CNS consists of brain and spinal cord Cephalization Evolutionary development of rostral (anterior) portion of CNS Increased number of neurons in head

Similar documents
Homework Week 2. PreLab 2 HW #2 Synapses (Page 1 in the HW Section)

Anatomy and Physiology (Bio 220) The Brain Chapter 14 and select portions of Chapter 16

BRAIN PART I (A & B): VENTRICLES & MENINGES

Chapter 18: The Brain & Cranial Nerves. Origin of the Brain

Human Anatomy. Brain and Cranial Nerves

The Central Nervous System I. Chapter 12

b. The groove between the two crests is called 2. The neural folds move toward each other & the fuse to create a

Biological Bases of Behavior. 3: Structure of the Nervous System

Department of Cognitive Science UCSD

Chapter 3. Structure and Function of the Nervous System. Copyright (c) Allyn and Bacon 2004

The neurvous system senses, interprets, and responds to changes in the environment. Two types of cells makes this possible:

The Brain. Brain. Spinal Cord. Cauda Equina

Embryonic Brain Development

Organization of The Nervous System PROF. MOUSAED ALFAYEZ & DR. SANAA ALSHAARAWY

Unit 12a: The Nervous System The Brain. MDL231 Principle of Anatomy

The Nervous System PART B

Parts of the Brain. Hindbrain. Controls autonomic functions Breathing, Heartbeat, Blood pressure, Swallowing, Vomiting, etc. Upper part of hindbrain

CEREBRUM Dr. Jamila Elmedany Dr. Essam Eldin Salama

Chapter 13 Brain and Cranial Nerves

Blood supply to the brain Blood brain barrier isolates neural tissue from general circulation

Brain ميهاربا لض اف دمح ا د The Meninges 1- Dura Mater of the Brain endosteal layer does not extend meningeal layer falx cerebri tentorium cerebelli

Anatomy Lecture Notes Chapter 13

14 - Central Nervous System. The Brain Taft College Human Physiology

Unit Three. The brain includes: cerebrum, diencephalon, brain stem, & cerebellum. The brain lies within the cranial cavity of the skull.

Chapter 14: The Brain and Cranial Nerves. Copyright 2009, John Wiley & Sons, Inc.

PET Scans. External Appearance. The Brain: Anatomy & Functions. Cerebral Hemispheres

Announcement. Danny to schedule a time if you are interested.

Organization of The Nervous System PROF. SAEED ABUEL MAKAREM

meninges Outermost layer of the meninge dura mater arachnoid mater pia mater membranes located between bone and soft tissue of the nervous system

Sheep Brain Dissection

Functional Organization of the Central Nervous System

Good Morning! Take out your notes and vocab 1-10! Copyright 2003 Pearson Education, Inc. publishing as Benjamin Cummings

CEREBRUM & CEREBRAL CORTEX

Ch 13: Central Nervous System Part 1: The Brain p 374

The Nervous System 7PART B. PowerPoint Lecture Slide Presentation by Patty Bostwick-Taylor, Florence-Darlington Technical College

Chapter 12 The Central Nervous System Chapter Outline

ACTIVITY 7: NERVOUS SYSTEM HISTOLOGY, BRAIN, CRANIAL NERVES

Chapter 13 Lecture Outline *

a) Central sulcus- shallow groove that runs across brain sagitally

Neuroanatomy lecture (1)

I. Anatomy of the Brain A. Cranial Meninges and Ventricles of the Brain 1. Meninges a. Dura mater 1) Endosteal/Periosteal Layer - Outer 2) Meningeal

stored information, making decisions, and taking action. 1. It is also the center for intellect, emotions, behavior, and memory.

DIENCEPHALON. ..Central core of the forebrain..consists of three paired structures

The Brain and Cranial Nerves Pg Three Main Regions of the Brain. Forebrain

The Nervous System PART B

The Brain and Cranial Nerves Pg. 129

Nervous System - PNS and CNS. Bio 105

3/15/17. Outline. Nervous System - PNS and CNS. Two Parts of the Nervous System

NOTES CHAPTER 9 (Brief) The Nervous System LECTURE NOTES

Somatic Nervous Systems. III. Autonomic Nervous System. Parasympathetic Nervous System. Sympathetic Nervous Systems

Anatomy of the Human Brain

CEREBRUM. Dr. Jamila EL Medany

Lecture - Chapter 13: Central Nervous System

MENTAL HOSPITAL PHONE MENU

Divisions of the Nervous System

Central Nervous System (CNS) -> brain and spinal cord. Major Divisions of the nervous system:

CHAPTER 13&14: The Central Nervous System. Anatomy of the CNS

M555 Medical Neuroscience Lab 1: Gross Anatomy of Brain, Crainal Nerves and Cerebral Blood Vessels

Histology of the CNS

Principles of Anatomy and Physiology

Central nervous system (CNS): brain and spinal cord Collections of cell body and dendrites (grey matter) are called nuclei/nucleus Nucleus can also

Brain and Cranial Nerves (Ch. 15) Human Anatomy lecture. caudal = toward the spinal cord)

The Central Nervous System

PROPERTY OF ELSEVIER SAMPLE CONTENT - NOT FINAL. Gross Anatomy and General Organization of the Central Nervous System

Nervous System: Part IV The Central Nervous System The Brain

Development of Brain Stem, Cerebellum and Cerebrum

SOME BASIC TERMINOLOGY CNS: Central Nervous System: Brain + Spinal Cord

Anatomy Lab (1) Theoretical Part. Page (2 A) Page (2B)

Anatomy & Physiology Central Nervous System Worksheet

THE CENTRAL NERVOUS SYSTEM. The Brain & Spinal Cord

Systems Neuroscience Dan Kiper. Today: Wolfger von der Behrens

Note to Self. The Brain and Cranial Nerves. Organization of the Brain

Neurology study of the nervous system. nervous & endocrine systems work together to maintain homeostasis

Gross Morphology of the Brain

The Nervous System. PowerPoint Lecture Slides C H A P T E R 7. Prepared by Patty Bostwick-Taylor, Florence-Darlington Technical College

Basic Brain Structure

2/22/2012. Cerebrum CNS

Neuroanatomy. Assistant Professor of Anatomy Faculty of Medicine The University of Jordan Dr Maha ELBeltagy

- note cerebral hemispheres, diencephalon, brainstem and the cerebellum.

Bellringer: The central nervous system is comprised of: What is the name of the outermost layer of the brain? a. Brain. b.

The Human Brain. I Think Therefore I am

Lesson 14. The Nervous System. Introduction to Life Processes - SCI 102 1

8.3 The Central Nervous System. SBI4U Ms. Ho-Lau

The Brain and Cranial Nerves Student Objectives

Protection of the Brain. Overview of the Brain. Visual Anatomy & Physiology First Edition. Martini & Ober. Chapter 13. Lecture 20

Telencephalon (Cerebral Hemisphere)

Page. Ch 11 A CNS. This set. Major Landmarks: Brain size is proportional to body size only and can be divided into three major portions;

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

ACTIVITY 7: NERVOUS SYSTEM HISTOLOGY, BRAIN, CRANIAL NERVES NERVOUS SYSTEM TISSUES: HISTOLOGY SLIDES

2401 : Anatomy/Physiology

3 rd week ectoderm thickens to form neural plate, which is later flanked by neural folds This neural groove deepens, forming a neural tube by 4 th

BIO 210 CHAPTER 13. The Central Nervous System SUPPLEMENT 2. PowerPoint by John McGill Supplemental Notes by Beth Wyatt CEREBELLUM

PSY 302: CHAPTER 3 NOTES THE BRAIN (PART II) - 9/5/17. By: Joseline

Big Ideas. (e.g. puberty, immune function (autoimmune disorders)) 2011 Pearson Education, Inc.

1. The basic anatomy of the Central Nervous System (CNS)

The Nervous system is divided into 2 major divisions: 1) Central Nervous System (CNS): found within bones & consists of:

The Brain Worksheet Sections 5-7

A recap of the Brain- Bio 230

Chapter 7 The Nervous System

Introduction and Basic structural organization of the nervous system

Transcription:

CNS consists of brain and spinal cord Cephalization Evolutionary development of rostral (anterior) portion of CNS Increased number of neurons in head Highest level reached in human brain 1

Mostly to orient view of embryonic disc Ectoderm, mesoderm, endoderm - primitive tissues from which all body organs derive Epithelia cells Ectoderm nervous system; skin 2

epidermis Endoderm epithelial linings of digestive, respiratory, urogenital systems; associated glands Mesenchyme cells Mesoderm everything else 2

After primitive embryonic tissues developed = cells committed to pathways from those tissues Ectodermal layer develops a groove and then an in-folding and then fuses into a tube 3

Brain and spinal cord begin as neural tube 3 primary vesicles form at anterior end Prosencephalon or forebrain Mesencephalon or midbrain Rhombencephalon or hindbrain Posterior end becomes spinal cord 4

Primary vesicles 5 secondary brain vesicles Forebrain telencephalon and diencephalon Midbrain remains undivided Hindbrain metencephalon and myelencephalon 5

Telencephalon cerebral hemispheres Diencephalon epithalamus, thalamus, hypothalamus, and retina Mesencephalon midbrain Metencephalon pons and cerebellum Myelencephalon medulla oblongata Central cavity of neural tube ventricles 6

Central cavity of neural tube ventricles 7

Brain grows faster than membranous skull Folds to occupy available space Forebrain moved toward brain stem (midbrain, pons, medulla oblongata) Cerebral hemispheres double back and envelop diencephalon and midbrain while creasing and folding to increase surface area 8

Adult brain regions 1. Cerebral hemispheres 2. Diencephalon 3. Brain stem (midbrain, pons, and medulla) 4. Cerebellum

Spinal cord Central cavity surrounded by gray matter External white matter composed of myelinated fiber tracts 12

Meninges Function of meninges: Cover and protect CNS Protect blood vessels and enclose venous sinuses Contain cerebrospinal fluid (CSF) Form partitions in skull Consists of three layers (from external to internal): dura mater, arachnoid mater, and pia mater 13

Dura mater Strongest meninx Made up of two layers of fibrous connective tissue Periosteal layer attaches to inner surface of skull Found only in brain, not spinal cord Meningeal layer: true external covering of brain Extends into vertebral canal as spinal dura mater Two layers are mostly fused, but separate in certain areas to form dural venous sinuses Sinuses collect venous blood from brain, empty into jugular veins of neck 14

Dura mater extends inward in several areas to form flat partitions that divide cranial cavity Partitions referred to as dural septa Act to limit excessive movement of brain Three main septa: Falx cerebri: in longitudinal fissure; attached to crista galli Falx cerebelli: along vermis of cerebellum Tentorium cerebelli: horizontal dural fold over cerebellum and in transverse fissure 15

Arachnoid mater Middle layer with spiderweb-like extensions Separated from dura mater by subdural space Subarachnoid space contains CSF and largest blood vessels of brain Arachnoid granulations protrude through dura mater into superior sagittal sinus Permit reabsorption of CSF back into venous blood 16

Pia mater Delicate connective tissue that clings tightly to brain, following every convolution Contains many tiny blood vessels that feed brain 17

18

Brain (brainstem, anyway) Brainstem similar pattern to spinal cord Additional areas of gray matter in brain 19

Brainstem Similar pattern Additional areas of gray matter in brain 20

Additional areas of gray matter in brain Cerebral hemispheres and cerebellum Outer gray matter called cortex 21

Paired, C-shaped lateral ventricles in cerebral hemispheres Separated anteriorly by septum pellucidum Third ventricle in diencephalon Fourth ventricle in hindbrain Three openings: paired lateral apertures in side walls; median aperture in roof Connect ventricles to subarachnoid space

Filled with cerebrospinal fluid (CSF) Lined by ependymal cells Connected to one another and to central canal of spinal cord Lateral ventricles third ventricle via interventricular foramen Third ventricle fourth ventricle via cerebral aqueduct

Choroid plexus: cluster of capillaries that hangs from roof of each ventricle, enclosed by pia mater and surrounding layer of ependymal cells CSF is filtered from plexus at constant rate Ependymal cells use ion pumps to control composition of CSF and help cleanse CSF by removing wastes Cilia of ependymal cells help to keep CSF in motion Normal adult CSF volume of ~150 ml is replaced every 8 hours 24

Cerebrospinal fluid (CSF) forms a liquid cushion of constant volume around brain Functions Gives buoyancy to CNS structures Reduces weight of brain by 97% by floating it so it is not crushed under its own weight Protects CNS from blows and other trauma Nourishes brain and carries chemical signals Composed of watery solution formed from blood plasma, but with less protein and different ion concentrations from plasma 25

Five lobes Frontal Parietal Temporal Occipital Insula

Insula

Surface markings Ridges (gyri), shallow grooves (sulci), and deep grooves (fissures)

Longitudinal fissure Separates two hemispheres

Transverse cerebral fissure Separates cerebrum and cerebellum

Central sulcus Separates precentral gyrus of frontal lobe and postcentral gyrus of parietal lobe Parieto-occipital sulcus Separates occipital and parietal lobes Lateral sulcus outlines temporal lobes

Three basic regions Cerebral cortex of gray matter superficially White matter internally Basal nuclei deep within white matter 32

Thin (2 4 mm) superficial layer of gray matter 40% mass of brain Site of conscious mind: awareness, sensory perception, voluntary motor initiation, communication, memory storage, understanding 33

Has six layers: I Molecular layer II External granular layer III External pyramidal layer IV Internal granular layer V Internal pyramidal layer VI Multiform (polymorphic layer) 34

Has six layers: I Molecular layer II External granular layer III External pyramidal layer IV Internal granular layer V Internal pyramidal layer VI Multiform (polymorphic layer) 35

Layer 1 consists mainly of apical dendrites from pyramidal cells from lower layers plus axons synapsing on those dendrites. It contains almost no neuron cell bodies. Layer 2 contains many small densely-packed pyramidal neurons giving it a granular appearance. Layer 3 contains medium-sized pyramidal neurons which send outputs to other cortical areas. Layer 4 contains many spiny stellate (excitatory) interneurons Layer 5 contains the largest pyramidal neurons, which send outputs to the brain stem and spinal cord (the pyramidal tract) Layer 6 consists of pyramidal neurons and neurons with spindle-shaped cell bodies. 36

A Brodmann area is a region of the cerebral cortex, in the human or other primate brain, defined by its cytoarchitecture, or histological structure and organization of cells. Wikipedia 52 original areas duplicated in hemispheres Subsequently subdivided areas as more refined techniques developed. Functional separation of parts of the cortex grossly matches cytoarchitectural differences 37

Cortical neurons interconnected in vertical columns Presumably all cells functionally related all have same precise (or very, very close) receptive fields 38

1. Three types of functional areas Motor areas control voluntary movement Sensory areas conscious awareness of sensation Association areas integrate diverse information 2. Each hemisphere concerned with contralateral side of body 3. Lateralization (specialization) of cortical function in hemispheres 4. Conscious behavior involves entire cortex in some way 39

Broca's area anterior to inferior premotor area Frontal eye field within and anterior to premotor cortex; superior to Broca's area

In frontal lobe; control voluntary movement Primary (somatic) motor cortex in precentral gyrus Premotor cortex anterior to precentral gyrus 42

Allows conscious control of precise, skilled, skeletal muscle movements Betz cells very large pyramidal neurons in layer V of pre-central gyrus Next slide

Large pyramidal cells of precentral gyri Long axons pyramidal (corticospinal) tracts of spinal cord 44

Motor homunculi - upside-down caricatures represent contralateral motor innervation of body regions

Premotor Cortex Helps plan movements; staging area for skilled motor activities Controls learned, repetitious, or patterned motor skills Coordinates simultaneous or sequential actions Controls voluntary actions that depend on sensory feedback

Broca's Area Present in one hemisphere (usually the left) Motor speech area that directs muscles of speech production Active in planning speech and voluntary motor activities

Frontal Eye Field Controls voluntary eye movements

Conscious awareness of sensation Occur in parietal, insular, temporal, and occipital lobes 50

Primary somatosensory cortex Visual areas Auditory areas Vestibular cortex Olfactory cortex Gustatory cortex Visceral sensory area 51

In postcentral gyri of parietal lobe Receives general sensory information from skin, and proprioceptors of skeletal muscle, joints, and tendons Capable of spatial discrimination: identification of body region being stimulated Somatosensory homunculus upside-down caricatures represent contralateral sensory input from body regions

Somatosensory association cortex Posterior to primary somatosensory cortex Integrates sensory input from primary somatosensory cortex for understanding of object Determines size, texture, and relationship of parts of objects being felt 53

Primary visual (striate) cortex Extreme posterior tip of occipital lobe Most buried in calcarine sulcus of occipital lobe Receives visual information from retinas 54

Visual association area Surrounds primary visual cortex Uses past visual experiences to interpret visual stimuli (e.g., color, form, and movement) E.g., ability to recognize faces Complex processing involves entire posterior half of cerebral hemispheres Ventral Stream what stream Dorsal Stream where stream 55

Primary auditory cortex Superior margin of temporal lobes Interprets information from inner ear as pitch, loudness, and location 56

Auditory association area Located posterior to primary auditory cortex Stores memories of sounds and permits perception of sound stimulus 57

Posterior part of insula and adjacent parietal cortex Responsible for conscious awareness of balance (position of head in space) 58

Primary olfactory (smell) cortex Medial aspect of temporal lobes (in piriform lobes) Part of primitive rhinencephalon, along with olfactory bulbs and tracts Remainder of rhinencephalon in humans part of limbic system Region of conscious awareness of odors 59

In insula just deep to temporal lobe Involved in perception of taste 60

Posterior to gustatory cortex Conscious perception of visceral sensations, e.g., upset stomach or full bladder 61

Receive inputs from multiple sensory areas Send outputs to multiple areas, including premotor cortex Allows meaning to information received, store in memory, tying to previous experience, and deciding on actions Sensations, thoughts, emotions become conscious makes us who we are 62

Three broad parts: Anterior association area (prefrontal cortex) Posterior association area [and next slide] 63

Limbic association area 64

Part of limbic system Involves cingulate gyrus, parahippocampal gyrus, and hippocampus Provides emotional impact that makes scene important and helps establish memories 65

Most complicated cortical region Involved with intellect, cognition, recall, and personality Contains working memory needed for abstract ideas, judgment, reasoning, persistence, and planning Development depends on feedback from social environment 66

Large region in temporal, parietal, and occipital lobes Plays role in recognizing patterns and faces and localizing us in space Involved in understanding written and spoken language (Wernicke's area 67

Hemispheres almost identical Lateralization - division of labor between hemispheres Cerebral dominance - hemisphere dominant for language (left hemisphere - 90% people) 68

Left hemisphere Controls language, math, and logic Right hemisphere Visual-spatial skills, intuition, emotion, and artistic and musical skills Hemispheres communicate almost instantaneously via fiber tracts and functional integration 69

Myelinated fibers and tracts Communication between cerebral areas, and between cortex and lower CNS Association fibers horizontal; connect different parts of same hemisphere Commissural fibers horizontal; connect gray matter of two hemispheres Projection fibers vertical; connect hemispheres with lower brain or spinal cord

Subcortical nuclei Caudate nucleus Putamen Globus pallidus Caudate nucleus + putamen = striatum Associated with subthalamic nuclei (diencephalon) and substantia nigra (midbrain)

Functions thought to be Influence muscle movements Role in cognition and emotion Regulate intensity of slow or stereotyped movements Filter out incorrect/inappropriate responses Inhibit antagonistic/unnecessary movements

Three paired structures Thalamus Hypothalamus Epithalamus Encloses third ventricle

80% of diencephalon Superolateral walls of third ventricle Bilateral nuclei connected by interthalamic adhesion (intermediate mass) Contains several nuclei, named for location Nuclei project and receive fibers from cerebral cortex

Gateway to cerebral cortex Sorts, edits, and relays ascending input Impulses from hypothalamus for regulation of emotion and visceral function Impulses from cerebellum and basal nuclei to help direct motor cortices Impulses for memory or sensory integration Mediates sensation, motor activities, cortical arousal, learning, and memory 76

Forms inferolateral walls of third ventricle Contains many nuclei Example: mammillary bodies Paired anterior nuclei Olfactory relay stations Infundibulum stalk that connects to pituitary gland

Controls autonomic nervous system (e.g., blood pressure, rate and force of heartbeat, digestive tract motility, pupil size) Physical responses to emotions (limbic system) Perception of pleasure, fear, and rage, and in biological rhythms and drives 78

Regulates body temperature sweating/shivering Regulates hunger and satiety in response to nutrient blood levels or hormones Regulates water balance and thirst Regulates sleep-wake cycles Suprachiasmatic nucleus (biological clock) Controls endocrine system Controls secretions of anterior pituitary gland Produces posterior pituitary hormones 79

Epithalamus Most dorsal portion of diencephalon; forms roof of third ventricle Pineal gland (body) extends from posterior border and secretes melatonin Melatonin helps regulate sleep-wake cycle