Barry Boyes 1,2, Shujuan Tao 2, and Ron Orlando 2

Raptor HILIC-Si: Simplify the Switch to HILIC

Eurospher II the logical choice. Physical properties of Eurospher II silica gel: Silica gel: ultra pure, > % Metal content: < 10 ppm

Terence Hetzel, Thorsten Teutenberg, Torsten C. Schmidt Institut für Energie- und Umwelttechnik e. V.

Utility of Pentafluorophenylpropyl Stationary Phases for RP-HPLC Analyses: Biogenic Amines on Discovery HS F5

Am I getting the very best value from my UHPLC analyses?

Impurity Profiling of Carbamazepine by HPLC/UV

Transferring a Method for Analysis of DNPH-Derivatized Aldehydes and Ketones from HPLC to UHPLC

Columns for HPLC. Columns for HPLC

Identification of Steroids in Water by Ion Trap LC/MS/MS Application

YMC HILIC Columns for Polar Analytes

Robust extraction, separation, and quantitation of structural isomer steroids from human plasma by SPE-UHPLC-MS/MS

Thermo Scientific Hypersil BDS Columns

Unique Retention and Selectivity of Pentafluorophenylpropyl Phases for High-Throughput LC/MS Analysis

Unequalled durability against water elution. % tr

Figure 1. Core-Shell Particle Technology

Exceed your Purification Goals. Guaranteed. Phenomenex l WEB:

High-Resolution Analysis of Intact Triglycerides by Reversed Phase HPLC Using the Agilent 1290 Infinity LC UHPLC System

Application Note. Agilent Application Solution Analysis of ascorbic acid, citric acid and benzoic acid in orange juice. Author. Abstract.

GlycanPac AXR-1 Columns

Chapter 22: Gas and Liquid Chromatography. Liquid Chromatography: Stationary Phases and Mobile Phases: Normal Phase: Reversed Phase:

Matrix-induced Signal Enhancement of Propamocarb in LC-MS/MS

Analysis of Counterfeit Antidiabetic Drugs by UHPLC with the Agilent 1220 Infinity Mobile LC

APPLICATIONS TN Dramatically Improve Existing 5 µm and 3 µm Fully Porous Methods with Kinetex 5 µm Core-shell Technology.

APPLICATIONS Improving Intact Biogeneric Protein Separations with Aeris WIDEPORE Core-Shell Columns

Rapid and sensitive UHPLC screening of additives in carbonated beverages with a robust organic acid column

Ion Exchange and Reversed Phase interactions in selective Bio-SPME extractions of designer drugs

ACE CN-ES. Extra Stability. Extended Spacer. Enhanced Selectivity ACE. Combining CN polar selectivity with enhanced hydrophobicity

Comparison of a UPLC Method across Multiple UHPLC Systems

LC/MS Analysis of Various Hydrophilic Compounds Using a Polymer-Based Amino Column - Shodex TM HILICpak TM VG-50 2D

SPME-LC Fibers for a Variety of Applications

IAM Chromatography. Introduction

Rapid Gradient and Elevated Temperature UHPLC of Flavonoids in Citrus Fruit

Ultrafast analysis of synthetic antioxidants in vegetable oils using the Agilent 1290 Infinity LC system

Performance of an ultra low elution volume 96-well plate

Edgar Naegele. Abstract

YMC-Actus. Columns for Semi-preparative HPLC. Selectivity Durability Loadability

InertSustain Phenylhexyl. A New Second Choice Column to Change Chromatographic Behavior

Separation of Saccharides Using TSKgel Amide-80, a Packing Material for High-Performance Normal Phase Partition Chromatography (1) Table of Contents

Chromatography on Immobilized Artificial Membrane

Chromatogram Search Tool Search by compound name, synonym, CAS # or keyword Pinnacle II Columns

The LC Column Playbook

Fortis Method Development Options

Transcription:

Studies on Stationary Phase Selectivity for Solid-Core Particles Richard A. enry, Wayne K. Way, Carmen T. Santasania, and David S. Bell Supelco, Div. of Sigma-Aldrich, Bellefonte, PA 6823 USA T4060 sigma-aldrich.com

Three Factors Control PLC and UPLC Resolution* R s = k k+ 4 α- α 3.0 2.5 α = 6 (t R /w) 2 or = 5.5 (t R /w) 2 k = (t R t 0 )/t 0 Resolution (R) 2.0.5.0 0.5 k α = k 2 /k All factors are important, but selectivity is considered the most powerful term. 0.0.00.05.0.5.20.25 0 5K 0K 5K 20K 25K 0 5 0 5 20 25 * Yun Mao, PhD Dissertation, University of Minnesota, 200. α k 2

LC Particle Innovation Chronology Particle Size and Architecture (porosity) More speed, efficiency 5 µm 3 µm <2 µm Solid-Core monoliths Particle Composition (and stationary phases) expanded p range and selectivity silica polymers ybrids ther oxides 3

Fused-Core Particle Particle properties: 90 Å and 60 Å 2.7 µm pure silica particle.7 µm solid core 0.5 µm 0.5 µm porous shell 90 Å pores (50 m 2 /g) and 60 Å pores (80 m 2 /g) 2.7 µm.7 µm Solid Core Density.3 g/cc* Extremely uniform particle size distribution Retains 75% of the surface area and sample capacity of porous particles * Typical porous silica made by a sol-gel process is.0 g/cc. 4

Ascentis Express Fused-Core - igher Efficiency 20-30,000 plates can be generated and maintained at moderate pressure. 4 Agilent 200 2 Ascentis Express C8, 5 cm x 4.6 mm, 2.7 µm.0 ml/min, 254 nm, RT, 0 µl inj. 3. Uracil (void marker) 2. Acetophenone = 33,786 3. Benzene = 3,696 4. Toluene = 30,738 Pressure = 83 bar (2690 psi) 0 2 3 4 min 5

Retention and Selectivity are Stationary Phase (Column) and Mobile Phase Related Current Ascentis Express Fused-Core Surface ptions C8 ES-C8 (60Å) C8 RP-Amide (RPA) Phenyl-exyl F5 (RP or ILIC) ILIC (Si) Stationary and mobile phase conditions define the operating mode which is usually reversed-phase. 6

LogP Values* as Guides to Initial Column/Mode Selection ydrophilic interaction dominates ydrophobic interaction dominates igh organic igh aqueous For P value of 00 (00: distribution in favor of n-octanol), logp = 2. For P value of (equal distribution between n-octanol and water), logp = 0. For P value less than (distribution favors water), logp is negative. * LogP (octanol:water partition coefficients) scale adapted from LCGC CRMacademy webinar, Understanding ILIC, presented by est Group, Inc. and Crawford Scientific (20). 7

Samples Studied with Different LogP Ranges Rules for C8 columns in Reversed Phase mode: LogP values of 2 or more will often be retained in 50% organic or greater. LogP values in the range of 0-2 usually require less than 50% organic to be retained. A wide range of logp values (>) indicates that gradient experiments may be needed. egative logp values (P favors water) may require a mode change to ILIC, Ion-Exchange or Ion-Pair. Compound Type logp Value Range* onpolar Steroids 2.86 to 4.5 Polar Steroids.57 to.76 Furocoumarins.52 to 2.04 Anti-ulcer drugs (gradient) -.65 to 2.36 * LogP estimated (within ca. 0%) using ACD Labs software. 8

onpolar Steroids with Estimated logp Values logp = 4. C 3 C C 3 C logp = 2.86 Ethinylestradiol Monoisotopic Mass = 296.7763 Da C 3 orethindrone Monoisotopic Mass = 298.9328 Da C 3 logp = 3.62 logp = -.04 Estrone [*{I}; *{USA}] Monoisotopic Mass = 270.698 Da Estradiol [*{I}; *{USA}] Monoisotopic Mass = 272.7763 Da logp = 4.5 Two polar groups in each planar steroid structure. Uracil [*{USA}] 9

Ascentis Express C8: Acetonitrile (50%) onpolar steroids BP= 2300 psi. Uracil 2. Estradiol 3. orethindrone 4. Ethinylestradiol 5. Estrone 2 3,4 5 Instrument: Waters 2690 with MS detection column: Ascentis Express, 5 cm x 4.6 mm I.D., 2.7 µm particles mobile phase: 60:40 methanol: water or 50:50 acetonitrile:water flow rate:.0 ml/min. temp.: 35 C det.: UV at 220 nm injection: 0 µl sample: 0 µg/ml in mobile phase Retention and selectivity may require use of polar stationary phases 0 2 4 6 8 0 Time (min) 0

Ascentis Express C8: Methanol (60%) Retention increases in Me but usually poor choice to improve selectivity with C8 2 3,4 onpolar steroids 5 BP= 4400 psi. Uracil 2. Estradiol 3. orethindrone 4. Ethinylestradiol 5. Estrone 0 2 4 6 8 0 Time (min)

Ascentis Express RPA: Acetonitrile (50%) ote stronger retention and elution order change vs C8 3 2 5 4 onpolar steroids BP= 2300 psi. Uracil 2. Estradiol 3. orethindrone 4. Ethinylestradiol 5. Estrone 0 2 4 6 8 0 Time (min) Amide phase attracts stronger -bonding donors Estradiol and Ethinylestradiol 2

Ascentis Express RPA: Methanol (60%) Retention increases even more in Me and elution order changes again to group the diol structures 3 5 2 4 onpolar steroids BP= 4200 psi. Uracil 2. Estradiol 3. orethindrone 4. Ethinylestradiol 5. Estrone 0 2 4 6 8 0 2 4 Time (min) Ternary mobile phases could be useful 3

Ascentis Express Phenyl exyl: Acetonitrile (50%) 3 onpolar steroids 2 4 5 BP= 2480 psi. Uracil 2. Estradiol 3. orethindrone 4. Ethinylestradiol 5. Estrone 0 2 4 Time (min) Retention favors ketone structures similar to C8 with slightly better selectivity. 4

Ascentis Express Phenyl exyl: Methanol (60%) onpolar steroids 2 4 3 5 BP= 4250 psi. Uracil 2. Estradiol 3. orethindrone 4. Ethinylestradiol 5. Estrone 0 2 4 6 8 0 2 4 Time (min) More retention in Me and better separation between diol and ketone pairs 5

Ascentis Express F5: Acetonitrile (50%) 3,4 Lightest retention and selectivity like C8 onpolar steroids 2 5 BP= 2400 psi. Uracil 2. Estradiol 3. orethindrone 4. Ethinylestradiol 5. Estrone 0 2 4 6 8 0 Time (min) Virtually overlays the C8 separation suggesting no interaction between polar groups 6

Ascentis Express F5: Methanol (60%) onpolar steroids 4 2 3 5 BP= 4200 psi. Uracil 2. Estradiol 3. orethindrone 4. Ethinylestradiol 5. Estrone 0 2 4 6 8 0 Time (min) Also closely resembles results with C8 in Me and shows only weak selectivity 7

Polar Steroids with Estimated logp Values logp = logp=.76 logp =.57 logp=.57 C 3 C 3 ydrocortisone [*{BA}; *{I}; *{JA}] logp =.63 logp=.63 C 3 Prednisolone [*{BA}; *{I}; *{JA}] C 3 C 3 C 3 Prednisone [*{BA}; *{I}] Five polar groups in each planar steroid structure. PLC Conditions: Mobile phase: as indicated Flow Rate: 0.4 ml/min Column Dimensions: 0 cm x 3.0 mm Detection: UV at 240 nm Injection volume: 5 µl Temperature: ambient Sample: 00 µg/ml each in 30% methanol 8

Ascentis Express C8: Methanol vs. AC Stronger retention for polar steroids on C8 in Me. Prednisone (logp.57) 2. Prednisolone (logp.63) 3. ydrocortisone (logp.76) mix/ac 45%/C8 A75280-0067 2: Diode Array 240 Range: 8.508e-2 AU.6e-.4e-.2e-.0e- 8.0e-2 6.0e-2 4.0e-2 22.5% Acetonitrile (peak changes with %AC) 8.76 2 8.48 3 2.0e-2 0.0.33.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 0.00 A75280-0009 2: Diode Array 6.0 240.6e- Range:.689e-.4e-.2e-.0e- 50% Methanol 4.42 2,3 AU 8.0e-2 6.0e-2 4.0e-2 2.0e-2 0.0 Time.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 0.00 9

Ascentis Express F5: Methanol vs. AC Stronger retention and better selectivity for polar steroids on F5 in Me. Prednisone (logp.57) 2. Prednisolone (logp.63) 3. ydrocortisone (logp.76) 50% Methanol 3 2 mix of three A75280-0040 2: Diode Array 6.00 240 Range: 8.424e-2 7.0e-2 7.50 6.0e-2 5.0e-2 6.53 AU 4.0e-2 3.0e-2 2.0e-2.0e-2 0.0.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 0.00 A75280-0060 2: Diode Array 5.93 240 Range: 9.89e-2 8.0e-2 6.0e-2 3 22.5% Acetonitrile 6. 2 7.50 AU 4.0e-2 2.0e-2 0.0.45 Time.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 0.00 20

Furocoumarins with Estimated logp Values Angelicin logp =.97 Psoralen logp = 2.04 Xanthotoxin logp =.52 C 3 C 3 Isobergaptan logp =.97 Bergaptan logp = 2.04 C 3 2

Furocoumarins on Ascentis Express C8 Elution order:. Angelicin 2. Psoralen 3. Xanthotoxin 4. Isobergaptan 5. Bergaptan 2,3 column: Ascentis Express, 0 cm x 4.6 mm I.D., 2.7 µm particles mobile phase: 40:60 water:methanol flow rate: 0.8 ml/min. pressure: 70 bar temp.: 35 C det.: UV at 254 nm injection: 2 µl sample: 25 µg/ml in 90:0 water:methanol Peaks 2 and 3 do not resolve on C8 in methanol and peaks cluster into two groups 4 5 0 2 4 6 8 Time (min) 22

Furocoumarins on Ascentis Express RP-Amide Elution order:. Angelicin 2. Psoralen 3. Xanthotoxin 4. Isobergaptan 5. Bergaptan 3 column: Ascentis Express, 0 cm x 4.6 mm I.D., 2.7 µm particles mobile phase: 40:60 water:methanol flow rate:.5 ml/min, pressure: 285 bar temp.: 40 C det.: UV at 254 nm injection: 2 µl sample: 25 µg/ml in 90:0 water:methanol 2 5 4 All peaks resolve and shift in elution order with more even spacing on RP-Amide in methanol.0 Time (min) 23

Anti-ulcer Drugs 2 2 S S 2 S 2 Famotidine logp = -.65 Pirenzepine logp = 0.2 S - + Ranitidine logp = -0.068 S Cimetidine logp = 0.56 S meprazole logp = 2.36 S S + - izatidine logp = -0.49 S F F F Lansoprazole logp = 2.58 24

Anti-Ulcer Drugs on Ascentis C8 Current method: two-slope 5-55% AC gradient column: Ascentis C8, 5 cm x 2. mm I.D., 5 µm particles (58304-U) mobile phase A: 0 mm ammonium phosphate (p 6.2 with phosphoric acid) mobile phase B: acetonitrile flow rate: 0.2 ml/min. temp.: 35 C det.: UV at 220 nm injection: 5 µl sample: as indicated in 95:5 water:methanol gradient: Min %A %B 0 95 5 0 85 5 8 45 55 23 45 55 2 3 5. Famotidine (40 µg/ml) 2. Ranitidine (40 µg/ml) 3. Cimetidine (40 µg/ml) 4. izatidine (40 µg/ml) 5. Pirenzepine (40 µg/ml) 6. meprazole (40 µg/ml) 7. Lansoprazole (40 µg/ml) 4 logp -.65 logp +2.58 6 7 0 0 20 Min 25

Anti-Ulcer Drugs on Ascentis RP-Amide A reversal of peaks and 2 was noted on Ascentis RP-Amide column: Ascentis RP-Amide, 5 cm x 2. mm I.D., 5 µm particles (565305-U) mobile phase A: 0 mm ammonium phosphate (p 6.2 with phosphoric acid) mobile phase B: acetonitrile flow rate: 0.2 ml/min. temp.: 35 C det.: UV at 220 nm injection: 5 µl sample: as indicated in 95:5 water:methanol gradient: Min %A %B 0 95 5 0 85 5 3 8 45 55 23 45 55 2 4 5. Famotidine (40 µg/ml) 2. Ranitidine (40 µg/ml) 3. Cimetidine (40 µg/ml) 4. izatidine (40 µg/ml) 5. Pirenzepine (40 µg/ml) 6. meprazole (40 µg/ml) 7. Lansoprazole (40 µg/ml) 6 7 0 0 20 Min 26

Ascentis Express C8 0-50% AC screening gradient Anti-Ulcer Drugs:. Famotidine 2. Ranitidine 3. Cimetidine 4. izatidine 5. Pirenzepine 6. meprazole 7. Lansoprazole 2 3 4 5 column: Ascentis Express, 0 cm x 4.6 mm I.D., 2.7 µm particles mobile phase A: 25 mm ammonium phosphate (p 6.2 with phosphoric acid) mobile phase B: acetonitrile flow rate:.5 ml/min (initial pressure 25-220 bar) temp.: 35 C det.: UV at 220 nm injection: 5 µl sample: 25 µg/ml in 90:0 water:methanol gradient: Min %A %B 0 90 0 0 50 50 0.0 90 0 5 90 0 Faster separation in same elution order as Ascentis C8. 6 7.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 0.0 Time (min) 27

Ascentis Express RP-Amide 0-50% AC screening gradient 3 Faster separation in same elution order as Ascentis RP-Amide 6 7 Anti-Ulcer Drugs:. Famotidine 2. Ranitidine 3. Cimetidine 4. izatidine 5. Pirenzepine 6. meprazole 7. Lansoprazole 2 4 5.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 0.0 Time (min) 28

Ascentis Express Phenyl exyl 0-50% AC screening gradient 2,3 Similar elution order to C8 5 6 7 Anti-Ulcer Drugs: Elution order. Famotidine 2. Ranitidine 3. Cimetidine 4. izatidine 5. Pirenzepine 6. meprazole 7. Lansoprazole 4 0 2 4 6 8 0 Time (min) 29

Ascentis Express F5 0-50% AC screening gradient Anti-Ulcer Drugs: 3 More retention and change in elution order for polar drugs (i.e. ranitidine) 6 7 Elution order. Famotidine 2. Ranitidine 3. Cimetidine 4. izatidine 5. Pirenzepine 6. meprazole 7. Lansoprazole 4 2 5.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 0.0 Time (min) 30

Ascentis Express (Peptide) ES-C8* 0-50% AC screening gradient Anti-Ulcer Drugs: 2 3 Comparable retention and selectivity to C8 6 7 Elution order. Famotidine 2. Ranitidine 3. Cimetidine 4. izatidine 5. Pirenzepine 6. meprazole 7. Lansoprazole 4 5.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 0.0 Time (min) * 60 Å, no end-capping; optimized for separating peptides and small proteins using TFA gradients. 3

Conclusions Ascentis Express columns are excellent choices for developing selective, high speed separations. igher efficiency observed at lower pressure vs porous packings; comparable efficiency to sub-2 µm particles. Comparable retention to popular porous packings including Discovery, Ascentis and other columns. Range of very selective surface modifications available; phase selectivity correlates closely with Discovery, Ascentis, and other porous silica columns. LogP values can be very useful early in the column selection and mode selection process for any column. Correlation is not perfect because only part of the PLC retention process is due to liquid-liquid partition. 32

Selectivity References. D. Benhaim and E. Grushka, Amide Phase for LogP Values, JCA, 27 (200) 65-74. 2. M. R. Euerby, et. al., Classification of Phenyl Columns, JCA, 54 (2007), 38-5. 3. L.R. Snyder, J.W. Dolan and P.W. Carr, ydrophobic Subtraction Model for Classification of Reversed-Phase Columns, JCA, 060 (2004), 77. 4. J. W. Dolan and L. R. Snyder, Selecting an rthogonal Column, JCA,26 (2009), 3467-3472. 5. M. R. Schure, et. al., Molecular Level Comparison of Alkyl and Polar- Embedded Systems, Anal. Chem. 2008, 80, 624-622. 6. M. Yang, et. al., Impact of Methanol and Acetonitrile on Phenyl Selectivity, JCA, 097 (2005), 24-29. 7. D.. Marchand, et. al., Phenyl Column Selectivity, JCA, 062 (2005) 65. 8. Y. Kazakevitch, et. al., Surface Studies of Phenyl Modified Adsorbents, JCA, 082 (2005), 58-65. 9. Mao, Y., Selectivity ptimization in Liquid Chromatography Using the Thermally Tuned Tandem Column (T3C) Concept, Ph.D. Thesis (P. Carr), The University of Minnesota, 200. 33