The head of a pin can hold five hundred million rhinoviruses (cause of the

Similar documents
Treatment of respiratory virus infection Influenza A & B Respiratory Syncytial Virus (RSV)

Antiviral Drugs. Munir Gharaibeh MD, PhD, MHPE School of Medicine, The University of Jordan November 2018

Antiviral Drugs. Munir Gharaibeh MD, PhD, MHPE School of Medicine, The University of Jordan November 2018

Treatment of respiratory virus infection Influenza A & B Respiratory Syncytial Virus (RSV) modified by Diala Abul Haija

Antiviral Agents DEPARTEMEN FARMAKOLOGI & TERAPEUTIK FK USU. 06 August

Anti-viral drugs. Certain viruses multiply in the cytoplasm but others do in the nucleus Most multiplication take place before diagnosis is made

Anti-viral drugs. Certain viruses multiply in the cytoplasm but others do in the nucleus Most multiplication take place before diagnosis is made

Antiviral Chemotherapy

Structure of viruses

Antiviral Chemotherapy

- They come in all sizes. -- General Structure is similar.

HIV - Life cycle. HIV Life Cyle

Chapter 49. Antiviral Agents

*viruses have no cell wall and made up of nucleic acid components.

Antiviral Drugs Lecture 5

Steps in viral replication (I)

Antiviral Agents I. Tutorial 6

Diagnosis of Viral Infections. Antiviral Agents. Herpes Zoster. Challenges to the Development of Effective Antiviral Agents

Antiviral Agents. Scott M. Hammer, M.D. Challenges to the Development of Effective Antiviral Agents

Viral genetics VIRAL GENETICS

MID 40. Diagnosis of Viral Infections. Antiviral Therapy. Herpes Zoster. Challenges to the Development of Effective Antiviral Agents

HSV DNA replication. Herpesvirus Latency. Latency and Chemotherapy. Human Herpesviruses - subtypes. Acyclovir (acycloguanosine) {Zovirax}

number Done by Corrected by Doctor Ashraf

number Done by Corrected by Doctor

Understanding Viruses CHAPTER 38. Antiviral Agents. Understanding Viruses (cont'd) Viral Infections (cont'd) Viral Infections.

HIV and AIDS. Shan Nanji

ARV Mode of Action. Mode of Action. Mode of Action NRTI. Immunopaedia.org.za

MedChem 401~ Retroviridae. Retroviridae

Continuing Education for Pharmacy Technicians

number Done by Corrected by Doctor مالك الزحلف

HIV epidemiology since HIV in the United States. HIV Transmission

HIV medications HIV medication and schedule plan

THE HIV LIFE CYCLE. Understanding How Antiretroviral Medications Work

Year 2002 Paper two: Questions supplied by Jo 1

Antivirals. Lecture 20 Biology 3310/4310 Virology Spring 2017

19 Viruses BIOLOGY. Outline. Structural Features and Characteristics. The Good the Bad and the Ugly. Structural Features and Characteristics

Non HIV Anti Virals Prof. Mary Klotman

Size nm m m

HIV Drugs and the HIV Lifecycle

5/6/17. Diseases. Disease. Pathogens. Domain Bacteria Characteristics. Bacteria Viruses (including HIV) Pathogens are disease-causing organisms

B. Incorrect! Peginterferon α-2a is used for the treatment of chronic hepatitis B and may be preferable to interferon- α.

The chemical name of acyclovir, USP is 2-amino-1,9-dihydro-9-[(2-hydroxyethoxy)methyl]-6Hpurin-6-one; it has the following structural formula:

11/15/2011. Outline. Structural Features and Characteristics. The Good the Bad and the Ugly. Viral Genomes. Structural Features and Characteristics

Influenza viruses. Virion. Genome. Genes and proteins. Viruses and hosts. Diseases. Distinctive characteristics

MONTGOMERY COUNTY COMMUNITY COLLEGE CHAPTER 13: VIRUSES. 1. Obligate intracellular parasites that multiply in living host cells

Viral reproductive cycle

POST-EXPOSURE PROPHYLAXIS, PRE-EXPOSURE PROPHYLAXIS, & TREATMENT OF HIV

PAEDIATRIC HIV INFECTION. Dr Ashendri Pillay Paediatric Infectious Diseases Specialist

ACQUIRED IMMUNODEFICIENCY SYNDROME AND ITS OCULAR COMPLICATIONS

Principles of Antiretroviral Therapy

Antifungals, antivirals, antiprotozoals, and anthelmintics

Antiviral Therapies in Children: Has Their Time Arrived?

8/13/2009. Diseases. Disease. Pathogens. Domain Bacteria Characteristics. Bacteria Shapes. Domain Bacteria Characteristics

Human Immunodeficiency Virus

Michał Karbownik Department of Pharmacology Medical University of Łódź

Virology Introduction. Definitions. Introduction. Structure of virus. Virus transmission. Classification of virus. DNA Virus. RNA Virus. Treatment.

Structured Treatment Interruption in HIV Positive Patients. Leah Jackson, BScPhm Pharmacy Resident HIV Rotation January 23, 2007

Fayth K. Yoshimura, Ph.D. September 7, of 7 HIV - BASIC PROPERTIES

AP Biology. Viral diseases Polio. Chapter 18. Smallpox. Influenza: 1918 epidemic. Emerging viruses. A sense of size

I. Bacteria II. Viruses including HIV. Domain Bacteria Characteristics. 5. Cell wall present in many species. 6. Reproduction by binary fission

Antiviral Agents, chapter 43

Herpesviruses. Virion. Genome. Genes and proteins. Viruses and hosts. Diseases. Distinctive characteristics

0.14 ( 0.053%) UNAIDS 10% (94) ( ) (73-94/6 ) 8,920

Immunodeficiencies HIV/AIDS

ACIVIR DT Tablets (Aciclovir)

Antiretroviral Therapy During Pregnancy and Delivery: 2015 Update

ZOVIRAX ORAL FORMULATIONS GlaxoSmithKline

Bacteriophage Reproduction

Descovy. (emtricitabine, tenofovir alafenamide) New Product Slideshow

Lecture 2: Virology. I. Background

Some living things are made of ONE cell, and are called. Other organisms are composed of many cells, and are called. (SEE PAGE 6)

gram neg.(semisynthetic) Bacteria Drugs that inhibit cell wall synthesis Drug Action Organisms Comments Spectrum of Action Mycobacterium

Chapter 13 Viruses, Viroids, and Prions. Biology 1009 Microbiology Johnson-Summer 2003

Multiple Choice Questions - Paper 1

Viral Genetics. BIT 220 Chapter 16

Treatment Op+ons for Chronic Hepa++s B. Judith Feinberg, MD Project ECHO Jan. 19, 2017

Medical Virology. Herpesviruses, Orthomyxoviruses, and Retro virus. - Herpesviruses Structure & Composition: Herpesviruses

Nucleic acid: singled stranded, double stranded, RNA, or DNA, linear or circular. Capsid: protein coat that is most of the mass of the virus.

Human Herpes Viruses (HHV) Mazin Barry, MD, FRCPC, FACP, DTM&H Assistant Professor and Consultant Infectious Diseases KSU

Northwest AIDS Education and Training Center Educating health care professionals to provide quality HIV care

LESSON 4.4 WORKBOOK. How viruses make us sick: Viral Replication

Chapter 19: Viruses. 1. Viral Structure & Reproduction. 2. Bacteriophages. 3. Animal Viruses. 4. Viroids & Prions

Human Immunodeficiency Virus. Acquired Immune Deficiency Syndrome AIDS

VZV, EBV, and HHV-6-8

Chapter 19: Viruses. 1. Viral Structure & Reproduction. What exactly is a Virus? 11/7/ Viral Structure & Reproduction. 2.

Antibacterials and Antivirals

LESSON 4.6 WORKBOOK. Designing an antiviral drug The challenge of HIV

Chapter 08 Lecture Outline

VALCIVIR Tablets (Valacyclovir hydrochloride)

Human Herpesviruses. VZV, EBV, and HHV-6-8. The rash of VZV is vesicular. MID 34

BUGS and DRUGS Part 2 March 13, 2013 Marieke Kruidering- Hall

Efavirenz, stavudine and lamivudine

Vemlidy. (tenofovir alafenamide) New Product Slideshow

HIV & AIDS: Overview

TRUVADA for a Pre-exposure Prophylaxis (PrEP) Indication. Training Guide for Healthcare Providers

PHARMACOKINETICS OF ANTIRETROVIRAL AND ANTI-HCV AGENTS

Antiviral Therapy: Current Concepts and Practices

HIV Update Objectives. Epidemiology. Epidemiology, Transmission and Natural History. Transmission Risk by Exposure. Transmission 9/29/2014

Introduction to viruses. BIO 370 Ramos

Transcription:

The head of a pin can hold five hundred million rhinoviruses (cause of the common cold). One sneeze can generate an aerosol of enough cold viruses to infect thousands of people!

DNA-containing Viruses: Herpes Virus Herpes viruses are found in a wide range of hosts; at least seven different species are known to infect humans, including herpes simplex. Hepatitis B Hepatitis B virus causes both acute and chronic liver infections in humans. An unusual feature of these infections are the length of time they last; up to several months in acute infections, and many years (or for life) in chronic infections.

RNA-containing Viruses Influenza causes acute upper respiratory disease in humans, usually accompanied by a fever. Enterovirus belong to one of the largest families of viruses; others in this family include rhinoviruses (which cause the common cold), cardioviruses, apthoviruses and hepatoviruses (which cause hepatitis A). Enteroviruses usually reproduce in the intestine..

Antiviral chemotherapy Virus Structure and Replication Viruses are the smallest infective agent, effectively consisting of nucleic acid (DNA or RNA) enclosed in a protein coat. Viruses are intracellular parasites with no, or little, metabolic machinery of their own. They have to borrow the biochemistry of the host cell to succeed and grow (this is what makes selective antiviral therapy so difficult).

Antiviral chemotherapy The virus attaches to specific receptors on the host cell surface which are normal membrane components. Usually ion channels, neurotransmitter receptors. The receptor/virus complex enters the cell by receptor-mediated endocytosis during which the virus coat may be removed. The nucleic acid of the virus then hijacks the cellular machinery for replicating viral nucleic acids and proteins for the manufacture of new virus particles.

Antiviral chemotherapy The genome of DNA viruses enters the cell nucleus and uses host RNA polymerase to produce virusspecific proteins. After assembly of coat proteins around the viral DNA, complete virions are released by budding or after cell lyses. Generally, RNA virus replication occurs solely in the cytoplasm and doesn t involve the cellular nucleus. (influenza are an exception since they have a requirement for active cellular transcription).

Treatment of Herpesviruses Varicella-zoster, Cytomegalavirus, Herpes simplex

Anti-metabolites False DNA building blocks or nucleosides. A nucleoside consists of a nucleobase and the sugar deoxyribose. In antimetabolites, one of the components is defective. In the body, the abnormal nucleosides undergo bioactivation by attachment of three phosphate residues Acyclovir has both specificity of the highest degree and optimal tolerability, because it undergoes bioactivation only in infected cells, where it preferentially inhibits viral DNA synthesis.

Acyclovir A virally coded thymidine kinase (specific to H.simplex and varicella-zoster virus) performs the initial phosphorylation step; the remaining two phosphate residues are attached by cellular kinases. Acyclovir triphosphate inhibits viral DNA polymerase resulting in chain termination. It is 30-fold more potent against the virus enzyme than the host enzyme. Acyclovir is active against herpes simplex and varicellarzoster virus. It is rapidly broken down in cells, is orally active and is relatively non-toxic systemically.

Acyclovir and Valacyclovir (pro-drug, better availability) A Guanine analogue with antiviral for Herpes group only Acyclovir AcycloGMP AcycloGTP Thymidine kinase Cellular kinases Viral 200x affinity of mammalian 1. Inhibits viral DNA polymerase selectively 2. Incorporated into DNA and terminates synthesis Resistance: 1. activity of thymidine kinase 2. altered DNA polymerase

Acyclovir is used to treat: Acyclovir Herpes simplex infections (oral labialis, genital herpes, and herpes encephalitis). Chickenpox in immuno-compromised patients. Prophylactically in patients treated with immunosuppressant drugs or radiotherapy who are in danger of infection by reactivation of latent virus. Prophylactically in patients with frequent recurrences of genital herpes.

Oral acyclovir has multiple uses. In first episodes of genital herpes, oral acyclovir shortens the duration of symptoms by approximately 2 days, the time to lesion healing by 4 days, and the duration of viral shedding by 7 days. In recurrent genital herpes, the time course is shortened by 1 2 days. Oral acyclovir is only modestly beneficial in recurrent herpes labialis. Topical acyclovir cream is substantially less effective than oral therapy for primary HSV infection. It is of no benefit in treating recurrent genital herpes.

Acyclovir Common adverse drug reactions are nausea, vomiting, diarrhea and headache. Additional common adverse effects, when acyclovir is administered IV, include : Renal insufficiency and neurologic toxicity However, uncommon with adequate hydration and avoidance of rapid infusion rate.

Docosanol Docosanol is a saturated 22-carbon aliphatic alcohol that inhibits fusion between the plasma membrane and the HSV envelope, thereby preventing viral entry into cells and subsequent viral replication. Topical docosanol 10% cream is available without a prescription; application site reactions occur in approximately 2% of patients. When applied within 12 hours of the onset of prodromal symptoms, five times daily, median healing time was shortened by 18 hours compared with placebo in recurrent orolabial herpes.

Ganciclovir Mechanism like Acyclovir Active against all Herpes viruses including CMV (100 time than acyclovir) Low oral bioavailability given I.V. Most common adverse effect: bone marrow suppression (leukopenia 40%, thrombocytopenia 20%) and CNS effects (headache, behavioral, psychosis, coma, cnvulsions). 1/3 of patients have to stop because of adverse effects Drug of choice for CMV infections: retinitis, pneumonia, colitis.

Foscarnet An inorganic pyrophosphate analog Active against Herpes (I, II, Varicella, CMV), including those resistant to Acyclovir and Ganciclovir. Direct inhibition of DNA polymerase and Reverse Transcriptase Nephrotoxicity (25%) most common side effect Use: (1) CMV retinitis and other CMV infections instead of ganciclovir or.. (2) H. simplex resistant to Acyclovir. (3) HIV.

Vidarabine Inhibits virally induced DNA polymerase more strongly than it does the endogenous enzyme. Vidarabine is a chain terminator and is active against herpes simplex, varicella zoster, and vaccinia are especially sensitive. Its use is now limited to topical treatment of severe herpes simplex infection. Before the introduction of the better tolerated acyclovir, vidarabine played a major part in the treatment of herpes simplex encephalitis. Its clinically used in treatment of immunocompromised patients with herpetic and vaccinia keratitis and in keratoconjunctivitis.

Treatment of respiratory virus infection Influenza A & B Respiratory suncytial virus (RSV)

Attachment Inhibitors The primary antiviral mechanism of Amantadine and Rimantadine is to block the viral membrane matrix protein, which function as an ion channel that is required for the fusion of the viral membrane with the cell membrane. Their clinical use is limited to Influenza A infection. They are very effective in preventing infection if the treatment is begun at the time of-or prior to- exposure to the virus.

Attachment Inhibitors Side effects of Amantadine are mainly associated with the CNS, such as ataxia and dizziness. While Rimantadine produce little CNS effect because it does not penetrate the blood brain barrier. Both should be used with caution in pregnant and nursing women.

Neuroaminidase inhibitors Oseltamivir and Zanamavir Mechanism of action Viral neuraminidase catalyzes cleavage of terminal sialic acid residues attached to glycoproteins and glycolipids, a process necessary for release of virus from host cell surfaces. Neuraminidase inhibitors thus prevent release of virions from infected cell 27

Neuroaminidase inhibitors Administration of neuraminidase inhibitors is a treatment that limits the severity and spread of viral infections. Neuraminidase inhibitors are useful for combating influenza infection: zanamivir, administered by inhalation; oseltamivir, administered orally. Toxicities Exacerbation of reactive airway disease by zanamavir Nausea and vomiting for oseltamivir

oseltamivir Early administration is crucial because replication of influenza virus peaks at 24 72 hours after the onset of illness. When a 5-day course of therapy is initiated within 36 48 hours after the onset of symptoms, the duration of illness is decreased by 1 2 days compared with those on placebo, severity is diminished, and the incidence of secondary complications in children and adults decreases. Once-daily prophylaxis is 70 90% effective in preventing disease after exposure.

Ribavirin It is an antimetabolite that inhibits influenza RNA polymerase non-competitively in vitro but poorly in vivo. An aerosol form is used against RSV (respiratory syncytial virus) and the drug is used intravenously against Lassa fever. Adverse reactions includes: Anemia due to hemolysis and bone marrow suppression

Antiretroviral agents

HIV Life Cycle Step 1: Fusion Step 3: Integration HIV reverse transcriptase Step 5: Packaging and Budding Step 2: Transcription Step 4: Cleavage

Azidothymidine (Zidovudin(AZT)) It is a potent antagonist of reverse transcriptase, It is a chain terminator. Cellular enzyme phosphorylate AZT to the triphosphate form which inhibits RT and causes chain termination It is widely use in the treatment of AIDS (The only clinical use). AZT is toxic to bone marrow, for example, it cause severe anaemia and leukopenia In patient receiving high dose. Headache is also common

Didanosine (Dideoxyinosine) Didanosine act as chain terminators and inhibitors of reverse transcriptase because they lack a hydroxyl group. is phosphorylated to the active metabolite of dideoxyadenosine triphosphate It is used in the treatment of AIDS (second drug approved to treat HIV-1 infection). They are given orally, and their main toxicities are pancreatitis, peripheral neuropathy, GI disturbance, bone marrow depression.

Abacavir Abacavir is a guanosine analog (Figure 49 2) that is well absorbed following oral administration (83%) and is unaffected by food. The serum half-life is 1.5 hours. The drug undergoes hepatic glucuronidation and carboxylation. Cerebrospinal fluid levels are approximately one third those of plasma. Abacavir is often co-administered with lamivudine, and a once-daily, fixeddose combination formulation is available. Abacavir is also available in a fixed-dose combination with lamivudine and zidovudine. High-level resistance to abacavir appears to require at least two or three concomitant mutations and thus tends to develop slowly. Hypersensitivity reactions, occasionally fatal, have been reported in up to 8% of patients receiving abacavir and may be more severe in association with once-daily dosing.

All NRTIs may be associated with mitochondrial toxicity, probably owing to inhibition of mitochondrial DNA polymerase gamma. Less commonly, lactic acidosis with hepatic steatosis may occur, which can be fatal. NRTI treatment should be suspended in the setting of rapidly rising aminotransferase levels, progressive hepatomegaly, or metabolic acidosis of unknown cause. The thymidine analogs zidovudine and stavudine may be particularly associated with dyslipidemia and insulin resistance. Also, some evidence suggests an increased risk of myocardial infarction in patients receiving abacavir or didanosine; this bears further investigation.

Non-nucleoside Non-competitive RT inhibitors (1) bind to viral RT, inducing conformational changes that result in enzyme inhibition (2) Combination therapy with AZT (resistant mutants rapidly emerge, little use in monotherapy) (3) Resistance mutations will be at different sites Generic Name Trade Name Usual Dose Nevirapine Viramune 200 mg QD x14 days, then 200 mg BID Delavirdine Rescriptor 400 mg TID Efavirenz Sustiva TM 600 mg QD 37

Non-nucleoside Non-competitive RT inhibitors Nevirapine Approved for AIDS patients, Good blocker of mother to child transmission (perinatal - breast feeding) Single dose at delivery reduced HIV transmission by 50% Single dose to baby by 72 hours NNRTI s: Adverse Effects RASH!! CNS effects (e.g. sedation, insomnia, vivid dreams, dizziness, confusion, feeling of disengagement ) 38

Rash Rash, usually a maculopapular eruption that spares the palms and soles, occurs in up to 20% of patients, usually in the first 4 6 weeks of therapy. Although typically mild and self-limited, rash is doselimiting in about 7% of patients. Women appear to have an increased incidence of rash. When initiating therapy, gradual dose escalation over 14 days is recommended to decrease the incidence of rash.

Protease Inhibitors HIV Protease Inhibitors; have significantly alter the course of the HIV disease. All are reversible inhibitors of HIV Protease-the viral enzyme responsible for cleavage of viral polyprotein into number of essential enzymes (reverse transcription, polymerase). Examples are : Saquinavir, and Ritonavir. They are orally active, side effects include GI disturbances and hyperglycemia, interact with cytochrome P450. buffalo hump

Anti-Viral Chemotherapy GAG/POL polyprotein GAG Integrase Polymerase Protease Retrovirus --- HIV 41

Anti-Viral Chemotherapy GAG Integrase Polymerase Protease folds and cuts itself free 42

Anti-Viral Chemotherapy GAG Integrase Polymerase Protease cuts at a site between the integrase and polymerase 43

Anti-Viral Chemotherapy GAG Integrase polymerase 44

New targets Agents that block fusion of HIV with the host cell by interacting with gp41 Enfuvirtide is Peptides derived from gp41 can inhibit infection, probably by blocking the interaction of gp41 with cell membrane proteins during fusion. Raltegravir (Integrase Inhibitor) targets integrase, an HIV enzyme that integrates the viral genetic material into human chromosomes, a critical step in the pathogenesis of HIV. Maraviroc It blocks the interaction between chemokine receptor CCR5 and HIV gp120.

(HAART) Highly active anti-retroviral therapies Combination therapies (triple drug cocktail, HAART) are very effective and can reduce viral load in the patient below detectable levels implying that HIV replication has ceased. examples (1) NNRTI Based Regimens (1-NNRTI + 2NRTIs) (2) PI-Based Regimens (1 or 2 PIs + 2 NRTIs) The trouble with all of these complicated drug regimens is compliance. The components of HAART must be taken at different times. Non-compliance with protease inhibitor therapy is of serious concern as the new virus that emerges is resistant to the inhibitor being taken and also resistant to other protease inhibitors.

Figure 2. Timeline of evolution of HBV therapies, United States. Anti-Hepatitis B Virus Agents

Interferons Interferon Alfa Endogenous proteins induce host cell enzymes that inhibit viral RNA translation and cause degradation of viral mrna and trna. Bind to membrane receptors on cell surface, May also inhibit viral penetration, uncoating, mrna synthesis, and translation, and virion assembly and release. Pegylated interferon Alfa A linear or branced polyethylene gylcol (PEG) moiety is attached covalently to interferon Increased half-life and steady drug concentrations

Interferon, mechanism of action: 1) binds to cell surface receptors 2) induces expression of translation inhibitory protein (TIP) 3) TIP binds to ribosome, inhibits host expression of viral proteins

Interferons a limited treatment course (ie, only 1 year of therapy), lack of resistance development. Disadvantages include a high rate of treatment-related adverse events. flu-like symptoms: increased body temperature, feeling ill, fatigue, headache, muscle pain.

Anti-Hepatitis B Virus Agents. Entecavir and tenofovir have very strong resistance profiles in treatment-naive patients. Disadvantages include the need to continue therapy indefinitely and the potential for resistance development.

Anti-Hepatitis C Virus Agents Approved Interferon-alpha (pegylated) Ribavirin In development Protease inhibitors Polymerase inhibitors

In pregnancy, a regimen of oral zidovudine beginning between 14 and 34 weeks of gestation, intravenous zidovudine during labor, and zidovudine syrup to the neonate from birth through 6 weeks of age has been shown to reduce the rate of vertical (motherto-newborn) transmission of HIV by up to 23%.