Comparison of long-term clinical outcome with etanercept and adalimumab treatment of rheumatoid arthritis with respect to immunogenicity

Similar documents
Key findings towards optimising adalimumab treatment: the concentration-effect curve

ABSTRACT Background. Methods. Results. Conclusions

Long term measurement of anti-adalimumab using ph-shift-anti-idiotype Antigen binding test shows predictive value and transient antibody formation

Annual Rheumatology & Therapeutics Review for Organizations & Societies

Chapter 4. The clinical relevance of immunogenicity in a long-term follow-up cohort of adalimumab treated rheumatoid arthritis patients

1.0 Abstract. Title. Keywords. Adalimumab, Rheumatoid Arthritis, Effectiveness, Safety. Rationale and Background

Non-commercial use only

The provisional ACR/EULAR definition of remission in RA: a comment on the patient global assessment criterion

The Rate of Decrease in the Disease Activity of Rheumatoid Arthritis during Treatment with Adalimumab Depends on the Dose of Methotrexate

We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists. International authors and editors

CLINICAL BRIEFS. Tumor Necrosis Factor Inhibitors In the Treatment of Chronic Inflammatory Diseases

Supplemental Table 1. Key Inclusion Criteria Inclusion Criterion OPTIMA PREMIER 18 years old with RA (per 1987 revised American College of General

Orencia (abatacept) for Rheumatoid Arthritis. Media backgrounder

Tofacitinib Therapy for Rheumatoid Arthritis: A Direct Comparison Study between Biologic-naïve and Experienced Patients

Division of Rheumatology, Department of Internal Medicine and Gerontology, Jagiellonian University Medical College, Kraków, Poland 4

6 ADRs, 2 LOE. 2 ADRs, 4 LOE. Ineffectiveness 24 ADRs 7, 1 pt for convenience. 48% had antibodies against Infliximab at baseline

Received: 27 May 2003 Revisions requested: 26 Jun 2003 Revisions received: 14 Aug 2003 Accepted: 19 Aug 2003 Published: 1 Oct 2003

Introduction ORIGINAL ARTICLE

Efficacy and Safety of Etanercept in Severely Active Rheumatoid Arthritis: 6-month, Open Label, Prospective, Observational Study from Iraq

Rheumatoid arthritis 2010: Treatment and monitoring

HOW TO CITE THIS ARTICLE:

STUDY. Extent and Clinical Consequences of Antibody Formation Against Adalimumab in Patients With Plaque Psoriasis

New Evidence reports on presentations given at EULAR Tocilizumab for the Treatment of Rheumatoid Arthritis and Juvenile Idiopathic Arthritis

Research Article. Efficacy and safety of abatacept therapy for rheumatoid arthritis in routine clinical practice

Citation for final published version:

Safety and effectiveness of biologic Disease-Modifying Antirheumatic Drugs in elderly patients with rheumatoid arthritis

New Evidence reports on presentations given at EULAR Tocilizumab for the Treatment of Rheumatoid Arthritis

J. van Aken* H. van Dongen* S. le Cessie F.C. Breedveld T.W.J. Huizinga. * both authors contributed equally

Clinical Policy: Certolizumab (Cimzia) Reference Number: PA.CP.PHAR.247 Effective Date: 01/18 Last Review Date: 08/17 Line of Business: Medicaid

Golimumab: In Combination with Methotrexate as Once Monthly Treatment for Moderate to Severe Rheumatoid Arthritis

Recommendations for RA management: what has changed?

Aatke van der Maas 1*, Bart JF van den Bemt 2, Gertjan Wolbink 3, Frank HJ van den Hoogen 1,2, Piet LCM van Riel 4 and Alfons A den Broeder 1

UvA-DARE (Digital Academic Repository) (Anti-)TNF alpha matters in rheumatoid arthritis Wijbrandts, C.A. Link to publication

Open Access. Keywords: TNF blockers, antibodies, adverse events, disease activity, rheumatoid arthritis.

New Evidence reports on presentations given at EULAR Safety and Efficacy of Tocilizumab as Monotherapy and in Combination with Methotrexate

Survival of TNF-alpha antagonists in rheumatoid arthritis: a long-term study

Clinical Policy: Etanercept (Enbrel) Reference Number: PA.CP.PHAR.250 Effective Date: 01/18 Last Review Date: 08/17 Line of Business: Medicaid

Treatment of Rheumatoid Arthritis: The Past, the Present and the Future

The long-term impact of early treatment of rheumatoid arthritis on radiographic progression: a population-based cohort study

Antibodies against antibodies: immunogenicity of adalimumab as a model van Schouwenburg, P.A.

Concordance with the British Society of Rheumatology (BSR) 2010 recommendations on eligibility criteria for the first biologic agent

Bringing the clinical experience with anakinra to the patient

ABSTRACT. DMARD- and biologic-naïve Japanese patients

Abatacept (Orencia) for active rheumatoid arthritis. August 2009

ORIGINAL ARTICLE R. F. VAN VOLLENHOVEN, 1 D. FELSON, 2 V. STRAND, 3 M. E. WEINBLATT, 4 K. LUIJTENS, 5 AND E. C. KEYSTONE 6 INTRODUCTION

Treat - to - Target Pathway Commissioning Chronic and Complex Care MIDLANDS RHEUMATOLOGY & MUSCULOSKELETAL (MSK) COMMISSIONING NETWORK

Canadian Society of Internal Medicine Annual Meeting 2016 Montreal, QC

The new ACR/EULAR remission criteria: rationale for developing new criteria for remission

James R. O Dell, M.D. University of Nebraska Medical Center

Assessing Remission in Rheumatoid Arthritis on the Basis of Patient Reported Outcomes

K. Laas 1, R. Peltomaa 1, K. Puolakka 2, H. Kautiainen 3, M. Leirisalo-Repo 1

1.0 Abstract. Title. Keywords. Rationale and Background

ORENCIA (abatacept) Demonstrates Comparable Efficacy to Humira ( adalimumab

New Evidence reports on presentations given at ACR Improving Radiographic, Clinical, and Patient-Reported Outcomes with Rituximab

RHEUMATOID ARTHRITIS

Chapter 8. Surprising negative association between IgG1 allotype disparity and anti-adalimumab formation: a cohort study

Clinical Policy: Certolizumab (Cimzia) Reference Number: ERX.SPA.167 Effective Date:

Clinical Policy: Certolizumab (Cimzia) Reference Number: ERX.SPA.167 Effective Date:

TNF Inhibitors: Lessons From Immunogenicity

Reviews and Opinions 1 RA. Key words rheumatoid arthritis biologics remission bone joint destruction. rheumatoid arthritis RA 10

Efficacy and Safety of Tocilizumab in the Treatment of Rheumatoid Arthritis and Juvenile Idiopathic Arthritis

The Relationship Between Disease Activity and Radiologic Progression in Patients With Rheumatoid Arthritis

M. Schoels 1, F. Alasti 2, J. S. Smolen 1,2 and D. Aletaha 2*

Comparative effectiveness of biologic monotherapy versus combination therapy for patients with psoriatic arthritis: results from the Corrona registry

Efficacy and Safety of Rituximab in the Treatment of Rheumatoid Arthritis and ANCA-associated Vasculitis

PRODUCT INFORMATION HUMIRA

N Nishimoto, 1 N Miyasaka, 2 K Yamamoto, 3 S Kawai, 4 T Takeuchi, 5 J Azuma 1. Extended report

Optimal responses in disease activity scores to treatment in rheumatoid arthritis: Is a DAS28 reduction of >1.2 sufficient?

Effectiveness and safety profile of leflunomide in rheumatoid arthritis: actual practice compared with clinical trials

Clinical Policy: Etanercept (Enbrel) Reference Number: CP.PHAR.250 Effective Date: 08/16 Last Review Date: 08/17 Line of Business: Medicaid

Description of Study Protocol. Data Collection Summary

Chinese registry of rheumatoid arthritis (CREDIT): I. Introduction and prevalence of remission in Chinese patients with rheumatoid arthritis

The Effects of Golimumab on Radiographic Progression in Rheumatoid Arthritis

Principal Investigator. General Information. Conflict of Interest. Certification Published on The YODA Project (

Characteristics Associated with Biologic Monotherapy Use in Biologic-Naive Patients with Rheumatoid Arthritis in a US Registry Population

Optimal dosage and route of administration of methotrexate in rheumatoid arthritis: a systematic review of the literature

Cross-validation of a clinical pharmacogenetic model to predict the efficacy of MTX monotherapy in established

The Hospital for Sick Children Technology Assessment at SickKids (TASK)

Effective Health Care Program

Open Access NY, USA. Keywords: HAQ, early RA, disease activity, DAS, cohort, correlation, longitudinal.

Clinical Policy: Certolizumab (Cimzia) Reference Number: CP.PHAR.247 Effective Date: 08/16 Last Review Date: 08/17 Line of Business: Medicaid

A. Jamnitski J.H. Levels I.A.M. van den Oever M.T. Nurmohamed. J Rheumatol Jun;40(6):

Adherence to Non-Infused Biologic Medications Used to Treat Rheumatoid Arthritis (PDC-RA)

Review Article Long-Term Drug Survival of TNF Inhibitor Therapy in RA Patients: A Systematic Review of European National Drug Registers

F or the management of rheumatoid arthritis, there is

Treating to the target of remission in early rheumatoid arthritis is cost-effective: results of the DREAM registry

The Journal of Rheumatology Volume 41, no. 2

Integrating Quality Measures for RA into Your Practice: Optimizing Patient Care Using Your Own Data

Grigorios T. Sakellariou, 1 Athanasios D. Anastasilakis, 2 Ilias Bisbinas, 3 Anastasios Gketsos, 4 and Charalampos Berberidis 1. 1.

Annual Rheumatology & Therapeutics Review for Organizations & Societies

New Evidence reports on presentations given at EULAR Rituximab for the Treatment of Rheumatoid Arthritis and Vasculitis

The prevalence and clinical effect of immunogenicity of TNF-α blockers in patients with axial spondyloarthritis

G Wells, 1 J-C Becker, 2 J Teng, 2 M Dougados, 3 M Schiff, 4 J Smolen, 5 D Aletaha, 6 P L C M van Riel 7. Extended report

The BeSt way of withdrawing biologic agents

Criteria Inclusion criteria Exclusion criteria. despite treatment with csdmards, NSAIDs, and/or previous anti-tnf therapy and/or

Vectra DA Blood Test for Rheumatoid Arthritis

MEDICAL POLICY II. III. SUBJECT: MEASUREMENT OF SERUM ANTIBODIES TO INFLIXIMAB, ADALIMUMAB, AND VEDOLIZUMAB

A non-inferiority trial of an attenuated combination strategy ( COBRA-light ) compared to the original COBRA strategy: clinical results after 26 weeks

Transcription:

7 Comparison of long-term clinical outcome with etanercept and adalimumab treatment of rheumatoid arthritis with respect to immunogenicity Charlotte Krieckaert* Anna Jamnitski* Mike Nurmohamed Piet Kostense Maarten Boers Gertjan Wolbink ARTHRITIS & RHEUMATISM Vol. 64, No. 12, December 2012, pp 3850 3855 * both authors contributed equally

110 ABSTRACT Objective To compare rates of sustained low and minimal disease activity and remission according to the American College of Rheumatology/European League Against Rheumatism criteria during 3-year follow-up in rheumatoid arthritis (RA) patients treated with etanercept and adalimumab in routine care. Methods Four hundred seven RA patients previously unexposed to tumor necrosis factor antagonists were treated with etanercept (n=203) or adalimumab (n=204) and assessed at 3- and later 6-month intervals. Treatment allocation was at the discretion of the treating rheumatologist. Clinical parameters were measured at each time point, as were antiadalimumab antibodies in adalimumab-treated patients. Achievement of clinical outcome was defined as the occurrence of sustained (at least 12 consecutive months) low disease activity (28-joint Disease Activity Score [DAS28] <3.2), minimal disease activity (DAS28 <2.6) or ACR/EULAR remission based on the Simplified Disease Activity Index (SDAI). Nonoverlapping response rates were calculated. Results Among the adalimumab group, 13% reached sustained low disease activity but not sustained minimal disease activity, 15% reached sustained minimal disease activity but not sustained remission according to the SDAI and 16% reached sustained ACR/EULAR remission. In the etanercept group corresponding rates were 16%, 11% and 12%, respectively (p=0.42, overall test for linear trend). Adalimumab-treated patients without antiadalimumab antibodies (n=150, [74%]) had the best outcomes and adalimumab-treated patients with anti-adalimumab antibodies the worst, with outcomes in etanercept-treated patients in between (p<0.0001). Differences were most apparent in the SDAI remission and sustained minimal disease activity categories. For example, 40% of anti-adalimumab antibody-negative patients, 23% of etanercept-treated patients and 4% of anti-adalimumab antibody-positive patients achieved at least sustained minimal disease activity. Conclusion Overall, etanercept and adalimumab treatment appear similar in inducing a good long-term clinical outcome. However, in the case of adalimumab this is strongly dependent on the presence or absence of anti-adalimumab antibodies.

Chapter 7 111 INTRODUCTION In the last decade, treatment with tumor necrosis factor (TNF) inhibitors has significantly improved the outcome in patients with rheumatoid arthritis (RA) that has not responded to conventional disease-modifying antirheumatic drug (DMARD) therapy. 1 However, to date there are no reported randomized head-to-head trials comparing efficacy, safety and adherence rates between most frequently used TNF inhibitors (etanercept, adalimumab and infliximab). In meta-analyses, indirect comparison revealed no significant difference between the 3 TNF inhibitors. 2 3 Results from large registries of biologic agent-treated patients are inconsistent. 1 4 In the DREAM (Dutch Rheumatoid Arthritis Monitoring registry) study, 707 patients receiving their first TNF inhibitor were followed up for 1 year. Response to adalimumab and etanercept treatment was similar, but higher than response to infliximab treatment. 4 Results were similar in the Danish DANBIO registry study comprising 2,326 anti TNF-naive patients. 1 However, whereas adalimumab induced higher rates of European League Against Rheumatism (EULAR) response 5 and remission at 6 months compared to etanercept, the latter had a significantly higher drug adherence rate after 4 years compared to both adalimumab and infliximab. 1 In the above studies, pharmacokinetic aspects of the treatment, such as presence of antidrug antibodies, were not taken into account. Recently, we demonstrated that in our adalimumab-treated RA patient cohort the development of anti-adalimumab antibodies significantly influence treatment outcome. 6 Patients who developed anti-adalimumab antibodies during a 3-year time period were less likely to achieve minimal disease activity or remission and treatment failure occurred more often compared with patients without antiadalimumab antibodies. Anti-etanercept antibodies have also been reported in low prevalence, but their clinical relevance has not been demonstrated. 7 8 In contrast, we were unable to detect neutralizing anti-etanercept antibodies; however, higher etanercept serum levels correlated with better clinical outcome. 9 In the current analysis of our cohorts 6 9 we compared the rates of sustained American College of Rheumatology (ACR)/EULAR remission 10, minimal disease activity and low disease activity in etanercept- and adalimumab-treated RA patients during 3-years of followup. In the patients who were treated with adalimumab, we investigated the relationship of these rates to the presence of ant-adalimumab antibodies.

112 PATIENTS AND METHODS Patients The patients for the current analysis were selected from our simultaneously running observational prospective cohorts at the rheumatology department of the Jan van Breemen Research Institute Reade. Two hundred ninety-two patients were included in the etanercept cohort and 272 patients in the adalimumab cohort. 6 9 Treatment allocation was at the discretion of the treating rheumatologist. Briefly, inclusion criteria for these cohorts were as follows: RA according to ARC 1987 criteria 11 and active disease indicated by a 28-joint Disease Activity Score (DAS28) 12 of including methotrexate at a dosage of 25 mg weekly or at the maximally tolerable dosage, according to the Dutch consensus statement on the initiation and continuation of TNF blocking therapy in RA. 13 Only data from anti-tnf-naive patients were used in the current study and therefore 407 patients were enrolled. Two hundred four of these patients were treated with adalimumab and 203 were treated with etanercept. Patients were treated either with adalimumab/etanercept and concomitant DMARD therapy or prednisone or with adalimumab/etanercept monotherapy. All patients received adalimumab 40 mg subcutaneously every other week or etanercept 50 mg subcutaneously weekly or 25 mg subcutaneously twice weekly. The study was approved by the local medical ethics committee and all patients gave written informed consent. Clinical Response Disease activity was assessed, using the DAS28, at baseline and after 4, 16, 28, 40, 52, 78, 104, 130 and 156 weeks of therapy. Achievement of clinical outcome was defined as the occurrence of sustained (at least 12 consecutive months) low disease activity (DAS28 <3.2), minimal disease activity (DAS28 <2.6) or remission based on the Simplified Disease Activity Index (SDAI), 14 according to the ACR/EULAR criteria. Measurement of adalimumab concentrations and antidrug antibodies Serum samples were collected just prior to injection of adalimumab or etanercept at baseline and after 4, 16, 28, 40, 52, 78, 104, 130 and 156 weeks. The presence of antidrug antibodies was determined at all study time points between baseline and 156 weeks. Antiadalimumab antibodies were detected by radioimmunoassay. For the measurement of anti-

Chapter 7 113 etanercept antibodies, several assays were used; these assays have been described previously. 9 Trough serum adalimumab concentrations were measured by enzyme-linked immunosorbent assay. 6 Patients were considered positive for anti-adalimumab antibodies if titer was >12 arbitrary units/ml on at least 1 occasion, in combination with a serum adalimumab level of <5.0 mg/l. The cut off was set at 5 mg/l because higher drug levels interfere with the results of the radioimmunoassay. 15 All baseline samples obtained before the start of treatment were negative. As noted above and previously reported, 9 we were unable to detect (neutralizing) anti-etanercept antibodies in this cohort. Statistical analysis The significance of differences in baseline characteristics between patients in the etanercept and adalimumab groups was assessed by t-test for independent samples, chi-square test or Mann-Whitney U test as appropriate. P values (2-sided) less than 0.05 were considered significant. For patients who did not complete 3 years of follow-up, data through the last available visit were analyzed; no imputation methods were used. To avoid spurious statistical testing we calculated non-overlapping rates of the different outcome categories 16 in etanercept- and adalimumab-treated patients and tested the overall difference in rates by chi-square test for linear trend. Thereafter, post hoc analysis was used to compare 3 groups: etanercept-treated patients, anti-adalimumab antibody-positive adalimumab-treated patients and anti-adalimumab antibody-negative adalimumab-treated patients. Ordinal logistic regression was used to test for potential confounding for the overall difference in nonoverlapping response rates. All baseline characteristics with available information were considered as potential confounders and determined for every analysis. Variables were included in the regression model as confounders if the beta changed by of the variable. SPSS for Windows, version 16.0 was used for statistical analysis. RESULTS Baseline clinical and demographic characteristics of the 407 patients are shown in table 1. C-reactive protein levels were higher in patients starting adalimumab treatment than in those starting etanercept treatment (median [interquartile range] 12 mg/l [6-27] vs. 7 mg/l [3-21]; p=0.003).

114 Of the adalimumab-treated patients 58% (n=119) completed 3 years follow-up, versus 55% (n=112) of the etanercept-treated patients (p=0.528). The median duration of treatment was 143 weeks (interquartile range 43 156) and 130 weeks (interquartile range 28 156) in the adalimumab and etanercept groups, respectively. There were no differences in reasons for treatment discontinuation between treatment groups. Of the total of 176 patients who dropped out of the study, 96 (54%) withdrew due to treatment inefficacy, 31 (18%) because of adverse events, 7 (4%) because of a combination of inefficacy and adverse events and 42 (24%) for other reasons (clinical remission [n=5], relocation [n=15], unwillingness to participate [n=13] and loss to follow-up [n=9]. Table 1. Baseline characteristics of the RA patients studied* Characteristic All (n=407) Etanercept group (n=203) Adalimumab group (n=204) age, mean ± SD years 53 ± 12 53 ± 13 54 ± 12 female, no. (%) 317 (78) 161 (79) 156 (76) disease duration, median (IQR) years 6.8 (2.3-15.0) 6.0 (2.0-14.5) 7 (3-16) IgM-RF positive, no. (%) 285 (70) 140 (69) 145 (71) erosive disease, no. (%) 286 (70) 135 (67) 151 (74) DAS28, mean ± SD 5.2 ± 1.3 5.2 ± 1.3 5.1 ± 1.2 SDAI, mean ± SD 29.3 ± 12.5 29.6 ± 13.3 28.9 ± 11.7 ESR, median (IQR) mm/hour 21 (11-38) 21 (10-38) 22 (11-40) CRP, median (IQR) mg/l 10 (4-22) 7 (3-21) 12 (6-27) no. of prior DMARDs, mean ± SD 2.9 ± 1.2 2.8 ± 1.2 2.9 ± 1.2 current MTX use, no. (%) 319 (78) 162 (80) 157 (77) MTX dosage, mean ± SD mg/week 20.7 ± 6.6 20.6 ± 6.7 20.8 ± 6.6 current prednisone use, no. (%) 122 (30) 57 (28) 65 (32) prednisone dosage, mean ± SD mg/day 7.6 ± (4.1) 7.7 ± (3.6) 7.6 ± (4.6) *RA = rheumatoid arthritis; IQR = interquartile range; IgM-RF = IgM rheumatoid factor; DAS28 = 28- joint Disease Activity Score; SDAI = Simplified Disease Activity Index; ESR = erythrocyte sedimentation rate; CRP = C-reactive protein; DMARDs = disease-modifying antirheumatic drugs; MTX = methotrexate. p=0.003 versus etanercept group. Of the adalimumab-treated patients, 13% (n=27) reached sustained low disease activity but not sustained minimal disease activity, 15% (n=30) reached sustained minimal disease activity but not sustained SDAI remission and 16% (n=32) reached sustained SDAI remission. Of the etanercept-treated patients, 16% (n=32) reached sustained low disease activity but not sustained minimal disease activity, 11% (n=22) reached sustained minimal

Chapter 7 115 disease activity but not sustained SDAI remission and 12% (n=25) reached sustained SDAI remission (p=0.42; Figure 1). Sensitivity analysis was used to test whether the reason for discontinuation corresponded with the clinical outcome. This analysis showed that all patients who discontinued treatment due to inefficacy were classified in the non-response group and all who discontinued due to remission were classified in the sustained SDAI remission group. Fifty-four (26%) of the adalimumab-treated patients developed anti-adalimumab antibodies during treatment. Of these 54 anti-adalimumab antibody-positive patients, 13% (n=7) reached sustained low disease activity but not sustained minimal disease activity, none reached sustained minimal disease activity but not sustained SDAI remission and 4% (n=2) reached sustained SDAI remission. Thirteen percent (n=20), 20% (n=30) and 20% (n=30) of the 150 adalimumab-treated anti-adalimumab antibody-negative patients reached sustained low disease activity but not sustained minimal disease activity, sustained minimal disease activity but not sustained SDAI remission and sustained SDAI remission, respectively. Overall non-overlapping response rates differed significantly between the etanercept group and both the anti-adalimumab antibody-negative and anti-adalimumab antibody-positive groups (figure 2 and table 2). Figure 1. Non-overlapping outcome rates in the adalimumab and etanercept cohorts. There was no statistically significant difference in the rates of the different outcomes between adalimumab- and etanercept-treated patients (p=0.42). ssdai = sustained American College of Rheumatology/European League Against Rheumatism remission based on the Simplified Disease Activity Index; smda = sustained minimal disease activity; slda = sustained low disease activity.

116 Figure 2. Non-overlapping outcome rates in the adalimumab cohort subclassified according to immunogenicity and the etanercept cohort. AAA(-) = anti-adalimumab antibody negative; AAA(+) = antiadalimumab antibody positive (see Figure 1 for other definitions). Table 2. rates of response in the etanercept-treated RA patients and in the adalimumab-treated RA patients who did and those who did not develop anti-adalimumab antibodies* Etanercept group n=203 AAA adalimumab group n=150 AAA + adalimumab group n=54 No sustained response 61% 47% 83% slda but not smda 16% 13% 13% smda but not ssdai 11% 20% 0% ssdai 12% 20% 4% * the overall difference in non-overlapping response rates for the different outcome categories was significant (p<0.0001). RA = rheumatoid arthritis; slda = sustained low disease activity; smda = sustained minimal disease activity; ssdai = sustained American College of Rheumatology/European League Against Rheumatism remission based on the Simplified Disease Activity Index; p=0.006 and p=0.008, respectively, versus the adalimumab-treated patients who were negative and those who were positive for anti-adalimumab antibodies (AAA). Ordinal logistic regression analysis to correct for potential confounders did not change the results (table 3). The odds ratios shown in table 3 indicate the odds for etanercept-treated patients reaching a higher/better clinical response versus the odds of adalimumab-treated patients (with or without anti-adalimumab antibodies) reaching a higher/better clinical

Chapter 7 117 outcome. Overall, treatment response was comparable between etanercept- and adalimumab-treated patients (adjusted odds ratio 0.81 95% confidence interval 0.54-1.21) (which can be interpreted as no difference between etanercept- and adalimumab-treated patients in the odds of achieving a better clinical outcome). However, the presence or absence of anti-adalimumab antibodies in adalimumab-treated patients significantly affected response compared with etanercept-treated patients. Adalimumab-treated patients who were negative for anti-adalimumab antibodies had better treatment responses, whereas those who were positive for anti-adalimumab antibodies had worse responses, compared with etanercept-treated patients. Table 3. Odds ratios for achieving better clinical outcome* Crude OR (95%CI) p Adjusted OR (95%CI) Etanercept vs. adalimumab 0.79 (0.54-1.15) 0.217 0.82 (0.55-1.23) 0.336 Etanercept vs. adalimumab AAA -^ 0.53 (0.35-0.79) 0.002 0.55 (0.37-0.83) 0.004 Etanercept vs. adalimumab AAA +^ 3.32 (1.53-7.21) 0.002 2.62 (1.19-5.75) 0.017 * OR = odds ratio; 95% CI = 95% confidence interval; AAA = anti-adalimumab antibodies. Adjusted for erythrocyte sedimentation rate, C-reactive protein level, Simplified Disease Activity Index and for methotrexate. ^ Adjusted for methotrexate dosage. p DISCUSSION In this cohort study of anti-tnf-naive RA patients, the overall efficacy of etanercept and adalimumab appeared similar. During a follow-up of 3 years, almost half of the patients experienced a period of at least low disease activity that lasted at least one year and 12-16% experienced sustained remission according to the new, strict ACR/EULAR criteria. The previously documented immunogenicity 6 had a major impact on long-term clinical outcome. Adalimumab-treated patients who developed anti-adalimumab antibodies had far less favorable treatment outcomes when compared to etanercept-treated patients, with favorable outcomes mostly limited to sustained low disease activity. The proportion of patients with periods of sustained remission or minimal disease activity was higher in the group of adalimumab-treated patients without anti-adalimumab antibodies compared to the etanercept-treated group. These findings were based on non-overlapping response rates and persisted after adjustment for a broad-range of potential confounders.

118 The stringent ACR/EULAR remission criteria were met in only a small proportion of this population of patients who had received no anti-tnf treatment prior to the study. This indicates that there is a large window of opportunity to increase efficacy of these costly biologic agents. The pharmacokinetics and binding profiles of adalimumab and etanercept are different. 17 The half-life of adalimumab is longer than of etanercept, due to binding of adalimumab to the neonatal Fc receptor, which initiates recycling of adalimumab molecule, 17 18 resulting in higher bioavailability of adalimumab compared to etanercept. However, the formation of anti-adalimumab antibodies is a significant issue: these antibodies have the potential to reduce the efficacy of adalimumab, 6 19 20 whereas etanercept does not appear to generate neutralizing antibodies. 9 In future efforts to develop new TNF inhibitors and other biologic agents with better efficacy, these pharmacologic attributes should be taken into account. In order to increase rates of response to treatment, the search for predictors of response is important. Recently it was shown that higher serum etanercept levels correlated with EULAR response. 9 In that study, female sex, high body mass index and concomitant treatment with low-dose methotrexate were associated with lower etanercept levels and, as a consequence, lower response to etanercept. 9 With regard to anti-adalimumab antibodies, we previously showed in this cohort that the risk of developing these antibodies was increased among patients who had longstanding severe disease and those who did not receive concomitant treatment with DMARDs, including low-dose methotrexate. 6 These findings may become important in the context of personalized medicine and expediency, i.e., targeting costly drugs to patients who are most likely to benefit from the treatment. A limitation of this study is the fact that the cohorts were not designed to directly compare efficacy between adalimumab and etanercept. Moreover, despite the adjustment for known confounders, we were not able to exclude confounding by unmeasured factors, for instance radiologic damage and disability related to this damage. Strengths of the study include the source of the data: 2 large, well-defined, single-center cohorts with identical study design and concurrent enrollment of anti-tnf-naive patients, representing daily practice. In conclusion, the overall efficacy of adalimumab and etanercept in RA patients who have previously not received anti-tnf therapy is similar. Adalimumab appears to be more effective in patients who do not develop antibodies to the drug but less effective in patients who do. These data suggest that, instead of just taking clinical parameters into account, it is necessary to identify pharmacokinetic attributes of the drug, in order to better achieve a personalized medicine approach in the use of these costly therapeutics. Identification of

Chapter 7 119 patients who are at high risk for the development of anti-adalimumab antibodies and investigation of ways to prevent or reduce the effects of immunogenicity are needed in order to optimize treatment.

120 Reference List [1] Hetland ML, Christensen IJ, Tarp U et al. Direct comparison of treatment responses, remission rates, and drug adherence in patients with rheumatoid arthritis treated with adalimumab, etanercept, or infliximab: results from eight years of surveillance of clinical practice in the nationwide Danish DANBIO registry. Arthritis Rheum 2010; 62(1):22-32. [2] Gartlehner G, Hansen RA, Jonas BL et al. The comparative efficacy and safety of biologics for the treatment of rheumatoid arthritis: a systematic review and metaanalysis. J Rheumatol 2006; 33(12):2398-2408. [3] Salliot C, Finckh A, Katchamart W et al. Indirect comparisons of the efficacy of biological antirheumatic agents in rheumatoid arthritis in patients with an inadequate response to conventional disease-modifying antirheumatic drugs or to an anti-tumour necrosis factor agent: a meta-analysis. Ann Rheum Dis 2011; 70(2):266-271. [4] Kievit W, Adang EM, Fransen J et al. The effectiveness and medication costs of three anti-tumour necrosis factor alpha agents in the treatment of rheumatoid arthritis from prospective clinical practice data. Ann Rheum Dis 2008; 67(9):1229-1234. [5] Van Gestel AM, Prevoo ML, van t Hof MA et al. Development and validation of the European League Against Rheumatism response criteria for rheumatoid arthritis: comparison with the preliminary AmericanCollege of Rheumatology and the World Health Organization/International League Against Rheumatism criteria. Arthritis Rheum 1996;39:34 40. [6] Bartelds GM, Krieckaert CL, Nurmohamed MT et al. Development of antidrug antibodies against adalimumab and association with disease activity and treatment failure during long-term follow-up. JAMA 2011; 305(14):1460-1468. [7] Dore RK, Mathews S, Schechtman J et al. The immunogenicity, safety, and efficacy of etanercept liquid administered once weekly in patients with rheumatoid arthritis. Clin Exp Rheumatol 2007; 25(1):40-46. [8] Weinblatt ME, Schiff MH, Ruderman EM et al. Efficacy and safety of etanercept 50 mg twice a week in patients with rheumatoid arthritis who had a suboptimal response to etanercept 50 mg once a week: results of a multicenter, randomized, double-blind, active drug-controlled study. Arthritis Rheum 2008; 58(7):1921-1930. [9] Jamnitski A, Krieckaert CL, Nurmohamed MT et al. Patients non-responding to etanercept obtain lower etanercept concentrations compared with responding patients. Ann Rheum Dis 2012; 71(1):88-91. [10] Felson DT, Smolen JS, Wells G et al. American College of Rheumatology/European League Against Rheumatism provisional definition of remission in rheumatoid arthritis for clinical trials. Arthritis Rheum 2011; 63(3):573-586. [11] Arnett FC, Edworthy SM, Bloch DA et al. The American Rheumatism Association 1987 revised criteria for the classification of rheumatoid arthritis. Arthritis Rheum 1988;31:315 24. [12] Prevoo ML, van t Hof MA, Kuper HH et al. Modified disease activity scores that include twentyeight joint counts: development and validation in a prospective longitudinal study of patients with rheumatoid arthritis. Arthritis Rheum 1995;38:44 8. [13] Furst DE, Keystone EC, Kirkham B et al. Updated consensus statement on biological agents for the treatment of rheumatic diseases, 2008. Ann Rheum Dis 2008; 67 Suppl 3:iii2-25.

Chapter 7 121 [14] Smolen JS, Breedveld FC, Schiff MH et al. A Simplified Disease Activity Index for rheumatoid arthritis for use in clinical practice. Rheumatology (Oxford) 2003; 42:244 57. [15] Hart MH, de Vrieze H, Wouters D et al. Differential effect of drug interference in immunogenicity assays. J Immunol Methods 2011; 372(1-2):196-203. [16] Boers M, Kostense PJ. Non-overlapping American College of Rheumatology response rates: a better way to report response in rheumatoid arthritis clinical trials. Arthritis Rheum 2010; 62(12):3524-3527. [17] Tracey D, Klareskog L, Sasso EH et al. Tumor necrosis factor antagonist mechanisms of action: a comprehensive review. Pharmacol Ther 2008; 117(2):244-279. [18] Lobo ED, Hansen RJ, Balthasar JP. Antibody pharmacokinetics and pharmacodynamics. J Pharm Sci 2004; 93(11):2645-2668. [19] Bartelds GM, Wijbrandts CA, Nurmohamed MT et al. Clinical response to adalimumab: relationship to anti-adalimumab antibodies and serum adalimumab concentrations in rheumatoid arthritis. Ann Rheum Dis 2007; 66(7):921-926. [20] Calabrese LH. Molecular differences in anticytokine therapies. Clin Exp Rheumatol 2003; 21(2):241-248.