Small hairpin RNA-mediated Krüppel-like factor 8 gene knockdown inhibits invasion of nasopharyngeal carcinoma

Similar documents
c Tuj1(-) apoptotic live 1 DIV 2 DIV 1 DIV 2 DIV Tuj1(+) Tuj1/GFP/DAPI Tuj1 DAPI GFP

Supplementary Table 3. 3 UTR primer sequences. Primer sequences used to amplify and clone the 3 UTR of each indicated gene are listed.

Supplementary Appendix

Plasmids Western blot analysis and immunostaining Flow Cytometry Cell surface biotinylation RNA isolation and cdna synthesis

Long noncoding RNA linc-ubc1 promotes tumor invasion and metastasis by regulating EZH2 and repressing E-cadherin in esophageal squamous cell carcinoma

Figure S1. Analysis of genomic and cdna sequences of the targeted regions in WT-KI and

A smart acid nanosystem for ultrasensitive. live cell mrna imaging by the target-triggered intracellular self-assembly

Supplemental Data. Shin et al. Plant Cell. (2012) /tpc YFP N

CD31 5'-AGA GAC GGT CTT GTC GCA GT-3' 5 ' -TAC TGG GCT TCG AGA GCA GT-3'

a) Primary cultures derived from the pancreas of an 11-week-old Pdx1-Cre; K-MADM-p53

Supplementary Figures

BHP 2-7 and Nthy-ori 3-1 cells were grown in RPMI1640 medium (Hyclone) supplemented with 10% fetal bovine serum (Gibco), 2mM L-glutamine, and 100 U/mL

mir-26a inhibits invasion and metastasis of nasopharyngeal cancer by targeting EZH2

Supplementary Materials and Methods

Supplementary Materials

Supplementary Figure 1. ROS induces rapid Sod1 nuclear localization in a dosagedependent manner. WT yeast cells (SZy1051) were treated with 4NQO at

Oncolytic Adenovirus Complexes Coated with Lipids and Calcium Phosphate for Cancer Gene Therapy

Abbreviations: P- paraffin-embedded section; C, cryosection; Bio-SA, biotin-streptavidin-conjugated fluorescein amplification.

Supplementary Figure 1 a

Toluidin-Staining of mast cells Ear tissue was fixed with Carnoy (60% ethanol, 30% chloroform, 10% acetic acid) overnight at 4 C, afterwards

Supplementary Document

Knockdown of lncrna TP73 AS1 inhibits gastric cancer cell proliferation and invasion via the WNT/β catenin signaling pathway

CHAPTER 4 RESULTS. showed that all three replicates had similar growth trends (Figure 4.1) (p<0.05; p=0.0000)

Supplementary Figure 1

Supplementary Figure 1

Nature Structural & Molecular Biology: doi: /nsmb Supplementary Figure 1

Downregulation of serum mir-17 and mir-106b levels in gastric cancer and benign gastric diseases

SUPPLEMENTARY INFORMATION

MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells

HEK293FT cells were transiently transfected with reporters, N3-ICD construct and

Long noncoding RNA CASC2 inhibits metastasis and epithelial to mesenchymal transition of lung adenocarcinoma via suppressing SOX4

Construction of a hepatocellular carcinoma cell line that stably expresses stathmin with a Ser25 phosphorylation site mutation

SUPPLEMENTARY INFORMATION

Advances in Computer Science Research, volume 59 7th International Conference on Education, Management, Computer and Medicine (EMCM 2016)

Effects of VEGF/VEGFR/K-ras signaling pathways on mirna21 levels in hepatocellular carcinoma tissues in rats

Table S1. Oligonucleotides used for the in-house RT-PCR assays targeting the M, H7 or N9. Assay (s) Target Name Sequence (5 3 ) Comments

Supplementary Figure 1 MicroRNA expression in human synovial fibroblasts from different locations. MicroRNA, which were identified by RNAseq as most

Supplementary Information

Beta Thalassemia Case Study Introduction to Bioinformatics

An epithelial-to-mesenchymal transition-inducing potential of. granulocyte macrophage colony-stimulating factor in colon. cancer

Expression of mir-1294 is downregulated and predicts a poor prognosis in gastric cancer

Expression of lncrna TCONS_ in hepatocellular carcinoma and its influence on prognosis and survival

BMP6 treatment compensates for the molecular defect and ameliorates hemochromatosis in Hfe knockout mice

Supplementary Table 2. Conserved regulatory elements in the promoters of CD36.

Development of RT-qPCR-based molecular diagnostic assays for therapeutic target selection of breast cancer patients

IL-37 suppresses migration and invasion of gallbladder cancer cells through inhibition of HIF-1α induced epithelial-mesenchymal transition

Supplementary data Supplementary Figure 1 Supplementary Figure 2

Supplementary Information

Original Article Increased LincRNA ROR is association with poor prognosis for esophageal squamous cell carcinoma patients

Bin Liu, Lei Yang, Binfang Huang, Mei Cheng, Hui Wang, Yinyan Li, Dongsheng Huang, Jian Zheng,

Cross-talk between mineralocorticoid and angiotensin II signaling for cardiac

SUPPLEMENTARY INFORMATION. Supplementary Figures S1-S9. Supplementary Methods

EGCG decreases the expression of HIF-1α and VEGF and cell growth in MCF-7 breast cancer cells

Low levels of serum mir-99a is a predictor of poor prognosis in breast cancer

Supplemental Figures: Supplemental Figure 1

RNA extraction, RT-PCR and real-time PCR. Total RNA were extracted using

Supplementary Figure 1. HOPX is hypermethylated in NPC. (a) Methylation levels of HOPX in Normal (n = 24) and NPC (n = 24) tissues from the

LncRNA NKILA suppresses colon cancer cell proliferation and migration by inactivating PI3K/Akt pathway

(A) PCR primers (arrows) designed to distinguish wild type (P1+P2), targeted (P1+P2) and excised (P1+P3)14-

Shangqiu Medical College, Shangqiu, China 2. Corresponding author: M.Z. Zhang

Effects of AFP gene silencing on Survivin mrna expression inhibition in HepG2 cells

Expression of mir-146a-5p in patients with intracranial aneurysms and its association with prognosis

Expression of Selected Inflammatory Cytokine Genes in Bladder Biopsies

RNA-Seq profiling of circular RNAs in human colorectal Cancer liver metastasis and the potential biomarkers

mir 375 inhibits the proliferation of gastric cancer cells by repressing ERBB2 expression

P300 promotes migration, invasion and epithelial-mesenchymal transition in a nasopharyngeal carcinoma cell line

Epstein-Barr virus driven promoter hypermethylated genes in gastric cancer

Supplementary Figure 1 Role of Raf-1 in TLR2-Dectin-1-mediated cytokine expression

The clathrin adaptor Numb regulates intestinal cholesterol. absorption through dynamic interaction with NPC1L1

Expression of long non-coding RNA linc-itgb1 in breast cancer and its influence on prognosis and survival

Recommended laboratory tests to identify influenza A/H5 virus in specimens from patients with an influenza-like illness

Supplementary Information Titles Journal: Nature Medicine

Hepatitis B virus upregulates the expression of kinesin family member 4A

Long non coding RNA NEAT1 promotes migration and invasion of oral squamous cell carcinoma cells by sponging microrna 365

Culture Density (OD600) 0.1. Culture Density (OD600) Culture Density (OD600) Culture Density (OD600) Culture Density (OD600)

Supplementary Figures

TetR repressor-based bioreporters for the detection of doxycycline using Escherichia

Epithelial interleukin-25 is a key mediator in Th2-high, corticosteroid-responsive

Phylogenetic analysis of human and chicken importins. Only five of six importins were studied because

MicroRNA 216a inhibits the growth and metastasis of oral squamous cell carcinoma by targeting eukaryotic translation initiation factor 4B

Mir-138-5p acts as a tumor suppressor by targeting pyruvate dehydrogenase kinase 1 in human retinoblastoma

Citation for published version (APA): Oosterveer, M. H. (2009). Control of metabolic flux by nutrient sensors Groningen: s.n.

Positive nin one binding protein expression predicts poor outcome in prostate cancer

Islet viability assay and Glucose Stimulated Insulin Secretion assay RT-PCR and Western Blot

Long non coding RNA XIST serves an oncogenic role in osteosarcoma by sponging mir 137

Supporting Information Table of content

GLI-1 facilitates the EMT induced by TGF-β1 in gastric cancer

Supplemental Information. Cancer-Associated Fibroblasts Neutralize. the Anti-tumor Effect of CSF1 Receptor Blockade

(a) Significant biological processes (upper panel) and disease biomarkers (lower panel)

ice-cold 70% ethanol with gentle vortexing, incubated at -20 C for 4 hours, and washed with PBS.

without LOI phenotype by breeding female wild-type C57BL/6J and male H19 +/.

MicroRNA 98 suppresses cell growth and invasion of retinoblastoma via targeting the IGF1R/k Ras/Raf/MEK/ERK signaling pathway

Supplementary Information

SUPPLEMENTARY DATA. Supplementary Table 1. Primer sequences for qrt-pcr

General Laboratory methods Plasma analysis: Gene Expression Analysis: Immunoblot analysis: Immunohistochemistry:

Beta Thalassemia Sami Khuri Department of Computer Science San José State University Spring 2015

lncrna LINC01296 regulates the proliferation, metastasis and cell cycle of osteosarcoma through cyclin D1

Clinical value of combined detection of mir 1202 and mir 195 in early diagnosis of cervical cancer

MTC-TT and TPC-1 cell lines were cultured in RPMI medium (Gibco, Breda, The Netherlands)

SUPPLEMENTARY INFORMATION Glucosylceramide synthase (GlcT-1) in the fat body controls energy metabolism in Drosophila

Transcription:

ONCOLOGY LETTERS 9: 2515-2519, 2015 Small hairpin RNA-mediated Krüppel-like factor 8 gene knockdown inhibits invasion of nasopharyngeal carcinoma JING WANG 1, JIAN LI HU 1, RU BO CAO 1, QIAN DING 1, GANG PENG 1, SHI JIANG FEI 1, YAO JIANG 1, PENG CHENG LI 1, KUN YU YANG 1, WEN JIE ZHANG 2, GANG WU 1*, RUO ZHENG WANG 3* and PIN DONG LI 1* 1 Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430023; 2 Department of Pathology, Shihezi University School of Medicine, Shihezi, Xinjiang 832002; 3 Department of Radiation Oncology, Affiliated Tumor Hospital, Xinjiang Medical University, Urumqi, Xinjiang 830011, P.R. China Received May 31, 2014; Accepted January 29, 2015 DOI: 10.3892/ol.2015.3099 Abstract. The present study aimed to characterize the expression of Krüppel-like factor 8 (KLF8) in nasopahryngeal carcinoma (NPC) cell lines and determine its effect on tumor development and invasion following KLF8 gene knockdown by small hairpin RNA (shrna). KLF8 expression in four NPC cell lines was examined by quantitative polymerase chain reaction (qpcr) and western blotting. KLF8 was knocked down in the SUNE1-5-8F/Sh-KLF8 cell line using shrna, and the resulting stable cell line SUNE1 5 8F sh KLF8 was transplanted into nude mice in order to observe tumor formation and invasion. The results obtained from qpcr and western blotting revealed that, of the four NPC cell lines, KLF8 expression was lowest in the CNE 1 cells and highest in the SUNE1 5 8F cells. The tumor xenograft mouse models revealed that SUNE1-5-8F/Sh-KLF8 cells had a reduced ability for tumor formation and invasion compared with the control group. These results demonstrated for the first time that KLF8 modulates the formation and invasive ability of nasopharyngeal carcinoma. Correspondence to: Professor Pin Dong Li, Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 156 Xinghua Road West, Wuhan, Hubei 430023, P.R. China E mail: lpd8204@163.com Professor Ruo Zheng Wang, Department of Radiation Oncology, Affiliated Tumor Hospital, Xinjiang Medical University, 789 Shuzhou Road East, Urumqi, Xinjiang 830011, P.R. China E mail: wrz8526@163.com * Contributed equally Key words: Krüppel-like factor 8, nasopharyngeal carcinoma, tumor promoter, expression, invasion Introduction Nasopharyngeal carcinoma (NPC) is a tumor arising from the epithelial cells covering the nasopharynx surface. The highest incidence of NPC worldwide has been reported in Southern China, with an age standardized incidence rate of 20 50 cases per 100,000 people (1). Viral infections, genetic alterations and environmental factors are considered to contribute towards the initiation and development of NPC (2 5). Currently, radiation therapy is the primary treatment strategy for NPC (6). However, despite improvements in radiotherapy equipment and techniques, the five year survival rate of NPC patients remains at 50 60%. Therefore, understanding the key genes involved in the development of NPC is required to identify new therapeutic targets for the treatment of this disease (7). Krüppel like factor 8 (KLF8) is a member of the KLF family of proteins, which are essential in cell cycle progression, epithelial mesenchymal transition (EMT), invasion, oncogenic transformation and cancer development (8 10). Several studies have reported KLF8 overexpression in breast cancer, hepatocellular carcinoma and renal cancer (11 13); therefore, KLF8 may function as a predictor of metastasis and overall survival in certain types of cancer. However, the expression of KLF8 in NPC cell lines and its effects on NPC cells have not yet been investigated. The present study aimed to evaluate the role of KLF8 in the pathogenesis of NPC by assessing its expression in NPC cell lines. Small hairpin RNA (shrna) was used to knock down KLF8 in the NPC cell line, SUNE1 5 8F, which was subsequently transplanted into severe combined immunodeficiency (SCID) mice to investigate the tumor formation and invasion. Materials and methods Cell culture and sample collection. The NPC cell lines, CNE1, CNE2, CEN1 LMP1 and SUNE1 5 8F, were obtained from the Cancer Research Institute of Southern Medical University (Guangzhou, China). All the cell lines were maintained in

2516 WANG et al: KLF8 AND NASOPHARYNGEAL CARCINOMA RPMI 1640 medium, supplemented with 10% newborn calf serum (PAA Laboratories, Inc., Pasching, Austria) and incubated in a humidified atmosphere of 5% CO 2 at 37 C. Extraction of RNA and quantitative polymerase chain reaction (qpcr). Total RNA was extracted using TRIzol reagent (Invitrogen Life Technologies, Carlsbad, CA, USA), according to the manufacturer's instructions. Subsequently, RNA (2 µg) was reverse transcribed into first strand cdna using M MLV Reverse Transcriptase (Promega Corporation, Madison, WI, USA) according to the manufacturer's instructions. KLF8 and GAPDH were amplified by qpcr using the following primers: KLF8 forward, 5' GGG TGT TTG GCT TCT TTGC 3', and reverse, 5' GGC TGT GGT CTC ATC TGC 3'; and GAPDH forward, 5' CTC CTC CTG TTC GAC AGT CAGC 3', and reverse, 5' CCC AAT ACG ACC AAA TCC GTT 3'. Gene specific amplification was performed using an ABI 7900HT real time PCR system (Applied Biosystems Life Technologies, Foster City, CA, USA) with a 15 µl PCR mix containing 0.5 µl cdna, 7.5 µl 2X SYBR Green master mix (Invitrogen Life Technologies) and 200 nm of the appropriate primers. Next, the mixture was preheated at 95 C for 10 min and then amplified in 45 cycles of 95 C for 30 sec and 60 C for 1 min. The resolution curve was measured at 95 C for 15 sec, 60 C for 15 sec and 95 C for 15 sec. Subsequently, the threshold cycle (Ct) value of each sample was calculated, and the relative expression of KLF8 mrna was normalized against the GAPDH value using the 2 ΔCt method. Western blot analysis. Homogenized tissues were lysed in radioimmunoprecipitation assay lysis buffer, and the lysates were harvested by centrifugation (8,000 x g) at 4 C for 30 min. Next, 8 µg protein samples were separated by electrophoresis on a 15% sodium dodecyl sulfate polyacrylamide gel and were transferred onto a polyvinylidene fluoride membrane. Subsequently, nonspecific binding sites were blocked by placing the membrane in 5% nonfat milk for 1 h, followed by incubation with a polyclonal rabbit anti human KLF8 antibody (dilution, 1:1,000; cat. no. 252109; Abbiotec, San Diego, CA, USA) at 4 C overnight. After washing four times in Tris buffered saline with Tween 20, the membrane was probed with a horseradish peroxidase (HRP) conjugated rabbit anti rat immunoglobulin G antibody (dilution, 1:5,000; cat. no. KC-5G5, Proteintech Group, Inc., Chicago, IL, USA) at 37 C for 60 min. Next, the samples were washed four times and the bands were detected using Pierce ECL Western Blotting Substrate (Thermo Fisher Scientific, Waltham, MA, USA). Band density was measured using ImageJ software [version 1.43b; National Institutes of Health (NIH), Bethesda, MA, USA] and was standardized against mouse anti human GAPDH monoclonal antibody (Shanghai Kangcheng Biotechnology Co., Ltd., Shanghai, China). Lentiviral vector construction and transfection. In order to knockdown the expression of human KLF8, a KLF8 RNA interference lentiviral vector [pgcsil green fluorescent protein (GFP) KLF8 shrna] was constructed by annealing the KLF8 shrna (5'-CCG GCT AGC ATG CTA CAA GCT CCA ATT CAA GAG ATT GGA GCT TGT AGC ATG CTA GTT TTT G-3') and inserting it into the shrna expression vector, pgcsil GFP. A scrambled shrna was used as a negative control (12). The recombinant virus was packed using the Lentivector Expression system (Shanghai GeneChem Co., Ltd., Shanghai, China) and termed as shrna KLF8 lentivirus or negative shrna lentivirus. Subsequently, SUNE1 5 8F cells were transfected with the recombinant lentivirus using Lipofectamine 2000 (Invitrogen Life Technologies). The transfected cells were screened under 800 µg/ml G418 (Calbiochen, Darmstadt, Germany) for four weeks to generate two stable monoclonal cell lines (including a KLF8 stable downregulated cell line,sune1-5-8f/sh-klf8, and a control stable cell line, SUNE1-5-8F/Mock). Western blot analysis was used to determine the expression levels of KLF8 in these cell lines. Cell invasion assays. A cell invasion assay was performed using a precoated Cell Invasion Assay kit (Chemicon International, Inc., Temecula, CA, USA), according to the manufacturer's instructions. Cells transported from the extracellular matrix layer to the lower surface of the membrane were fixed with methanol and stained with crystal violet (Guangzhou Chemical Reagent Factory, Guangzhou, China). Images of three randomly selected fields of the fixed cells were captured and the cells were counted using an inverted microscope (XDS 1; Olympus Corporation, Tokyo, Japan). The experiments were conducted in triplicate. In vivo assay for the determination of tumor growth. All the animal experiments were approved by the Ethics Committee on Animal Experimentation of the Huazhong University of Science and Technology (Wuhan, China), and the procedures complied with the NIH Guide for the Care and Use of Laboratory Animals (8th edition, 2011). BALB/c nude mice (Nu/Nu; female; age, 4 6 weeks) were purchased from the Center of Experimental Animal of Huazhong University of Science and Technology and maintained under pathogen free conditions (n=11 per group). SUNE1-5-8F/Mock and SUNE1-5-8F/Sh-KLF8 cells were injected into the left and right flanks, respectively, of the mice. Tumor growth was monitored by measuring tumor volume, which was calculated using the following formula: Tumor volume (mm 3 ) = width 2 x length (mm) / 2. At the end of the experiment, the tumor was harvested. Differences in tumor growth were analyzed for statistical significance. Statistical analysis. All the experimental data are presented as the mean ± standard deviation. The mean values of different groups were compared using one way analysis of variance or Student's t test. A two sided P<0.05 was considered to indicate a statistically significant difference. All statistical analyses were performed with the SPSS software (version 16.0; SPSS, Inc., Chicago, IL, USA). Results mrna and protein KLF8 expression levels in four NPC cell lines. The relative transcriptional level of KLF8 was determined by qpcr and western blot analysis in the four NPC cell lines. KLF8 expression was found to be lowest in the CNE 1 cell line and highest in the SUNE1 5 8F cell line. The mrna expression levels of KLF8 were consistent with the protein expression levels in all the cell lines (Figs. 1, 2A and 2B).

ONCOLOGY LETTERS 9: 2515-2519, 2015 2517 Expression of KLF8 in the SUNE1 5 8F cell line is significantly downregulated by the pgcsil GFP KLF8 lentiviral vector. pgcsil GFP KLF8 shrna was transfected into the SUNE1 5 8F cells in order to knockdown the expression of KLF8 in the cell line. All the untransfected NPC cells were nonviable following G418 (800 µg/ml) selection for one week. Cells transfected with pgcsil GFP KLF8 were continuously selected using G418 for four weeks until clones were observed using fluorescence microscopy. The knockdown efficiency in SUNE1 5 8F cells was examined by western blot analysis of KLF8 protein expression. KLF8 expression was significantly reduced in cells transfected with pgcsil GFP KLF8 compared with the SUNE1 5 8F and SUNE1-5-8F/Mock cells (P<0.05; Fig. 3). KLF8 knockdown reduces cell invasion ability. The transwell invasion assay revealed that knockdown of KLF8 resulted in a reduction of the invasiveness of NPC cells, as indicated by a significant decrease in the number of invaded cells (P=0.0005; Fig. 4). Downregulation of KLF8 expression suppresses tumor growth in vivo. The effect of reduced KLF8 expression on tumor growth was investigated in NPC xenografts. Two experimental groups were examined: i) SUNE1-5-8F/Mock cells; and ii) SUNE1-5-8F/Sh-KLF8 cells. Tumor growth curves were plotted to compare the difference in tumor formation throughout the experiment. Palpable tumors were initially detected in all the mice at day 11 following injection. The tumor volume differed significantly at day 23 (Fig. 5A). The mean tumor volume produced by injection with SUNE1-5-8F/Sh-KLF8 was >50% lower (P<0.05; Fig. 5B) compared with the control group. The mean tumor weight was also significantly reduced in SUNE1-5-8F/Sh-KLF8 tumors (P<0.05; Fig. 5B). Figure 1. KLF8 mrna expression in human nasopharyngeal carcinoma cell lines, CNE1, CNE2, CEN1 LMP1 and SUNE1 5 8F, assessed by quantitative polymerase chain reaction. KLF8 expression was lowest in the CNE 1 cell line and highest in the SUNE1 5 8F cell line. KLF8, Krüppel like factor 8. A B Discussion NPC is a serious healthcare problem (14), more frequently occurring in Southern China, which presents early metastasis features. At present, radiation therapy is the main NPC treatment. The five year survival rate remains at 50 60%, in spite of advances in radiotherapy devices and techniques. Therefore, comprehensive research into new therapies for the treatment of NPC are required. A greater understanding of the key molecules involved in tumor development may provide new therapeutic targets to develop more effective treatments for the NPC. KLF8 is a GT box (CACCC) binding dual transcription factor, which is widely expressed in adult tissues, particularly in the kidney, heart and placenta. KLF8 plays an important role in the regulation of cell cycle progression (8), transformation (15), EMT and invasion (10) in various types of cancer. However, the expression of KLF8 and its role in NPC cells have not been previously investigated. To the best of our knowledge, the present study is the first to characterize the expression of KLF8 in NPC cell lines and determine the tumor formation and invasion ability in these cells following KLF8 gene knockdown by shrna. The mrna and protein expression levels of KLF8 in four NPC cell lines were assessed by qpcr and western blot analysis, revealing that KLF8 expression was lowest in the CNE 1 cells Figure 2. (A) KLF8 protein expression in human NPC cell lines, CNE1, CNE2, CEN1 LMP1 and SUNE1 5 8F, assessed by western blotting. (B) The protein expression levels in the four NPC cell lines were consistent with the mrna expression of KLF8 in the four NPC cell lines. KLF8, Krüppel like factor 8; NPC, nasopharyngeal carcinoma. and highest in the SUNE1 5 8F cells. The mrna expression of KLF8 was consistent with its protein expression in the four cell lines. Notably, the expression of KLF8 was consistent with the malignancy degree of the NPC cell lines, which indicated that KLF8 played an important role in the transformation from normal phenotype to malignant phenotype. A study by Fu et al (12) demonstrated that the expression of KLF8 protein and mrna is higher in tumorous tissue compared with

2518 WANG et al: KLF8 AND NASOPHARYNGEAL CARCINOMA A B Figure 3. Effect of KLF8 targeting shrnas on KLF8 expression. (A) Immunoblot analysis of KLF8 in SUNE1 5 8F cells indicated downregulation of KLF8 protein in shrna. (B) The result demonstrated that the protein levels of KLF8 in pgcsil green fluorescent protein KLF8 cells were significantly weaker compared with the protein levels in the SUNE1 5 8F and SUNE1-5-8F/Mock cells ( ** P<0.01, SUNE1-5-8F/Sh-KLF8vs.SUNE1-5-8F,SUNE1-5-8F/ Sh-KLF8 vs. SUNE1-5-8F/Mock). KLF8, Krüppel like factor 8; shrna, small hairpin RNA. Figure 4. Comparison of in vitro invasion potency of SUNE1 5 8F/Mock and SUNE1-5-8F/Sh-KLF8 cells using a cell invasion assay. Each bar represents the mean ± standard deviation of three independent experiments ( ** P<0.01 vs. SUNE1-5-8F/Mock). The results demonstrated that knockdown of KLF8 substantially reduced the invasiveness of nasopharyngeal carcinoma cells, as indicated by a marked decrease in the number of invaded cells. KLF8, Krüppel like factor 8. A B Figure 5. Downregulation of KLF8 expression suppress tumor growth in vivo. (A) KLF8 knockdown nasopharyngeal carcinoma cells were injected subcutaneously into the right flank of nude mice. Control cells were injected subcutaneously into the left flank of the same nude mice (n=11). At six weeks following implantation, KLF8 knockdown cells produced smaller tumors compared with the control cells. (B) The tumor from each group was measured immediately following the dissection. The average tumor size is presented as the mean ± standard deviation ( * P<0.05, SUNE1-5-8F/Sh-KLF8 vs. SUNE1-5-8F/Mock on days 23, 27, 31 and 39.and ** P<0.01, SUNE1-5-8F/Sh-KLF8 vs. SUNE1-5-8F/Mock on day 35). KLF8, Krüppel like factor 8. normal tissue. Another study (13) revealed that the expression of KLF8 was higher in hepatocellular carcinoma with high metastatic ability. The aforementioned observations indicate that KLF8 promotes tumor development and is important in the processes of invasion and metastasis. In order to assess the effect of KLF8 on tumor growth and invasion in NPC cells, in the current study, a lentiviral vector was constructed and transfected into the SUNE1 5 8F cell line. The findings revealed that the protein expression levels of KLF8 in pgcsil GFP KLF8-transfected SUNE1-5-8F cells were significantly lower compared with SUNE1-5-8F/ Mock and SUNE1-5-8F/Sh-KLF8 cells. The effect of KLF8 downregulation on tumor growth was also evaluated using an NPC xenograft, which revealed that the average tumor volume of the SUNE1-5-8F/Sh-KLF group was significantly lower compared with the SUNE1-5-8F/Mock group.

ONCOLOGY LETTERS 9: 2515-2519, 2015 2519 In conclusion, the results demonstrated that, of four NPC cell lines, KLF8 expression was lowest in the CNE 1 cell line and highest in the SUNE1 5 8F cell line. The mrna expression levels of KLF8 were consistent with the protein expression levels in the four cell lines. Compared with the control group, downregulation of KLF8 expression is able to reduce the tumor growth in nasopharyngeal carcinoma xenografts. The present study indicated that KLF8 is important in NPC development. Further elucidation of the underlying molecular mechanisms of KLF8 in NPC may allow for the development of a novel molecular targeted therapy for the treatment of this disease. Acknowledgements This study was supported by the National Natural Science Foundation of China (grant no. 81160327, awarded to Ruo Zheng Wang), the Union Hospital Key Laboratory Foundation of Biological Target Therapy (grant no. 02.03.2013 80, awarded to Pin Dong Li) and the Independent Innovation Research Foundation of Huazhong University of Science and Technology (grant no. 01 08 530059, awarded to Pin Dong Li). References 1. Yao KT: The application and prospect of nasopharyngeal carcinoma etiology. China Cancer 6: 3 4, 1997 (In Chinese). 2. Fang W, Li X, Jiang Q, et al: Transcriptional patterns, biomarkers and pathways characterizing nasopharyngeal carcinoma of Southern China. J Transl Med 6: 32, 2008. 3. Alajez NM, Shi W, Hui AB, et al: Enhancer of Zeste homolog 2 (EZH2) is overexpressed in recurrent nasopharyngeal carcinoma and is regulated by mir 26a, mir 101, and mir 98. Cell Death Dis 1: e85, 2010. 4. Liu Z, Luo W, Zhou Y, et al: Potential tumor suppressor NESG1 as an unfavorable prognosis factor in nasopharyngeal carcinoma. PLoS One 6: e27887, 2011. 5. Xiong S, Wang Q, Zheng L, Gao F and Li J: Identification of candidate molecular markers of nasopharyngeal carcinoma by tissue microarray and in situ hybridization. Med Oncol 28: S341 S348, 2011. 6. Lee AW, Ng WT, Chan YH, et al: The battle against nasopharyngeal cancer. Radiother Oncol 104: 272-278, 2012. 7. Zhen Y, Ye Y, Yu X, et al: Reduced CTGF expression promotes cell growth, migration, and invasion in nasopharyngeal carcinoma. PLoS One 8: e64976, 2013. 8. Urvalek AM, Wang X, Lu H and Zhao J: KLF8 recruits the p300 and PCAF co activators to its amino terminal activation domain to activate transcription. Cell Cycle 9: 601 611, 2010. 9. Wang X, Zheng M, Liu G, et al: Krüppel like factor 8 induces epithelial to mesenchymal transition and epithelial cell invasion. Cancer Res 67: 7184 7193, 2007. 10. Mehta TS, Lu H, Wang X, et al: A unique sequence in the N terminal regulatory region controls the nuclear localization of KLF8 by cooperating with the C terminal zinc fingers. Cell Res 19: 1098 1109, 2009. 11. Wang X, Lu H, Urvalek AM, et al: KLF8 promotes human breast cancer cell invasion and metastasis by transcriptional activation of MMP9. Oncogene 30: 1901 1911, 2011. 12. Fu WJ, Li JC, Wu XY, et al: Small interference RNA targeting Krüppel like factor 8 inhibits the renal carcinoma 786 0 cells growth in vitro and in vivo. J Cancer Res Clin Oncol 136: 1255 1265, 2010. 13. Li JC, Yang XR, Sun HX, et al: Up regulation of Krüppel like factor 8 promotes tumor invasion and indicates poor prognosis for hepatocellular carcinoma. Gastroenterology 139: 2146 2157, 2010. 14. Chen MK, Chen TH, Liu JP, et al: Better prediction of prognosis for patients with nasopharyngeal carcinoma using primary tumor volume. Cancer 100: 2160 2166, 2004. 15. Zhao J, Bian ZC, Yee K, et al: Identification of transcription factor KLF8 as a downstream target of focal adhesion kinase in its regulation of cyclin D1 and cell cycle progression. Mol Cell 11: 1503 1515, 2003.