Decision support for health care: the PROforma evidence base

Similar documents
Towards a general model for argumentation services

Medical thinking: towards a unified view. John Fox Advanced Computation Laboratory Cancer Research UK

A Framework for Optimal Cancer Care Pathways in Practice

National Breast Cancer Audit next steps. Martin Lee

Quantitative and Qualitative Approaches to Reasoning under Uncertainty in Medical Decision Making

Response to the proposed advice for health and social care practitioners involved in looking after people in the last days of life

Defining quality in ovarian cancer services: the patient perspective

Fixing footcare in Sheffield: Improving the pathway

PRESCRIBING BY RADIOGRAPHERS: A VISION PAPER

The value of multidisciplinary tumor boards in cancer care

Low back pain and sciatica in over 16s NICE quality standard

SELF ASSESSMENT REPORT (MULTI-DISCIPLINARY TEAM)

The Hepatitis C Action Plan for Scotland: Draft Guidelines for Hepatitis C Care Networks

The changing demand of cancer services in Hong Kong can be summarized as follows:

Physical health of children and adolescents

10.2 Summary of the Votes and Considerations for Policy

National Standards for Sarcoma Services

National Standards for Sarcoma Services 2009

Framework on the feedback of health-related findings in research March 2014

Vacancy list Pathway Boards

Information in practice

Patient and Carer Network. Work Plan

NATIONAL INSTITUTE FOR CLINICAL EXCELLENCE SCOPE. Dementia: the management of dementia, including the use of antipsychotic medication in older people

Victorian Paediatric Oncology Situational Analysis & Workforce Requirements

Cancer Improvement Plan Update. September 2014

Activity Report April 2013 March 2014

Bringing prostate cancer education to regional and rural Australian communities

WHERE NEXT FOR CANCER SERVICES IN WALES? AN EVALUATION OF PRIORITIES TO IMPROVE PATIENT CARE

SAFE PAEDIATRIC NEUROSURGERY A Report from the SOCIETY OF BRITISH NEUROLOGICAL SURGEONS

Royal College of Radiologists (RCR) Referral guidelines. Final Accreditation Report. Guidance producer: Guidance product: Date: 29 June 2010

Costing report: Lipid modification Implementing the NICE guideline on lipid modification (CG181)

Breast Cancer MultiDisciplinary Approach

Trust Guideline for the inclusion of women at High Risk of Breast Cancer in the NHS Breast Screening Programme

RUTGERS CANCER INSTITUTE OF NEW JERSEY - ROBERT WOOD JOHNSON MEDICAL SCHOOL INTERDISCIPLINARY BREAST SURGERY FELLOWSHIP CORE EDUCATIONAL OBJECTIVES

Activity Report April 2013 March 2014

Clinical application of optimal care pathways at a regional cancer centre

making a referral for breast imaging Standard Operating Procedure

National Cancer Peer Review Sarcoma. Julia Hill Acting Deputy National Co-ordinator

Drug Misuse and Dependence Guidelines on Clinical Management

Referral guide for acute oncology emergencies

Activity Report March 2013 February 2014

Coordination of palliative care in community settings. Summary report

The next paradigm in cancer diagnosis: introducing the CanTest Collaborative from the how to the who

Waiting Times for Suspected and Diagnosed Cancer Patients

Do rural cancer patients present later than those in the city?

Diabetes in Pregnancy Network: Scoping survey March 2013

Radiology. General radiology department. X-ray

The London BreasT CenTre

NICE BULLETIN Diagnosis & treatment of prostate cancer

Background Information

Activity Report April 2012 to March 2013

Improving diagnostic pathways for patients with vague symptoms

Foreword. Our shared principles

Royal Brompton and Harefield Hospitals Clinical Fellowship Programme

Draft v1.3. Dementia Manifesto. London Borough of Barnet & Barnet Clinical. Autumn 2015

Radiation Oncology. The conf ident path to treatment Philips Radiation Oncology Solutions

HERTS VALLEYS CCG PALLIATIVE AND END OF LIFE CARE STRATEGY FOR ADULTS AND CHILDREN

National Optimal Lung Cancer Pathways. Dr Sadia Anwar Nottingham University Hospitals NHS Trust Clinical Lead for Lung Cancer

NHS Innovation Accelerator. Economic Impact Evaluation Case Study: Sapientia 1. BACKGROUND

Cancer Screening Programmes BREAST SCREENING. The Facts

North Somerset Autism Strategy

Skull Base Tumour Service. The Multi-Disciplinary Team (MDT) Explained. Jan 2018 v1

NATIONAL INSTITUTE FOR HEALTH AND CLINICAL EXCELLENCE

Building on Success. Driving improvements in clinical outcomes through a Greater Manchester Cancer Alliance. May 2015

What is Acute Oncology? Kay McCallum Acute Oncology Advanced Nurse Practitioner John Radcliffe Hospital Oxford September 2015

Health Board/Region: All-Wales

Genetic testing for breast cancer susceptibility

Appendix I. List of stakeholders consulted with on the Patient Radiation Protection Manual and members of the Medical Exposure Radiation Unit

National Cancer Patient Experience Survey Results. Milton Keynes University Hospital NHS Foundation Trust. Published July 2016

West Midlands Sarcoma Advisory Group

ACE Programme SOMERSET INTEGRATED LUNG CANCER PATHWAY. Phases One and Two Final Report

National Chronic Kidney Disease Audit

A. Service Specification

Coversheet for Network Site Specific Group Agreed Documentation

Activity Report April 2012 March 2013

Activity Report July 2014 June 2015

Hereditary Breast and Ovarian Cancer (HBOC) Information for individuals and families

Shared Care Pathway for Soft Tissue Sarcomas Presenting to Site Specialised MDTs. Gynaecological sarcomas Version 1

National Optimal Lung Cancer Pathway

MCIP Recruitment Pack

Developing effective ctdna testing services for lung cancer. Executive summary

The RPS is the professional body for pharmacists in Wales and across Great Britain. We are the only body that represents all sectors of pharmacy.

A targeted orientation and information program for newly diagnosed cancer patients at St. Vincent s Hospital

controversial topics in surgery

Clinical Commissioning Policy: Chemotherapy Algorithms for Adults and Children. January 2013 Reference: NHS England XXX/X/X.

Project Initiation Document:

Forums. QOL in Prostate Cancer - project report. Service Improvement Grants NUMBER 23 FEBRUARY 2018

AUTISM STRATEGY FOR ADULTS IN BIRMINGHAM

National Standards for Acute Oncology Services

Understanding desmoid-type fibromatosis

Haemato-oncology Clinical Forum. 20 th June 2013

DiasNet an Internet Tool for Communication and Education in Diabetes

Ensuring effective commissioning of cancer services: A survey of GPs

Discussion Document - National Health and Social Care Workforce Plan

healthdirect Symptom Checker Communications Toolkit

TRANSFORM CANCER SERVICES

Clinical oncology workforce: the case for expansion Faculty of Clinical Oncology

We are currently recruiting new members to advisory groups for the following research programmes:

The Urology One-Stop Clinic

Sheffield s Emotional Wellbeing and Mental Health Strategy for Children and Young People

Transcription:

Informatics in Primary Care 2006;14:49 54 # 2006 PHCSG, British Computer Society Conference paper Decision support for health care: the PROforma evidence base John Fox PhD Head of Laboratory Vivek Patkar MBBS MS Clinical Research Fellow Richard Thomson MA Project Manager Advanced Computation Laboratory, London Research Institute, Cancer Research UK, London, UK ABSTRACT Cancer Research UK has developed PROforma, a formal language for modelling clinical processes, along with associated tools for creating decision support, care planning, clinical workflow management and other applications. The PROforma method has been evaluated in a variety of settings: in primary health care (prescribing, referral of suspected cancer patients, genetic risk assessment) and in specialist care of patients with breast cancer, leukaemia, HIV infection and other conditions. About nine years of experience have been gained with PROforma technologies. Seven trials of decision support applications have been published or are in preparation. Each of these has shown significant positive effects on a variety of measures of quality and/or outcomes of care. This paper reviews the evidence base for the clinical effectiveness of these PROforma applications, and previews the CREDO project a multi-centre trial of a complex PROforma application for supporting integrated breast cancer care across primary and secondary care settings. Keywords: clinical guidelines, computer-interpretable guidelines, decision support, e-health PROforma: modelling decisions and care pathways PROforma is a formal language for describing guidelines, care pathways and protocols, and for automating clinical processes. 1,2 The method is mathematically principled and designed to be intuitive to clinicians. The former supports reliable and sound applications; the latter empowers clinicians to oversee the development of clinical applications and their safe use in practice neither of which are typical of conventional software. Application development tools include the Arezzo 1 system available from InferMed Ltd, 3 and the Tallis system which is used at Cancer Research UK for internal and collaborative research projects. PROforma: the evidence base The PROforma approach has led to several novel technologies, and a body of evidence gained from a range of settings shows that they could have substantial clinical value. The first practical application of PROforma was CAPSULE, a system for assisting general practitioners (GPs) in prescribing for common conditions. 4 Prescribing is an important application for decision support in many clinical areas because it requires clinicians to be able to access a large amount of constantly changing knowledge in order to stay up to date. CAPSULE took in patient data and produced a short list of relevant medications, together with the arguments for and against each option. Walton et al s trial of the system showed potential substantial improvements in quality of prescribing (about 30%, P<0.001), improved resource use and faster decision making.

50 J Fox, V Patkar and R Thomson Prescribing tools also have a role in cancer care. LISA is a PROforma system for advising on dose adjustment in the treatment of children with acute lymphoblastic leukaemia. A first trial of the system showed that without decision support, clinicians non-deliberately deviated from the trial protocol on 22.9% of occasions. 5,6 With decision support this figure dropped to zero. Of the clinicians involved, 32 out of 36 (almost 90%) said they would use LISA if it were routinely available. (Note that the results of this LISA trial are indicative rather than definitive since the trial was run on retrospective cases.) LISA has now been incorporated into InferMed s MACRO 1 clinical trial manager, which is being prospectively evaluated in a clinical trial led by Cancer Research UK s Paediatric Oncology Unit at the London Hospital. Definitive results have been published for an important class of application designed to tailor drug selection and dose according to virus genotype mutation data. Complex genotype data are being increasingly used in clinical decision making, providing a significant opportunity for computerised decision support to handle and interpret them effectively. The Retro- Gram 1 system 7 is a PROforma application, developed by InferMed for Hoffman la Roche, which advises on the use of anti-retroviral therapy for HIV-positive patients, based on HIV-1 genotype information. It is in use by more than 250 clinicians worldwide. The multi-centre Havana trial 8 showed that availability of genotype data, allied with RetroGram s interpretation of those data and prescribing advice, significantly improved virological outcomes in patients (by around 33%), compared with conventional management of HIV-positive patients without genotype data. Genetic profiling is becoming increasingly important in patient care generally, and could well be an important model for the future. However, individualised care in this area is difficult and time-consuming to plan, and very difficult to implement. PROforma can support both phases, as illustrated by the REACT treatment planner, 9 a system based on PROforma concepts. REACT was first demonstrated in the management of type 2 diabetes, 10 and has been trialled more recently in an application to assist in individualised care planning in a genetic counselling setting. This trial (as yet unpublished) has produced encouraging results: six out of eight clinical geneticists who used the system during counselling were supportive of its value. The approach adopted could be helpful in other care planning settings such as the management of chronic conditions and particularly in post-genomic medicine. As genetics and genomics acquire increased clinical significance and clinicians face growing demands to keep up-to-date with the science and increase their mathematical skills, decision support and care planning tools will become critical to achieving best standards of practice. The problem of assessing genetic predispositions to cancer and other diseases further illustrates these issues. Genes predisposing to cancer attract considerable medical and public concern. As more genetic markers become available, individuals who are worried that they might be at risk seek guidance from their GPs and others. We know that GPs are willing to provide advice and support, but they often feel they do not have the expertise to take or analyse a family history. Further, the problem of communicating risk to patients who have no statistical understanding is notoriously difficult. The RAGs system was developed to help GPs take a family history, assess risk and explain risk factors to patients. 11 An application covering breast and ovarian cancer risk was implemented for collaborators in Oxford. Trials there showed that GPs produce significantly more accurate family trees, risk assessments and referral decisions with customised technologies such as RAGs than with paper and pencil or with statistical software such as Cyrillic. 12 In a comparison with statistical software and paper and pencil, RAGs was chosen as the preferred tool 91.7% of the time. The CADMIUM imaging system used an early version of the PROforma approach to combine conventional image processing with automated interpretation of images and diagnosis. 13 CADMIUM was trialled in a study in which radiographers with specialist training interpreted screening mammograms both with and without decision support. The trial was designed to highlight whether such systems could play a role in improving decision making in routine breast cancer screening. The system was designed to automatically identify microcalcifications in breast tissue and interpret the pattern of calcifications according to whether they were likely to indicate benign or malignant abnormalities. The study indicated that the system significantly increased the rate of correct classifications of malignant and benign abnormalities by radiographers, while also reducing cancer misses and false positives. The most recent trial of a PROforma application (as a module of the CREDO system described in the next section) was also in breast cancer. The study looked at the value of decision support in the initial assessment ( Triple Assessment ) of women referred to specialist breast clinics. A collaborating breast surgeon used PROforma to formalise national guidelines for genetic risk assessment and for decisions about imaging (mammography and ultrasound), biopsy and management. The trial involved a random sample of 24 doctors working as consultants or registrars in specialist breast units with, on average, nine years experience. They were asked to manage ten paper cases, five with and five without decision support, and their decisions were compared with a consensus of best practice defined by an expert panel. Without support, decisions deviated from the consensus standard in approximately 50% of

Decision support for health care: the PROforma evidence base 51 cases; with support, this figure dropped to 16%. The majority of deviations were minor, but when decision supportwasnotavailable,8.3%ofdecisionswerejudged to represent critical errors with potential for patient harm. This figure fell to 0.8% when decision support was provided. To summarise, of seven studies of PROforma applications that have yielded quantitative data, all have shown significant positive results on a variety of outcome measures. With the simplest assumption that the results were equally likely to go either way, this pattern has a chance probability of less than 0.01 (0.5 7 =0.008). where there is potential for errors that could have a significant impact on treatment efficacy or patient safety. It is interesting to note that on a simple probability model, if error rates are limited to 1% across the 65 decisions, only 50% of women, on average, will get perfect care. If error rates are raised to 5%, only 3% of women will get perfect care. Evidence from various studies and reports, such as Vincent s work in National Health Service (NHS) acute hospitals, 14,15 suggests that actual rates of deviation from evidence-based recommendations could be 10% or higher. A main goal of the CREDO trial is to determine to what extent a reduction in error rates is achievable in practice through the use of decision support. The CREDO trial With the exception of the RetroGram study, trials of PROforma concepts and tools carried out to date have been undertaken under controlled research conditions rather than in routine clinical settings. The next planned trial of a PROforma system will be the largest to date and is designed to redress the balance. The CREDO trial will focus on breast cancer care and will seek definitive data on the value of advanced tools for decision support, care planning and multidisciplinary care throughout the patient journey. CREDO is designed to support seamless patient management across primary and secondary care sectors, from presentation and diagnosis through to treatment and follow-up. The CREDO system is based on a comprehensive service model that maps the entire breast cancer care pathway in a form that lends itself to computerisation. The CREDO service model (see Figure 1) suggests that across the whole breast cancer journey there are over 220 services delivered by different professionals in secondary and primary care settings. It further suggests that there are approximately 65 decision points Improving the interface between primary and secondary care Further aims of CREDO are to improve communications between clinicians, and shared care of patients undergoing cancer care. The 2001 joint report on cancer care by the Commission for Healthcare Improvement (now the Healthcare Commission) and the Audit Commission on cancer care 16 found that cancer care is often fragmented, and that problems arise at the interfaces where information and responsibilities are transferred between care sectors. Inadequate co-ordination between primary care (where initial detection, primary risk assessment and sometimes follow-up of a cancer occurs) and secondary care (where most of the treatment takes place) can increase patients feelings of uncertainty. One of the reasons for this is that GPs and breast specialists have different roles and view the process from different perspectives. However, from the patient s point of view, the entire process, from her first visit to the GP through to follow-up, is a single journey. Detection Work-up Treatment Follow-up Primary care Triple assessment Psychosocial Surgery Palliative care Patient Screening Diagnosis Staging Therapy planning Radiotherapy Systemic therapy Primary care Genetics & risk assessment Pathology Radiology Multidisciplinary patient reviews Follow-up clinics Patient portal Professional portal Current awareness Clinical trials Web resources information flow information flow + transfer of responsibility (referral) RED box safety/audit Figure 1 CREDO service model

52 J Fox, V Patkar and R Thomson CREDO aims to enhance shared care by acknowledging the different goals and roles of the different stakeholders (primary and secondary care clinicians, nurses, patients...) involved in a complex pathway. The system allows them to access the same underlying evidence-based computerised care process, but provides different representations of it to meet their different needs. For example, CREDO provides a simple and intuitive visual family tree for GPs to facilitate familial breast cancer risk assessment and communication of genetic relationships (see Figure 2). Based on the patient s risk category (population, moderately elevated or high risk), CREDO can also suggest appropriate management or referral to specialists if needed. Forwomenwithmediumandhighrisk,familyhistory information can be passed automatically to the appropriate specialist in secondary care. A CREDO module (based on REACT, see Figure 3) can then help gather Figure 2 CREDO style of family history taking and risk assessment (based on the RAGs system developed by Coulson et al, 2001 11 ) Figure 3 The REACT application for planning the care of women with elevated breast cancer risk. The top window shows a personalised plan of interventions over time; the central window shows the risk curves associated with the plan and the arguments for and against each intervention. The bottom window provides any significant alerts or reminders associated with the plan

Decision support for health care: the PROforma evidence base 53 further objective and subjective patient data in order to generate risk or other graphs, together with the pros and cons of alternative pre-emptive interventions. CREDO is intended to support the increasingly demanding routines and individualised care plans ( workflows ) that are required as cancer care becomes more complex, thereby reducing the clinician s administrative burden and facilitating good communication between the many individuals and specialties involved in the patient s care. Special emphasis is being given to automating information exchange between hospital and primary care settings to keep GPs informed about their patients treatment status, and facilitate their participation in management and follow-up activities. There is some evidence in the literature to suggest that follow-up in primary care settings is acceptable to patients and provides similar outcomes to specialist follow-up in breast cancer, 17 but the higher demands on practitioners will presumably only be acceptable if these are offset by automated communication, record keeping and other benefits of computerisation. Overall, the CREDO trial will seek to address the following questions: 1 Can PROforma-based decision support help bring about improved consistency, quality and safety in clinical decision making and patient management throughout the patient journey? 2 Can the services be offered in a form that is acceptable to and valued by clinicians? 3 Can an integrated care pathway such as CREDO also help to manage the administrative requirements of complex pathways and, through automation, lead to reduced administrative load for clinicians? 4 Can the system help improve the experience for the cancer patient? We have successfully constructed a prototype of a decision support and workflow management system for breast cancer in collaboration with clinical colleagues at Guy s Hospital (London, UK) and Addenbrookes Hospital (Cambridge, UK). We believe that this demonstrates that it is feasible to build a system to support clinical decision making for many of the 65 decisions identified in the care pathways for women with (or at risk of developing) breast cancer, and provide support in an intuitive and clinically acceptable way. A website for the CREDO trial is under construction but an early demonstration version is available. 18 Conclusion This paper has summarised the evidence base for the clinical value of guideline-based decision support applications implemented using the PROforma method. While the majority of the evaluation studies carried out to date (with one significant exception) have been undertaken in laboratory conditions, all have produced positive results. These have led us to initiate the CREDO project: a multi-centre trial, covering primary and secondary care settings, of a complex application for supporting integrated breast cancer care. This trial is expected to yield definitive results on the clinical effectiveness of PROformabased technologies and applications. Comments, suggestions and questions are welcome and can be addressed to credoinfo@acl. icnet.uk. REFERENCES 1 Fox J and Das S. Safe and Sound: artificial intelligence in hazardous applications. CambridgeMA:American Association for Artificial Intelligence and MIT Press, 2000. 2 Sutton DR and Fox J. The syntax and semantics of PROforma. Journal of the American Medical Informatics Association 2003;10(5):433 43. 3 www.infermed.com 4 Walton RT, Gierl C, Yudkin P, Mistry H, Vessey MP and Fox J. Evaluation of computer support for prescribing (CAPSULE) using simulated cases. British Medical Journal 1997;315:791 5. 5 Bury J, Hurt C, Roy A et al. A quantitative and qualitative evaluation of LISA, a decision support system for chemotherapy dosing in childhood acute lymphoblastic leukaemia. Medinfo 2004;11(Pt 1):197 201. 6 Bury J, Hurt C, Roy A et al. LISA: a web-based decisionsupport system for trial management of childhood acute lymphoblastic leukaemia. British Journal of Haematology 2005;129:746 54. 7 www.retrogram.org 8 TuralC,RuizL,HoltzerCet al. Clinical utility of HIV- 1 genotyping and expert advice: the Havana Trial. AIDS 2002;16:209 18. 9 Glasspool DW, Fox J, Castillo FD and Monaghan V. Interactive decision support for medical planning. AIME-03: Proceedings of the 9th Conference on Artificial Intelligence in Medicine in Europe: 335 40. Berlin: Springer, 2003, pp. 335 40. 10 www.openclinical.org/usescenarios.html (demonstration video).

54 J Fox, V Patkar and R Thomson 11 Coulson A, Glasspool DW, Fox J and Emery J. RAGs: a novel approach to computerised genetic risk assessment and decision support from pedigrees. Methods of Information in Medicine 2001;40:315 22. 12 Emery J, Walton R, Murphy M et al. Computer support for interpreting family histories of breast and ovarian cancer in primary care: comparative study with simulated cases. British Medical Journal 2000;321:28 32. 13 Taylor P, Fox J and Pokropek A. The development and evaluation of CADMIUM: a prototype system to assist in the interpretation of mammograms. Medical Image Analysis 1999;3:321 37. 14 Vincent C, Neale G and Woloshynowych M. Adverse events in British hospitals: preliminary retrospective record review. British Medical Journal 2001;322:517 19. 15 www.isabelhealthcare.com/about/presentations/isabel_ Vincent.pdf 16 Commission for Health Improvement and Audit Commission. National Service Framework Assessments No. 1: NHS Cancer Care in England and Wales. December 2001. 17 Grunfeld E, Fitzpatrick R, Mant D et al. Comparison of breast cancer patient satisfaction with follow-up in primary care versus specialist care: results from a randomized controlled trial. British Journal of General Practice 1999;49:705 10. 18 www.acl.icnet.uk/credoweb/ CONFLICTS OF INTEREST PROforma has been used as the interchange format and guideline specification language for a commercial decision support technology: Arezzo from InferMed Ltd. The first author is a stockholder in the company but has no day-to-day involvement in its commercial activities. The other two authors have no connection with the company. ADDRESS FOR CORRESPONDENCE John Fox Cancer Research UK PO Box 123 Lincoln s Inn Fields London WC2A 3PX UK Tel: +44 (0)207 269 3624 Fax: +44 (0)207 269 3186 Email: credoinfo@acl.icnet.uk Presented at the PHCSG Annual Conference, Cambridge, UK, September 2005.