Effect of Diode Laser Irradiation Combined with Topical Fluoride on Enamel Microhardness of Primary Teeth

Similar documents
In Vitro Comparison of the Effects of Diode Laser and CO 2 Laser on Topical Fluoride Uptake in Primary Teeth

J Lasers Med Sci 2018 Summer;9(3): Effects of Laser and Fluoride on the Prevention of Enamel Demineralization: An In Vitro Study

Laser-activated fluoride treatment of enamel against an artificial caries challenge: comparison of five wavelengths

Effects of CO 2 laser and fluorides application on root demineralization

IJOCR ORIGINAL RESEARCH ABSTRACT INTRODUCTION

Effect of Combined Application of Er,Cr:YSGG and Sodium Fluoride Varnish in Prevention of Demineralization of Primary Tooth Enamel: an In Vitro Study

J Lasers Med Sci 2017 Autumn;8(4):

Argon laser irradiation and acidulated phosph.ate fluoride treatment in caries-like lesion formation in enamel: an in vitro study

Comparisonofenamelremineralizationpotential afterapplicationoftitaniumtetrafluoride andcarbondioxidelaser

Formation and Its Anti- Cariogenic Action on Human Enamel: An in Vitro Study ABSTRACT

Effects of miswak and nano calcium carbonate toothpastes on the hardness of demineralized human tooth surfaces

Comparison of Microleakage of Glass Ionomer Restoration in Primary Teeth. Prepared by Er: YAG Laser and the Conventional Method

Optical properties of bovine dentin when irradiated by Nd:YAG and a black dentifrice aimed at treating dentin erosion

Linking Research to Clinical Practice

Evaluation of CO2 laser irradiation effect on enamel microhardness after incipient caries creation

Effect of different fluoride concentrations on remineralization of demineralized enamel: an in vitro ph-cycling study

Study the hardness and temperature changes during tooth bleaching using different Laser Sources

Influence of Bioactive Materials on Whitened Human Enamel Surface in vitro study

Effect of Three Different Remineralizing Agents on White Spot Lesions; AnIn Vitro Comparative Study

Laser-activated fluoride treatment of enamel as prevention against erosion

Comparative Analysis of Remineralizing Potential of Three Commercially Available Agents- An in Vitro Study

THERMAL CHANGES IN THE HARD DENTAL TISSUE AT DIODE LASER ROOT CANAL TREATMENT

THE IMPACT OF MODIFIED FRUIT JUICE ON ENAMEL MICROHARDNESS: AN IN-VITRO ANALYSIS

EFFECT OF ER:YAG LASER ON SODIUM FLUORIDE VARNISH UPTAKE BY PRIMARY TOOTH ENAMEL: AN IN-VITRO STUDY

Effect of Diode Laser 810nm in Hardness of Dental Ceramic

Measurement of surface hardness of primary carious lesions in extracted human enamel Measurement of Knoop hardness using Cariotester

The Effect of Mineralizing Fluorine Varnish on the Progression of Initial Caries of Enamel in Temporary Dentition by Laser Fluorescence

Take-Home Whitening. in vitro study. Benefits of ACP TAKE-HOME WHITENING

Effect of addition of Fluoride on Enamel remineralization potential of CCP-ACP and Novamin: A comparative Study

Remineralization Effect of Topical NovaMin Versus Sodium Fluoride (1.1%) on Caries-Like Lesions in Permanent Teeth

EFFECTIVENESS OF SOY MILK WITH CALCIUM ON BOVINE ENAMEL EROSIONS AFTER SOAKING IN CHLORINATED WATER

Remineralizing Effect of Child Formula Dentifrices on Artificial Enamel Caries Using a ph Cycling Model

Comparison Study on Casein Phosphopeptide-Amorphous Calcium Phosphate Paste and Fluoride Gel on Remineralization of Demineralized Enamel Lesions

Effect of sodium hypochlorite, chlorhexidin and EDTA on dentin microhardness

Tooth hypersensitivity and Dental erosion DR. KÁROLY BARTHA

Comparative Evaluation of Fluoride Uptake Rate in the Enamel of Primary Teeth after Application of Two Pediatric Dentifrices

EMDOLA Education Program: First Year Details. History of lasers: Optics data : The quantum nature of the light:

Key words: Nd: YAG laser, acid resistance, fluoride

PUBLISHED VERSION. This document has been archived with permission from the Australian Dental Association, received 18th January, 2007.

ON THE MICROHARDNESS AND YOUNG S MODULUS OF HUMAN TEETH

Effect of Fluoridated Dentifrices on Surface Microhardness of the Enamel of Deciduous Teeth

THE EFFECT OF CASEIN PHOSPHOPEPTIDE TOOTHPASTE VERSUS FLUORIDE TOOTHPASTE ON REMINERALIZATION OF PRIMARY TEETH ENAMEL

The effects of argon laser irradiation on enamel decalcification: An in vivo study

Objective: This in situ/ex vivo study investigated the effect of CO 2

The concept of microdentistry was introduced in

Anisotropy of Tensile Strengths of Bovine Dentin Regarding Dentinal Tubule Orientation and Location

Acid Resistance of Erbium-doped Yttrium Aluminum Garnet Laser Treated and Phosphoric Acid Etched Enamels

Timing of fluoride toothpaste use and enamel-dentin demineralization

Dental caries are bacterial induced necrosis of tooth structure

Silver Diamine Fluoride

Comparitive Evaluation of Enamel Demineralisation using Conventional Light Cure Composite Resin and RMGIC- An Invivo Study

Effect of xylitol and fluoride on enamel erosion in vitro

CURRICULUM VITAE JUN WU

Original Research. Fluoride varnish and dental caries prevention Mohammadi TM et al. Contributors: 1

ANALYSIS OF FLUORIDE RELEASED FROM GIC AND RMGIC IN SALIVA AND DENTINO-ENAMEL SUBSTANCE

RESEARCH ARTICLE AN IN VITRO STUDY OF FLUORIDE AND ORTHOPHOSPHORIC ACID EFFECT ON DENTIN HARDNESS

Chapter 14 Outline. Chapter 14: Hygiene-Related Oral Disorders. Dental Caries. Dental Caries. Prevention. Hygiene-Related Oral Disorders

Selected Laser Bibliography and Literature Review Bold type incidates highly recommended reading.

Caries Inhibiting Effectiveness of the Origin SmartCrown An in-vitro Comparative Study

Multi center study evaluating safety and effectiveness of The Canary System : An Interim Analysis

THE INFLUENCE OF BASELINE HARDNESS AND CHEMICAL COMPOSITION ON ENAMEL DEMINERALIZATION AND SUBSEQUENT REMINERALIZATION.

J Lasers Med Sci 2017 Winter;9(1):43-49

Ion uptake into demineralized dentine from glass ionomer cement following pretreatment with silver fluoride and potassium iodide

Absorption and Thermal Study of Dental Enamel when Irradiated with Nd:YAG Laser with the Aim of Caries Prevention 1

XPS surface analysis of human tooth samples with EnviroESCA

Comparing the Effects of Whey Extract and Case in Phosphopeptide- Amorphous Calcium Phosphate (CPP-ACP) on Enamel Microhardness

Effect of Remin Pro and Neutral Sodium Fluoride on Enamel Microhardness After Exposure to Acidic Drink

Fluoride Release Rate from an Orthodontic Sealant and Its Clinical Implications

Remineralization Assessment of Early Childhood Caries using QLF-D: A Randomized Clinical Trial

Effect of dentinal tubule occlusion by dentifrice containing nano-carbonate apatite

PREMATURE PRIMARY TOOTH LOSS

TOOTH DISCOLORATION. Multimedia Health Education. Disclaimer

Er:YAG and adhesion in conservative dentistry : clinical overview

Dental erosion: In vitro model of wine assessor s erosion

Role of 810 nm and 980 nm diode laser in treatment of dentinal hypersensitivity: A literature review

Songklanakarin Journal of Science and Technology SJST R2 Chuenarrom

In-Vivo Occlusal Caries Prevention by Pulsed CO 2 -Laser and Fluoride Varnish Treatment A Clinical Pilot Study

Practice Impact Questionnaire

laser, Nano-hydroxyapatite and MI paste on mechanical properties of bovine enamel after bleaching

Community Water Fluoridation and Testing: Recommendations for Supplementation in Children and Adolescents. Dwight Parker

Kalona Silver Nitrate Study Two Year Findings. Dr. Michael Kanellis Dr. Arwa Owais The University of Iowa College of Dentistry

Tooth wear prevention: A quantitative and qualitative in vitro study

In-Vitro Evaluation of the Effect of Addition of Xylitol to Carbonated Diet Soda on Enamel Microhardness of Permanent Teeth

LASERS FOR DENTAL APPLICATIONS.

Margherita Fontana, DDS, PhD

Uses of Fluoride in Dental Practices

Patient had no significant findings in medical history. Her vital signs were 130/99, pulse 93.

Zurich Open Repository and Archive

Journal of Oral & Dental Health

EFFECT OF RESIN MODIFIED GLASS IONOMER CEMENT ON MICROHARDNESS OF INITIAL CARIES LESIONS

Studies of dental root surface caries. 1: Comparison of natural and artificial root caries lesions

Effect of Casein Phosphopeptide amorphous Calcium. and Calcium Sodium Phosphosilicate

FT-Raman Surface Mapping of Remineralized Artificial Dental Caries

EFFECT OF NANO-HYDROXYAPATITE ON REMINERALIZATION OF ENAMEL-A SYSTEMATIC REVIEW

EFFICACY OF FLUORIDE MOUTHRINSE CONTAINING TRICALCIUM PHOSPHATE ON PRIMARY ENAMEL LESIONS : A POLARIZED LIGHT MICROSCOPIC STUDY

Effect of Three Different Remineralizing Agents on Enamel Caries Formation An in vitro Study

Anticaries effect of dentifrices with calcium citrate and sodium trimetaphosphate

A 3-MONTH STUDY OF FLUORIDE RELEASE FROM DIFFERENT CALCIUM PHOSPHATE FLUORIDE VARNISHES ON PRIMARY TEETH

Assessment of Tooth Preparation via Er: YAG Laser and Bur on Microleakage of Dentin Adhesives

Preventive Dentistry

Transcription:

Original Article Effect of Diode Laser Irradiation Combined with Topical Fluoride on Enamel of Primary Teeth Zahra Bahrololoomi 1, Malihe Lotfian 2 1 Associate Professor, Department of pediatric Dentistry, Faculty of Dentistry, Member of Social Determinants of Oral Health Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran 2 Department of Pediatric Dentistry, Faculty of Dentistry, Shahid Sadoughi University of Medical Sciences, Yazd, Iran Corresponding author: M. Lotfian, Department of Pediatric Dentistry, Faculty of Dentistry, Shahid Sadoughi University of Medical Sciences, Yazd, Iran malihe.lotfian@gmail.com Received: 2 August 2014 Accepted: 12 December 2014 Abstract Objectives: Laser irradiation has been suggested as an adjunct to traditional caries prevention methods. But little is known about the cariostatic effect of diode laser and most studies available are on permanent teeth.the purpose of the present study was to investigate the effect of diode laser irradiation combined with topical fluoride on enamel surface microhardness. Materials and Methods: Forty-five primary teeth were used in this in vitro study. The teeth were sectioned to produce 90 slabs. The baseline Vickers microhardness number of each enamel surface was determined. The samples were randomly divided into 3 groups. Group 1: 5% NaF varnish, group 2: NaF varnish+ diode laser at 5 W power and group 3: NaF varnish+ diode laser at 7 W power. Then, the final microhardness number of each surface was again determined. The data were statistically analyzed by repeated measures ANOVA at 0.05 level of significance. Results: In all 3 groups, microhardness number increased significantly after surface treatment (P 0.05). However, change after treatment was not significantly different among groups (P 0.05). Conclusion: The combined application of diode laser and topical fluoride varnish on enamel surface did not show any significant additional effect on enamel resistance to caries. Keywords: Diode laser; Fluoride; Hardness; Primary teeth Journal of Dentistry, Tehran University of Medical Sciences, Tehran, Iran (2015; Vol. 12, No. 2) INTRODUCTION Although the prevalence of dental caries has recently decreased in many countries, it is still the most common disease among children. Therefore, prevention of caries rather than treatment alone should be considered as an essential objective for dental health promotion. Fluoride therapy has been proven to be the most effective method of increasing enamel resistance to demineralization [1]. Topical fluoride is able to prevent the development or reverse the progression of initial dental caries [2]. Recently, lasers have provided a new method of caries prevention, and laser therapy has been investigated as an alternative method for modifying the tooth surface and increasing its resistance to acids [3]. 85 1

Journal of Dentistry, Tehran University of Medical Sciences Several studies have reported the effect of laser irradiation on tooth enamel, either alone or in combination with fluoride [4-6]. It has been demonstrated that combined application of laser and fluoride has a synergistic effect. Laser enhances the effect of fluoride on enamel structure both superficially by forming calcium fluoride (CaF2) and in its crystalline structure [7]. Several types of lasers have been used in combination with fluoride in previous studies. However, it is still unclear which one has the best outcome. Among these lasers, diode laser has a number of unique characteristics such as: low cost compared to other lasers, smaller size and easy application in the mouth because of the optic fibers. But, only a small number of studies have investigated the effects of diode laser on enamel structure [8-10]. Most of these studies have been conducted on permanent teeth and little information is available on caries prevention effect of lasers on primary teeth. It is reported that the pattern of caries development and prevention in primary teeth is to some extent different from that in permanent teeth [11]. Therefore, the aim of this in-vitro study was to evaluate the effect of diode laser irradiation combined with fluoride on primary teeth and to compare the effects of two different powers of diode laser on enamel. As enamel microhardness is correlated to its resistance to caries, we used microhardness test in this study. Bahrololoomi & Lotfian MATERIALS AND METHODS The teeth used in this study were primary molars extracted in the School of Dentistry of Shahid Sadoughi University of Yazd. Fortyfive primary molars were selected among teeth without any visible carious lesions on their buccal and lingual enamel surfaces. The teeth were kept in distilled water at room temperature until used and during the study period. The root of each tooth was separated, and the crown was bisected into two halves, mesiodistally, using a low speed diamond disk providing 2 blocks (one buccal and one lingual). Enamel slabs (2 2 4 mm) were prepared from each block and then embedded in acrylic resin (totally 90 samples). The slabs were serially polished with 300, 600 and 1200 grit silicon carbide papers and with 0.2 and 0.05 microns alumina slurry, to achieve a flat enamel surface. The baseline microhardness number of each sample was measured using Vickers microhardness tester (FM 700; Future-Tech Corp, Japan) with a pyramidal diamond indenter under a 50 gr/f load for 5 seconds. The Vickers microhardness number was measured by dividing the test force by the surface area of the indent. of each surface was measured 3 times and the average was recorded as the baseline Vickers microhardness number. Then, the samples were randomly assigned to 3 groups each containing 30 samples: Group 1: Application of 5% NaF varnish (Topex DuraShield, Sultan, USA) on enamel surface. Group 2: Application of 5% NaF varnish on enamel surface followed by irradiation with diode laser (ARC Laser, Fox Germany) at a wavelength of 980nm with the power of 5 watt. Group 3: Application of 5% NaF varnish on enamel surface followed by irradiation of the same laser with the power of 7 watt [10]. The parameter settings used for both groups were: The laser was used in pulse mode. And pulse duration and pulse interval were both 30ms.: 15Hz, optic fiber diameter: 600 µm and exposure time: 30 s. the irradiation distance was established at 5 mm using a custom-made holder and the enamel surface was exposed to the laser in scanning mode. After 24 h the varnish was removed from the samples with a power tooth brush (Oral-B, Braun) and distilled water. Finally, surface microhardness numbers of all samples were re-measured under the same conditions as mentioned. 2 86

Bahrololoomi & Lotfian Statistical analysis The mean and standard deviation of baseline and final microhardness number and microhardness change during treatment was calculated for each group. change was calculated by subtracting the baseline microhardness number from the postintervention number. Paired sample test was used to check the significant change between before- and aftertreatment values in each group. To compare microhardness changes after treatment between the three groups, repeated measures ANOVA was applied as between subject comparison. Statistical analysis was carried out by PASW software (version 18 PASW). Type 1 error was considered as 0.05. RESULTS In all three groups, enamel microhardness increased after treatment and the change was statistically significant in each group (Table 1) (P<0.001). The results of repeated measures ANOVA showed no significant difference in amount of microhardness change between the three groups (P=0.264). In other words, microhardness increase was equal and statistically significant in all groups (P<0.001). DISCUSSION The results of this study showed that fluoride application alone or in combination with diode laser irradiation with 5 and 7 W power increased the enamel surface microhardness of the primary teeth. Effect of Diode Laser Irradiation Combined with Several theories have been suggested regarding the mechanisms by which laser irradiation increases enamel resistance to caries, such as surface melting and re-crystallization of enamel hydroxyapatite crystals [12], reduction in permeability and solubility of enamel [13,14], and deposition of calcium fluoride [15]. Many studies conducted using different types of lasers have shown significant enamel and dentin resistance to dental caries. The application of CO2 laser combined with fluoride has been proven to be effective for caries prevention in several studies [7,16,17]. Diode laser is now widely used in dental practice. However, its usefulness in combination with fluoride for caries prevention has been less studied. Moreover, the available data are mostly on permanent teeth [18,19]. It has been shown that diode laser irradiation combined with fluoride application increases fluoride uptake in permanent teeth and thus is an effective method for preventing dental caries [9, 10]. Souza et al. reported that diode laser irradiation induces melting and resolidification of the enamel surface of primary teeth and through this mechanism, it increases the resistance of enamel to acids. Thus, it probably plays an important role in caries prevention [20]. In contrast to our results, Santanella et al. concluded that topical fluoride application improves the resistance of sound enamel more effectively than diode laser application in primary teeth [21]. Enamel surface microhardness is indicative of enamel mineral content and microhardness measurement has acceptable sensitivity to assess enamel resistance to demineralization. Table 1. Intra-group comparison of microhardness Groups Baseline Final Change P value * Group 1(n=30) 367.7 (44.1) 395.9 (53.7) +28.5 (40.2) 0.01 Group 2(n=30) 376.7 (39.3) 415.0 (41.9) +38.2 (35.1) 0.00 Group 3(n=30) 396.4 (42.0) 440.6 (46.8) +44.2 (35.8) 0.00 * Paired t-test (level of significance P<0.05) 387

Journal of Dentistry, Tehran University of Medical Sciences Studies on the effects of laser on enamel microhardness show controversial results. Florin et al. found an increase in enamel microhardness by laser irradiation [22]. Majori et al. reported no change in enamel microhardness following laser treatment [23]. One study suggested that laser irradiation may decrease the enamel microhardness [24]. These controversial findings are probably due to different laser types, parameters and study settings. Azevado et al. showed the same results as our study using Nd:YAG laser. They found that Nd:YAG laser was effective in decreasing demineralization depth both alone and in combination with fluoride gel/varnish [25]. However, comparison between the findings of the current study and those of previous studies is not simply possible. One reason is due to different parameters and settings used in the studies. Besides, most available investigations were carried out on permanent teeth. Fluoride may affect the primary teeth differently than permanent teeth. The results of our study indicated that diode laser irradiation combined with fluoride treatment was able to increase enamel microhardness significantly but had no statistically significant difference from the group treated only with fluoride. We also compared two different laser powers. The amount of microhardness increase in 7 W group was higher than in 5 W group. However, the difference was not significant. It has been shown that the increase in pulp chamber temperature above 5.5 C may cause damage to pulp tissue [26]. Therefore, further studies are required to determine the best laser parameters with acceptable safety.a limitation of this in-vitro study was that it could not exactly simulate the clinical setting and also the effect of acid attacks was not clear. Bahrololoomi & Lotfian CONCLUSION Diode laser combined with fluoride varnish was not more effective than fluoride alone to increase enamel resistance to demineralization. Further in vitro and in vivo studies are required. ACKNOWLEDGMENTS This article is part of a postgraduate thesis by Malihe Lotfian carried out in 2014 in the Dental School of Shahid Sadoughi University of Medical Sciences under the advisory guidance of Dr. Zahra Bahrololoomi. The authors would like to extend their gratitude towards the vice chancellor for research of Shahid Sadoughi University of Medical Sciences for financially supporting this project. REFERENCES 1- Clarkson JJ. International collaborative research on fluoride. J Dent Res. 2000 Apr;79(4):893-904. 2- Marinelli CB, Donly KJ, Wefel JS, Jakobsen JR, Denehy GE. An in vitro comparison of three fluoride regimens on enamel remineralization. Caries Res. 1997;31(6):418-22. 3- Oliveira M, Zezell DM, Meister J, Franzen R, Stanzel S, Lampert F, et al. CO2 laser (10.6 µm) parameters for caries prevention in dental enamel. Caries Res. 2009;43(4):261-8. 4- Can AM, Darling CL, Ho C, Fried D. Nondestructive assessment of inhibition of demineralization in dental enamel irradiated by a lambda 5 9.3-microm CO2 laser at ablative irradiation intensities with PS-OCT. Lasers Surg Med. 2008 Jul;40(5):342-9. 5- Hossain MM, Hossain M, Kimura Y, Kinoshita J, Yamada Y, Matsumoto K. Acquired acid resistance of enamel and dentin by CO2 laser irradiation with sodium fluoride solution. J Clin Laser Med Surg. 2002 Apr;20(2):77-82. 6- Chen CC, Huang ST. The effects of lasers and fluoride on the acid resistance of decalcified human enamel. Photomed Laser Surg. 2009 Jun;27(3):447-52. 7- Chin-Ying SH, Xiaoli G, Jisheng P, Wefel JS. Effects of CO2 laser on fluoride uptake in enamel. J Dent. 2004 Feb;32(2):161-7. 8- Santaella MR, Braun A, Matson E, Frentzen M. Effect of diode and fluoride varnish on 4 88

Bahrololoomi & Lotfian initial surface demineralization of primary dentition enamel: an in vitro study. Int J Paediatr Dent. 2004 May;14(3):199-203. 9- Villalba-Moreno J, González-Rodríguez A, López-González JD, Bolaños-Carmona MV, Pedraza-Muriel V. Increased fluoride uptake in human dental specimens treated with diode laser. Lasers Med Sci. 2007 Sep;22(3):137-42. Epub 2007 Jan 11. 10- González-Rodríguez A, de Dios López- González J, del Castillo Jde D, Villalba- Moreno J. Comparison of effects of diode laser and CO2 laser on human teeth and their usefulness in topical fluoridation. Lasers Med Sci. 2011 May;26(3):317-24. 11- Sonju Clasen AB, Ruyter IE. Quantitative determination of type A and type B carbonate in human deciduous and permanent enamel by means of Fourier transform infrared spectrometry. Adv Dent Res. 1997 Nov;11(4):523-7. 12- Featherstone JDB, Nelson DGA. Laser effects on dental hard tissues. Adv Dent Res. 1987 Oct;1(1):21-6. 13- Hsu CYS, Jordan TH, Dederich DN, Wefel JS. Effects of low-energy CO2 laser irradiation and the organic matrix on inhibition of enamel demineralization. J Dent Res. 2000 Sep;79(9):1725-30. 14- Schmidlin PR, Dörig I, Lussi A, Roos M, Imfeld T. CO2 laser-irradiation through topically applied fluoride increases acid resistance of demineralized human enamel in vitro. Oral Health Prev Dent. 2007;5(3):201-8. 15- Westerman GH, Hicks MJ, Flaitz CM, Blankenau RJ, Powell GL. Combined effects of acidulated phosphate fluoride and argon laser on sound root surface morphology: an in vitro scanning electron microscopy study. J Clin Laser Med Surg. 1999 Apr;17(2):63-8. 16- Mohan AG, Ebenezar AR, Ghani MF, Martina L, Narayanan A, Mony B. Surface and mineral changes of enamel with different remineralizing agents in conjunction with carbon-dioxide laser. Eur J Dent. 2014 Jan;8(1):118-23. Effect of Diode Laser Irradiation Combined with 17- Esteves Oliveira M, Pasaporti C, Heussen N, Eduardo CP, Lampert F, Apel C. Prevention of toothbrushing abrasion of acid softened enamel by CO (2) laser irradiation. J Dent. 2011 Sep;39(9):604-11. 18- Yu DG, Kimura Y, Fujita A, Hossain M, Kinoshita JI, Suzuki N, et al. Study on acid resistance of human dental enamel and dentin irradiated by semiconductor laser with Ag(NH3)2F solution. J Clin Laser Med Surg. 2001 Jun;19(3):141-6. 19- Kato IT, Kohara EK, Sarkis JE, Wetter NU. Effects of 960- nm diode laser irradiation on calcium solubility of dental enamel: an in vitro study. Photomed Laser Surg. 2006 Dec;24(6):689-93. 20- De Souza MR, Watanabe I, Azevedo LH, Tanji EY. Morphological alterations of the surfaces of enamel and dentin of deciduous teeth irradiated with Nd:YAG, CO2 and diode lasers. Int J Morphol 2009 27(2):441-6. 21- Santaella MR, Braun A, Matson E, Frentzen M. Effect of diode laser and fluoride varnish on initial surface demineralization of primary dentition enamel: an in vitro study. Int J Paediatr Dent. 2004 May;14(3):199-203. 22- Florin R, Herrmann C, Bernhardt W. Measuring microhardness of laser exposed tooth surface. Stomatol DDR. 1990 Feb;40(2):49-51. 23- Majori M, Manzon L, Pane S, Bedini R. Effects of Nd:YAG laser on dental enamel. J Appl Biomater Biomech. 2005 May- Aug;3(2):128-33. 24- Tagomori S, Iwase T. Ultrastructural change of enamel exposed to a normal pulsed Nd-YAG laser. Caries Res. 1995;29(6):513-20. 25- Azevedo DT, Faraoni-Romano JJ, Derceli Jdos R, Palma-Dibb RG. Braz Dent J. 2012;23(2):104-9. 26- Zach L, Cohen G. Pulp response to externally applied heat. Oral Surg Oral Med Oral Pathol. 1965 Apr;19:515-30. 89 5