Fatty acid composition of milk fat in grazing dairy ewes

Similar documents
Zaragoza : CIHEAM Options Méditerranéennes : Série A. Séminaires Méditerranéens; n. 67

Effect of supplementation of grazing dairy ewes with a cereal concentrate on milk fatty acid profile

Meat fatty acids profile of kid goats from Serpentina breed

Zaragoza : CIHEAM Options Méditerranéennes : Série A. Séminaires Méditerranéens; n. 34

Relationships among diet botanical composition, milk fatty acid and herbage fatty acid content in grazing goats

Priolo A. (ed.), Biondi L. (ed.), Ben Salem H. (ed.), Morand-Fehr P. (ed.). Advanced nutrition and feeding strategies to improve sheep and goat

Does type of diet fed to animals affect in sacco degradability of feedstuffs?

Effects of ewe feeding system (grass vs concentrate) on milk fatty acid composition

Prediction of some Tunisian roughages voluntary intake by Noire de Thibar ewes

Priolo A. (ed.), Biondi L. (ed.), Ben Salem H. (ed.), Morand-Fehr P. (ed.). Advanced nutrition and feeding strategies to improve sheep and goat

Effect of the physiological stage of dairy goats on intake frequency and feed preferences in a free-choice feeding system

Influence of the method of conservation of lucerne on ruminal degradability. II. Nitrogen

Crude protein degradation in leaves and stems of alfalfa (Medicago sativa)

Differences in nutritional quality of milk produced from ewes reared in mountain versus valley areas

The effects of supplementation with sunflower and soybean oils on the fatty acid profile of milk fat from grazing dairy cows

Effect of the administration of polyethylene glycol (PEG) on the milk fatty acid composition of sheep grazing Sulla (Hedysarum coronarium)

Assessment of the \"recebo with postre\" system

Abstract. Introduction. Bulgarian Journal of Agricultural Science, 19 (No 1) 2013, Agricultural Academy

Influence of the feeding level on growth and carcass characteristics of Alentejano pigs

SCREENING FRESH FORAGES FOR PROTEIN DEGRADATION AND NUTRITIVE VALUE. G.C. Waghorn 1 and J.L. Burke 2. Abstract

FATTY ACID COMPOSITION AND EATING QUALITY OF MUSCLE FROM STEERS OFFERED GRAZED GRASS, GRASS SILAGE OR CONCENTRATE-BASED DIETS

In vitro forage digestibility under suboptimal microbial inoculum and culture media ph conditions

Effect of the dietary supplementation with sunflower and fish oils on the rumen bacterial communities in dairy sheep

Milk properties of ewes fed with soybean seeds and the sensory evaluation of the produced Roquefort type cheese

Feeding value of buckwheat silage for lamb as compared to maize silage

Milk production and fatty acid profile after three weeks of diet supplementation with sunflower oil and marine algae in dairy ewes

Responses by dairy ewes to different sward heights under continuous stocking either unsupplemented or supplemented with corn grain

Seasonal variations of chemical composition, intake and digestibility by ewes of natural pasture in the south-eastern regions of Algeria

Effect of diet on the fatty acid pattern of milk from dairy cows

Effect of exposure to heat stress conditions on milk yield and quality of Aosta dairy cows grazing on Alpine pasture

Base ration components (forages and grains) will average about 3% fat. Use Supplemental Fats. Fat Feeding. Production Responses to Supplemental Fat

Zaragoza : CIHEAM Options Méditerranéennes : Série A. Séminaires Méditerranéens; n. 101

Base ration components (forages and grains) will average about 3% fat. Use Supplemental Fats. DIETARY FAT AND MILK COMPOSITION Milk fat:

Effect of maturity stage on chemcial composition in sacco degradation and in vitro fermentation of acorns (Quercus coccifera L.)

Influence of genetic type on the characteristics of subcutaneous adipose tissue of pig thighs destined for the PDO production

Grange Beef Research Centre

Effect of diet and bacterial pellet on the bacterial N and amino acid flows from single-flow continuous-culture fermenters

Effect of foliage-tannins on feeding activity in goats

EFFECTS OF FEEDING WHOLE COTTONSEED COATED WITH STARCH, UREA, OR YEAST ON PERFORMANCE OF LACTATING DAIRY COWS

Forages, fat, fitness and flavour

Ruminal degradation evaluation of different feedstuffs by using single-flow continuous culture fermenters

Effect of the local forage resource, the khortane grass hay, on fatty acid of milk and meat of indigenous goats of southern Tunisia

Interactions of unsaturated fat or coconut oil with Rumensin on milk fat production might be mediated through inhibition of specific protozoal genera.

Effect of supplementary concentrate type on milk yield and composition in early lactation dairy cows offered perennial ryegrass based pasture

Behavioural strategies of dairy goats fed an acidogenic diet

Effects of local crop residues and agro-industrial by-products on milk yield and quality of Syrian Awassi ewes

Influence of the method of conservation of lucerne on ruminal degradability. I. Dry matter

Supplement Types - Energy. ME Fixed? What is Metabolisable Energy? Feeding Supplements & Practical Ration Balancing. Dr Julian Waters 3/1/16

Finding a consensus on the effects of tropical legume silages on intake, digestibility and performance in ruminants: A meta-analysis

Effects of different dietary energy contents on milk urea concentration in stall-fed dairy sheep

Modelling the voluntary dry matter intake in Murciano- Granadina dairy goats

The use of n-alkanes to estimate supplementary grass silage intake in grazing dairy cows

The four stomachs of a dairy cow

Sunflower oil plus cholesterol and fish oil for fattening lambs: effects on plasmatic parameters

Water intake of dairy goats in intensive systems

Farid M.F.A., Khamis H.S., Abou El-Nasr H.M., Ahmed M.H., Shawket S.M.

Why Graze? Supplementing Lactating Cows Requires Different Thinking. Grazing when grazing wasn t cool!! WHY? Good Pasture WVU Circular 379 Early 50s

EFFECT OF DIETS CONTAINING WHOLE WHITE LUPIN SEEDS ON MILK COMPOSITION AND YIELD OF RABBIT DOES AND PERFORMANCE AND HEALTH OF THEIR LITTERS

Genetic Analysis of Fatty Acid Composition of Milk: Basis for Improvement of the Healthfulness of the U.S. Milk Supply

Session 16/8 CHANGES IN INTENSITY OF BIOSYNTHESIS OF MILK FAT FATTY ACIDS DURING LACTATION IN GRAZING DAIRY COWS

Ruminant milk fat plasticity: nutritional control of saturated, polyunsaturated, trans and conjugated fatty acids

Feedstuff NE l content calculation 5 steps : STEP 1

Effect of the concentrate source on milk yield, milk composition and feeding behaviour of grazing sheep during summer season

Determination of tocopherol and carotenoid contents in ST muscle of suckling lambs using fresh or lyophilised muscle

Effect of severe underfeeding on digestion in sheep

COOPERATIVE EXTENSION UNIVERSITY OF CALIFORNIA, DAVIS

USDA/NOSB Dairy Pasture Symposium

DAIRY COW RESPONSES TO SOURCES AND AMOUNTS OF SUPPLEMENTAL PROTEIN

Effect of faba bean intake on growth and carcass characteristics of lambs from three breeds

Susan Ducke+, Clemson University 6/20/14

Introduction. Materials and methods

Effect of two sources of protein on performance in Murciano-Granadina goats during lactation

Feeding the Cow to Maximize Butterfat

N 18.5

OPPORTUNITIES TO PRODUCE HEALTHIER BEEF

Effective Practices In Sheep Production Series

Faecal NIRS to assess the chemical composition and the nutritive value of dairy sheep diets

DIGESTIBILITY AND CRUDE PROTEIN CHANGES IN TEN MATURING PASTURE SPECIES

CHAMPION TOC INDEX. Protein Requirements of Feedlot Cattle. E. K. Okine, G. W. Mathison and R. R. Corbett. Take Home Message

Rumen protected fat reverses the conjugated linoleic acid induced low milk fat content in dairy cows

HEAT-TREATED OR RAW SUNFLOWER SEED IN LACTATING DAIRY COWS DIETS: EFFECTS ON MILK FATTY ACIDS PROFILE AND MILK PERFORMANCE

Influence of lamb fattening method and weight standard on carcass and meat quality

Assessing Your J Grennan & Sons Silage Report.

What do Clues in Milk Composition Parameters Tell us About Herd Performance?

Using dietary crude protein to manipulate energy balance in early lactation dairy cows

Beef Cattle Nutrient Requirements

Dry mass yield from sainfoin in binary mixtures with ryegrass and cocksfoot

Improving the fatty acid composition of ruminant products. Michael R. F. Lee

Feeding Animals for Profit - Will my 2017 hay cut it?

Milk fat content and fatty acid profile of heat-stressed dairy goats supplemented with soybean oil (Abstr. p. 403)

Feeding behaviour, intake and digestion of the Camelus dromedarious at pasture

Reducing the reliance on purchased protein. Improving the value of home grown proteins

N-alkanes as markers in feeding trials

Dietary lipids and forages interactions on cow and goat milk fatty acid composition and sensory properties

Effects of feeding system and Acacia cyanophylla-condensed tannins on lamb growth and meat characteristics

Trans fats dangerous. What are Trans Fats?

Estimation of Total Tract Apparent Digestibility of Nutrients in Three Annual Winter Forages Using Two Different Digestibility Markers

Dietary supplements of whole linseed and vitamin E to increase levels of α-linolenic acid and vitamin E in bovine milk

Beef Cattle Nutrient Requirements

Transcription:

Fatty acid composition of milk fat in grazing dairy ewes Marques M.R., Belo C. in Molina Alcaide E. (ed.), Ben Salem H. (ed.), Biala K. (ed.), Morand-Fehr P. (ed.). Sustainable grazing, nutritional utilization and quality of sheep and goat products Zaragoza : CIHEAM Options Méditerranéennes : Série A. Séminaires Méditerranéens; n. 67 2005 pages 189-193 Article available on line / Article disponible en ligne à l adresse : http://om.ciheam.org/article.php?idpdf=6600041 To cite this article / Pour citer cet article Marques M.R., Belo C. Fatty acid composition of milk fat in grazing dairy ewes. In : Molina Alcaide E. (ed.), Ben Salem H. (ed.), Biala K. (ed.), Morand-Fehr P. (ed.). Sustainable grazing, nutritional utilization and quality of sheep and goat products. Zaragoza : CIHEAM, 2005. p. 189-193 (Options Méditerranéennes : Série A. Séminaires Méditerranéens; n. 67) http://www.ciheam.org/ http://om.ciheam.org/

Fatty acid composition of milk fat in grazing dairy ewes M.R. Marques and C.C. Belo Departamento de Sistemas e Técnicas de Produção Animal, Estação Zootécnica Nacional, Fonte Boa, 2005-048 Vale de Santarém, Portugal SUMMARY To study whether selectivity for plants or parts of plants affect the fatty acid composition of milk fat, two groups of five mid lactation ewes were used: the "Grass" group not supplemented, and the "Maize" group supplemented with 600 g of crushed maize/day. Five paddocks were successively grazed, each containing five strips of the following species seeded separately: Trifolium repens, Lolium perenne, Medicago sativa, Festuca arundinacea and Trifolium fragiferum. Milk composition and fatty acid (FA) composition of milk fat was determined at the second and at the last day in each paddock. At the beginning of the grazing period, when selectivity was higher, the contents of long chain FA, monounsaturated FA, branched-chain and odd-chain FA and the C 18:2 /C 18:3 ratio was significantly lower and the contents of C 12:0 -C 15:1 FA, saturated FA, polyunsaturated FA and conjugated linoleic acid (CLA) were significantly higher. Discriminant analysis showed that the FA profile was efficient to allocate milk samples to feeding groups accurately. Key words: Dairy ewes, grazing, milk production, milk composition, milk fatty acids. RESUME "Composition des acides gras du lait de brebis laitières au pâturage". Deux groupes de 5 brebis (le groupe "Herbe" non supplémenté et le groupe "Ma s" supplémenté avec 600 g de ma s aplati) ont été utilisées pour étudier l'effet de la sélectivité sur la composition de la matière grasse du lait en acides gras (AG). Cinq parcelles de Trifolium repens, Lolium perenne, Medicago sativa, Festuca arundinacea ou de Trifolium fragiferum, ont été pâturées successivement. La composition du lait et de la matière grasse du lait ont été évaluées au 2ème et au dernier jour pour chaque parcelle. Les teneurs du lait en AG à chaîne longue, les AG monoinsaturés, les méthyl-ag et les AG à chaîne impaire et le rapport C 18:2 /C 18:3 ont été significativement inférieurs et celles en AG C 12:0 -C 15:1, AG saturés, AG polyinsaturés et l'acide linoléique conjugué (ALC) ont été significativement plus élevés au début de la période de pâturage. L'analyse du profil des AG a permis de faire correspondre d'une manière précise les échantillons de lait au régime alimentaire. Mots-clés : Brebis laitières, pâturage, production du lait, composition du lait, acides gras du lait. Introduction Physical and chemical characteristics of herbage, and the type of supplement offered to dairy ruminants affect milk quality, namely fatty acids (FA) composition of milk fat (Bauman and Griinari, 2003; Chilliard et al., 2003). Dairy ewes, with high energy and protein requirements for milk production should receive high quality herbage with high digestibility and low in fibre and high in crude protein. When herbage quality decreases, milk production also decreases, and milk composition changes. The introduction of energetic supplements in the diet of lactating ewes may prevent milk production to decrease, but it affects fat content and its FA composition (Marques and Belo, 2001b). The control of grass and legume palatability on dairy ewes under rotational grazing conditions (Marques and Belo, 2001a) allowed to conclude that legumes were preferred regardless of supplementation, and that feeding activity increased from 65 to 95% of time spend grazing between the 1st and the 5th day in each paddock, along with the decrease in leaves availability of selected plant species. In several works the effect of supplementation upon FA composition of milk fat produced by grazing ruminants was studied, but to our knowledge there are no studies on the effect of the variation of pasture quality under grazing upon milk yield and composition. The objective of this work was to check whether selectivity for plants or parts of plants could affect milk yield and FA composition of milk fat in grazing dairy ewes with or without supplementation. Options Méditerranéennes, Series A, No. 67 189

Materials and methods During the month of June, 10 "Serra da Estrela" ewes were observed for 23 days during which they successively grazed on five 385 m 2 paddocks, each containing five strips of the following species seeded separately: white clover (Trifolium repens, cv. Ladino and Pitau, WC), ryegrass (Lolium perenne, cv. Ariki, RG), lucerne (Medicago sativa, cv. Aurora, LUC), fescue (Festuca arundinacea, cv. Clarine, FES) and strawberry clover (Trifolium fragiferum, cv. Palestine, SC). Ewes entered paddocks when the mean height of LUC was 25-30 cm. In average, ewes spent 5 days on each paddock. The dry matter (DM) availability of each species and their chemical composition was determined when animals entered (1st day) and when they left each paddock (5th day). Two random samples were collected from each species by throwing a 0.125 m 2 iron ring. The DM percentage, the quantity of ashes, total nitrogen and neutral detergent fibre (NDF), DM and organic matter (OM) in vitro digestibility, and metabolised energy were determined in these samples. Ewes grazed from 8:00 to 12:00 and from 16:00 to 20:00. They were divided into two groups of five animals: the "Grass" group ewes with no supplementation and the "Maize" group ewes supplemented with 600 g of crushed maize/day. In average, ewes were in their 60th day of lactation when the trial began and were milked twice a day at 7:30 and 20:00. Daily milk production was recorded. Samples were collected on the 2nd and last day (5th day) that ewes spent in each paddock to determine fat, protein, lactose, and total solids contents by Milk-O-Scan, and FA composition of milk fat by gas chromatography as described by Marques and Belo (2001b). Milk production, milk composition, and FA composition of milk fat were analysed by ANOVA using a factorial in a split-plot in time design to test repeated measures in the same individual. Milk FA profiles were analysed using a canonical discriminant analysis. It was carried out by a forward stepwise method of Statistical Software (Statsoft, 1995) with the objective of evaluating the reliability of milk FA profiles to allocate it to a given feeding system. Results and discussion Herbage biomass available the first day of grazing averaged 54.8 kg DM, this corresponds to a mean availability of 1.1 kg DM/day/ewe and a grazing pressure of 18.25 ewes/100 kg DM. Mean chemical composition of grazed species at the 1st and the 5th days is showed in Table 1. Table 1. Dry matter (DM), crude protein (CP), neutral detergent fibre (NDF), dry matter digestibility (DMD) and metabolised energy of the grazed species Specie DM (%) CP (%) NDF (%) DMD (%) Metabolised energy (MJ) 1st day 5th day 1st day 5th day 1st day 5th day 1st day 5th day 1st day 5th day RG 13.35 16.67 21.26 14.05 62.19 65.08 68.88 59.58 09.46 08.01 FES 16.01 20.31 17.08 09.91 64.34 70.21 68.28 52.66 09.40 07.19 LUC 12.43 18.87 22.05 15.19 43.99 58.61 69.75 58.20 09.51 07.82 WC 10.18 11.05 25.82 26.63 35.23 36.71 78.75 78.98 10.84 10.76 SC 10.98 11.85 26.56 25.74 35.12 39.13 77.95 71.00 10.60 09.79 RG ryegrass; FES fescue; LUC lucerne; WC white clover; SC strawberry clover. Between the 1st and the 5th day, DM content increased in LUC, in RG, and in FES (Table 1). Simultaneously, for the same species, CP content decreased by seven percentage points and DMD and organic matter digestibility (OMD) decreased by sixteen percentage points, approximately (Table 1). In the LUC, NDF content increased considerably from the 1st to the 5th day, providing evidence of the strong increase of the proportion of stems observed throughout the grazing period, once LUC and its leaves were preferentially consumed at the 1st day (Marques and Belo, 2001a). It was also observed that, in clover species, DM, CP and NDF contents remained constant during all period, and its DMD and OMD were high throughout the study (Table 1). 190 Options Méditerranéennes, Series A, No. 67

Milk production, showed in Fig. 1, was significantly higher (P < 0.01) in the "Maize" group ewes, than in the "Grass" group ewes (750 and 550 ml/day, respectively). Milk production remained constant throughout the 1st and the 2nd days but decreased significantly thereafter especially in "Maize" group' ewes. This may indicate that the quality of the grass affected the intake and was not enough to sustain milk production levels for each treatment. 900 800 ml/day 700 600 500 1 2 3 4 5 Grazing day Grass Maize Fig. 1. Milk production (ml/day) from "Grass" and "Maize" groups' ewes during the grazing period. Milk composition is showed at Table 2. Fat, protein and total solids contents were significantly higher in "Grass" group ewes than in "Maize" group ewes (7.92, 6.10 and 19.24% vs 6.87, 5.56, 17.85% respectively). Lactose content was not affected by maize supplementation. Similar results to those obtained for fat, lactose and total solids contents were reported by Susin et al. (1995), but an increase of protein content was expected in ewes supplemented with maize. From the 2nd to the 5th day in the paddocks, milk fat and total solids contents decreased in both groups and protein and lactose contents were similar. The increase of milk fat on the 5th day was unexpected, once the percentage of fibre available in each species was higher, however the increased feed intake in the beginning of the period could have led to a higher total intake of fibre. The introduction of energetic supplements and the increase of fibre in the diet of dairy ewes along with the grazing period can change rumen fermentation, and consequently the FA composition of milk fat. While C 4:0 -C 10:1 and C 12:0 -C 15:1 synthesised de novo in the mammary gland can increase during the beginning of the grazing period, the level of long chain fatty acids (LCFA) derived from diet or from adipose tissue mobilization tended to be higher in the period of less feed availability. Milk fat from the "Maize" group ewes was higher in C 4:0 -C 10:1 (13.00 vs 10.59%; P < 0.05) and lower in LCFA (43.96 vs 46.56%; P < 0.10) than the milk fat from "Grass" group ewes (Table 2). This could be a consequence of an increase in total feed intake by "Maize" group ewes, achieved only through the supplement intake once "Maize" group ewes spent 6% less time in grazing activity (Marques and Belo, 2001a). Therefore, this resulted in a decrease of total intake of fibre, which might stimulated the propiogenic fermentation in the rumen and the hepatic neoglucogenesis. Thereby more energy was available for the de novo synthesis of FA, and adipose tissue mobilization was reduced. In the "Maize" group it was also observed a significant decrease in the content of polyunsaturated fatty acids (PUFA from 5.58 to 5.00%; P < 0.05), linolenic acid (C 18:3 from 1.42 to 1.00%; P < 0.05), conjugated linoleic acid (CLA from 1.54 to 1.21%; P < 0.05), branched chain FA (BCFA from 2.96 to 2.57%; P < 0.01), and odd-chain FA (OCFA from 2.72 to 2.33%; P < 0.01) (Table 2). In the beginning of grazing in each paddock (2nd day; Table 2), when the selectivity was maximum and the leaves were the preferred part of plants consumed by ewes, milk quality was better, mainly through its significantly low contents of MUFA (26.69 vs 28.12%; P < 0.001), and high levels of PUFA (5.46 vs 5.11%; P < 0.001), C 18:3 (1.28 vs 1.14; P < 0.001), and CLA (1.48 vs 1.26; P < 0.001). These latter components are important in preventing coronary heart diseases and have anticarcinogenic activity (Parodi, 1999). Options Méditerranéennes, Series A, No. 67 191

Table 2. Milk yield, milk composition and fatty acids composition of milk fat (mol/100mol of total FA) Supplementation group (S) Day in the paddock (D) MSE Significance Grass Maize 2nd day 5th day S D S*D Milk yield (ml/day) 550 a 750 b 688 b 611 a 67 ** *** ns Fat (%) 7.92 b 6.86 a 7.60 b 7.19 a 0.53 * ** ns Protein (%) 6.10 b 5.55 a 5.83 5.82 0.17 * ns ns Lactose (%) 4.51 a 4.75 b 4.62 4.63 0.08 ns ns Total solids (%) 19.21 b 17.83 a 18.75 b 18.28 a 0.46 * *** ns C 4:0 -C 10:1 10.59 a 13.00 b 12.05 11.53 2.56 * ns ns C 12:0 -C 15:1 16.97 17.67 17.50 b 17.14 a 1.24 ns * ns C 16 25.88 25.37 26.24 25.01 1.14 ns *** *** LCFA 46.56 43.96 44.20 a 46.32 b 3.33 ns *** ns SFA 63.01 a 66.92 b 65.60 b 64.33 a 2.26 *** ** MUFA 28.92 25.90 26.69 a 28.12 b 2.00 ns *** ** PUFA 5.58 b 5.00 a 5.46 b 5.11 a 0.40 * *** ns C 18:2 2.63 2.78 2.69 2.72 0.20 ns ns ns C 18:3 1.42 b 1.00 a 1.28 b 1.14 a 0.20 * *** ns CLA 1.54 b 1.21 a 1.48 b 1.26 a 0.20 * *** ns BCFA 2.96 b 2.57 a 2.66 a 2.88 b 0.25 ** *** ns OCFA 2.72 b 2.33 a 2.49 a 2.55 b 0.20 *** * ns C 18:2 /C 18:3 1.94 a 2.89 b 2.23 a 2.60 b 0.31 ** *** *** LCFA long chain FA; SFA saturated FA; MUFA monounsaturated FA; PUFA polyunsaturated FA; CLA conjugated linoleic acid; BCFA branched-fa; OCFA odd-chain FA. MSE Mean Standard Error. a,b Means with different superscripts differ significantly. *P < 0.05; **P < 0.01; ***P < 0.001; ns P > 0.10; P < 0.10. The C 18:2 /C 18:3 ratio was recently proposed as a valorisation factor for fats. The World Health Organization (WHO, 1998) recommended for a human diet a C 18:2 /C 18:3 ratio lower than 5:1. In this study, this ratio was significantly affected by the interaction between supplementation group and days in the paddock. The C 18:2 /C 18:3 ratio raised with supplementation and with grazing time in each group, i.e. ewes in the "Grass" group exhibited a C 18:2 /C 18:3 ratio of 1.85 at the 2nd day and a 2.03 ratio at the 5th day. "Maize" group ewes had a C 18:2 /C 18:3 ratio of 2.62 at the 2nd day and of 3.17 at the 5th day. These results showed that it is possible, in grazing ewes, to obtain ratios as low as 2:1, and reinforce the importance of an efficient grazing management. To better understand the feeding system, a discriminant analysis was performed. This analysis generated three significant uncorrelated linear combinations of C 18:2 /C 18:3 ratio and 12 FA (C17:0, ic15:0, CLA, C18:0, C18:2, C18:3, C15:1, C18:1, ac16:0, C16:1, C14:0 and C4:0). The discriminant analysis allowed allocating properly 90% of samples (Fig. 2). The percentage of correct allocation was 90, 92, 88 and 90%, for groups "Grass" 2nd day, "Maize" 2nd day, "Grass" 5th day, "Maize" 5th day, respectively. Discriminant functions 1 and 2 had a higher discriminant power than function 3, accounting for 63.8 and 31.9% of the total variation between groups (Table 3). This methodology is especially accurate to discriminate between supplementation groups, once only two samples of the "Maize" group were misallocated in the "Grass" group. Conclusions This study showed clearly the effect of grazing management on milk production in dairy ewes. Rotational grazing had the advantage of allowing the persistence of forage species in pastures, namely lucerne. Moreover, the conduction of dairy ewes under rotational grazing system allowed the 192 Options Méditerranéennes, Series A, No. 67

production of milk with better nutritional quality, especially because of its richness in PUFA and CLA and its lower content in LCFA. Furthermore, milk from ewes grazing pasture with high leaves content has a lower C 18:2 /C 18:3 ratio, than milk from ewes grazing a low quality pasture or receiving supplementation. The effectiveness of milk FA profiles to assign milk samples to a feeding system, to discriminate among ewes feed with or without supplements was also demonstrated in the current work. Discriminant function 2 5 4 3 2 1 0 1 2 3 4 5 6 5 4 3 2 1 0 1 2 3 4 5 Discriminant function 1 Fig. 2. Spatial distribution of fatty acids profile from four groups in the plane defined by the discriminant function 1 and 2. Table 3. Statistics for each discriminant function Discriminant function Canonical R Eigen value Cumulative proportion Wilks' Lambda P-level 1 0.900 4.257 0.638 0.047 *** 2 0.825 2.133 0.957 0.248 *** 3 0.472 0.287 1.000 0.777 *** References Bauman, D.E. and Griinari, J.M. (2003). Nutritional regulation of milk fat synthesis. Annu. Rev. Nutr., 23: 203-227. Chilliard, Y., Ferlay, A., Rouel, J. and Lamberet, G. (2003). A review of nutritional and physiological factors affecting goat milk lipid synthesis and lipolysis. J. Dairy Sci., 86(5): 1751-1770. Marques, M.R. and Belo, C.C. (2001a). Estudo do comportamento alimentar de ovelhas Serra da Estrela em condições de pastoreio diferido/rotacional. Influência da suplementação energética da erva na quantidade e qualidade do leite produzido. Pastagens e Forragens, 22: 19-36. Marques, M.R. and Belo, C.C. (2001b). Fatty acid composition of milk fat in grazing "Serra da Estrela" ewes fed four levels of crushed corn. Options Méditerranéennes, Series A, 46: 131-134. Parodi, P.W. (1999). Conjugated linoleic acid and other anticarcinogenic agents of bovine milk fat. J. Dairy Sci., 82(6): 1339-1349. Statsoft (1995). Statistica for Windows (Computer Program Manual). Statsoft Inc., Tulsa, OK, USA. Susin, I., Loerch, S.C. and McClure, K.E. (1995). Effects of feeding a high-grain diet at a restricted intake on lactation performance and rebreeding of ewes. J. Anim. Sci., 73(11): 3199-3205. WHO, World Health Organization (1998). Life in 21 st century. A vision for all, World Health Report. WHO, Geneve. Options Méditerranéennes, Series A, No. 67 193