Technical tips and procedural steps in endovascular aortic aneurysm repair with concomitant recanalization of iliac artery occlusions

Similar documents
Chungbuk Regional Cardiovascular Center, Division of Cardiology, Departments of Internal Medicine, Chungbuk National University Hospital Sangmin Kim

Hypogastric Preservation Using Retrograde Endovascular Bypass

Challenges. 1. Sizing. 2. Proximal landing zone 3. Distal landing zone 4. Access vessels 5. Spinal cord ischemia 6. Endoleak

DIFFICULT ACCESS REMAINS A CONTRAINDICATION FOR EVAR APOSTOLOS K. TASSIOPOULOS, MD, FACS PROFESSOR AND CHIEF DIVISION OF VASCULAR SURGERY

SANWICH TECHNIQUE TO REDUCE COMPLICATIONS WHEN TREATING BILATERAL INTERNAL ILIAC ARTERY

Obesity, Scaring, Access in EVAR. Kiskinis D, Melas N, Ktenidis K. 1 st Department of Surgery Aristotle University of Thessaloniki, Greece

Accessi Iliaci Ostili

Retrograde Embolization of a Symptomatic Hypogastric Artery Aneurysm

Bell-bottoms, trouser grafts and crossovers: Maintaining pelvic perfusion with endovascular repair of aorto bi-iliac aneurysms

Preserved Pelvic Circulation After Stent-Graft Treatment of Complex Aortoiliac Artery Aneurysms: A New Approach

Bilateral use of the Gore IBE device for bilateral CIA aneurysms and a first interim analysis of the prospective Iceberg registry

FLEXIBLE, BALOON EXPANDABLE

Endovascular and Hybrid Treatment of TASC C & D Aortoiliac Occlusive Disease

My personal experience with INCRAFT in standard and challenging cases

Anatomical challenges in EVAR

In the United States, an estimated 46 million people

Modified candy-plug technique for chronic type B aortic dissection with aneurysmal dilatation: a case report

Step by step Hybrid procedures in peripheral obstructive disease. Holger Staab, MD University Hospital Leipzig, Germany Clinic for Vascular Surgery

Talent Abdominal Stent Graft

Kansai Rosai Hospital Cardiovascular Center

Increased Flexibility of AneuRx Stent-Graft Reduces Need for Secondary Intervention Following Endovascular Aneurysm Repair

Internal iliac artery aneurysms: When to intervene and outcomes of EVAR

What's on the Horizon for AAA: Unilateral & Percutaneous, "UP-EVAR" System Zoran Rancic M.D., Ph.D.

History of the Powerlink System Design and Clinical Results. Edward B. Diethrich Arizona Heart Hospital Phoenix, AZ

Durable outcomes. Proven performance.

Endovascular intervention for patients with femoro-popliteal and aorto-iliac TASC D lesions

Bifurcated system Proximal suprarenal stent Modular (aortic main body and two iliac legs) Full thickness woven polyester graft material Fully

Management of the hypogastric artery during EVAR. Francesco Torella Liverpool Vascular & Endovascular Service

Jean M Panneton, MD Professor of Surgery Program Director Vascular Surgery Chief EVMS. Arch Pathology: The Endovascular Era is here

Applying Sandwich Techniques for Complex Aortoiliac and Thoracoabdominal Aortic Aneurysms

The Distal Seal Zone in AAA Repair A facet of EVAR that is not to be overlooked.

Disclosures. Iliac Stenting: How could I mess this up? Surgery vs. Stenting: Gold Standard?

Case Report Early and Late Endograft Limb Proximal Migration with Resulting Type 1b Endoleak following an EVAR for Ruptured AAA

One Year Experience of Iliac Bifurcated Device for Aortoiliac Aneurysm in a Korean Single Center

Hybrid repair of an aortocaval fistula and inferior vena cava external compression caused by an inflammatory aortoiliac aneurysm: a case study

Nellix Endovascular System: Clinical Outcomes and Device Overview

The Ventana Off-the-Shelf Graft for Pararenal AAA. Andrew Holden Associate Professor of Radiology Auckland Hospital

RadRx Your Prescription for Accurate Coding & Reimbursement Copyright All Rights Reserved.

How to do AAA EVAR: Tips and Tricks

Free Esophageal Perforation Following Hybrid Visceral Debranching and Distal Endograft Extension to Repair a Ruptured Thoracoabdominal Aortic

EVAR replaced standard repair in most cases. Why?

Scientific Exhibit Authors: J. M. M. Sanchis Garcia, J. Palmero da Cruz, J. Guijarro

Critical limb ischemia due to an occlusion of an aorto-biiliac prothesis step by step case presentation and decision making

Chimney endovascular aneurysm sealing (ch-evas) for ruptured abdominal aortic aneurysms (AAA) due to type Ia endoleak following failed EVAS

Endovascular Repair o Abdominal. Aortic Aneurysms. Cesar E. Mendoza, M.D. Jackson Memorial Hospital Miami, Florida

CHALLENGING ILIAC ACCESSES AND THROMBOSIS PREVENTION

Chimney technique combined with aortoiliac stenting for the treatment. disease. of juxtarenal aortoiliac occlusive

How effective is preservation when viewed through a clinical and economic lens?

Expanding to every demand: The GORE VIABAHN VBX Stent Graft

Endovascular options of treating iliac aneurysms

UTILIZZO DI AFX (ENDOLOGIX) STENTGRAFT IN PAZIENTI CON PATOLOGIA AORTO-ILIACA TASC-D E ANEURISMA DELL AORTA ADDOMINALE

Case Report A Case of Successful Coil Embolization for a Late-Onset Type Ia Endoleak after Endovascular Aneurysm Repair with the Chimney Technique

Endovascular Treatment of Aortoiliac Occlusive Disease: What s in My Toolbox in Jade S. Hiramoto, MD, MAS UCSF Vascular Symposium April 20, 2018

Ancillary Components with Z-Trak Introduction System

Prospective Study of the E-liac Stent Graft System in Patients with Common Iliac Artery Aneurysm: 30-Day Results

Peripheral Arterial Disease: A Practical Approach

Young-Guk Ko, M.D. Severance Cardiovascular Hospital, Yonsei University Health System,

Robert F. Cuff, MD FACS SHMG Vascular Surgery

Durability of The Endurant Stent-Graft through 5 Years

CUSTOM-MADE SCALLOPED THORACIC ENDOGRAFTS IN DIFFERENT HOSTILE AORTIC ANATOMIES

Hybrid Procedures for Peripheral Obstructive Disease - Step by Step -

peripheral arterial disease; PAD endovascular therapy; EVT

BC Vascular Day. Contents. November 3, Abdominal Aortic Aneurysm 2 3. Peripheral Arterial Disease 4 6. Deep Venous Thrombosis 7 8

Percutaneous Approaches to Aortic Disease in 2018

Case Report Late Type 3b Endoleak with an Endurant Endograft

Safety of coil embolization of the internal iliac artery in endovascular grafting of abdominal aortic aneurysms

LOWERING THE PROFILE RAISING THE BAR

Zenith Renu AAA Converter Graft. Device Description Planning and Sizing Deployment Sequence Patient Follow-Up

Outcomes of endovascular repair of isolated iliac artery aneurysms. A. Stella

stent placement for TASC-II C/D disease compared with TASC-II A/B.

Disclosures. EVAR follow-up: actual recommendation. EVAR follow-up: critical issues

Endovascular Aneurysm Sealing System for Treating Abdominal Aortic Aneurysms: Early Outcomes from a Single Center

An Overview of Post-EVAR Endoleaks: Imaging Findings and Management. Ravi Shergill BSc Sean A. Kennedy MD Mark O. Baerlocher MD FRCPC

Technique and Tips for Complicated AAA Cases with Stent Graft

Right Choice for Right Angles

Endovascular management of iliac aneurysmal disease with hypogastric artery preservation

Endovascular Repair of Combined Occluded Femoral and Popliteal Arteries

Why Nellix? Treating Concomitant Common Iliac Aneurysms

Clinical trial and real-world outcomes of an endovascular iliac aneurysm repair with the GORE Iliac Branch Endoprosthesis (IBE)

Lessons learned from Ch-EVAR for the treatment of. Miltos Matsagkas MD, PhD, FEBVS Professor of Vascular Surgery University of Thessaly

US clinical trial update on the Gore Excluder iliac branch endoprosthesis (IBE)

Vascular V12. Covered Stent. The New Standard of Care

Access More Patients. Customize Each Seal.

Abdominal Aortic Aneurysm 가천대길병원 이상준

Current Status of Abdominal Aortic Stent Grafts. John R. Laird Professor of Medicine Director of the Vascular Center UC Davis Medical Center

Endovascular Treatment of Symptomatic Abdominal Aortic Aneurysms

RadRx Your Prescription for Accurate Coding & Reimbursement Copyright All Rights Reserved.

A New EVAR Device for Infrarenal AAAs

Cook Medical. Zenith Flex AAA Endovascular Graft with Z-Trak Introduction System Physician Training

Appropriate Device Selection for Endovascular Procedures

Early Experience with the GORE EXCLUDER Iliac Branch Endoprosthesis

Endovascular Repair of Aortic Arch/Thoracic Aneurysms: Bolton RelayBranch Device

EndoVascular Aneurysm Sealing (EVAS) with Nellix

Abdominal Aortic Aneurysms. A Surgeons Perspective Dr. Derek D. Muehrcke

Tips for Delayed Open Conversion in Patients with a Type III Endoleak after Endovascular Aortic Aneurysm Repair

Copyright HMP Communications

OHTAC Recommendation

Citation for published version (APA): Dijkstra, M. L. (2018). Advances in complex endovascular aortic surgery. [Groningen]: University of Groningen.

Endovascular Abdominal Repair: Technical Tips to Achieve Best Results and Avoid Disaster

Kissing Stents in Treatment of Chronic Total Occlusion (CTO) of Aortic Bifurcation

Transcription:

Uchiyamada et al. SpringerPlus 2013, 2:605 a SpringerOpen Journal TECHNICAL NOTE Technical tips and procedural steps in endovascular aortic aneurysm repair with concomitant recanalization of iliac artery occlusions Jorge Senkichi Uchiyamada 1, Shigeo Ichihashi 1*, Shinichi Iwakoshi 1, Hirofumi Itoh 1, Nobuoki Tabayashi 2 and Kimihiko Kichikawa 1 Open Access Abstract Purpose: The goal of this paper is to describe our technical strategy and procedural steps for endovascular aneurysm repair (EVAR) when performed with concomitant recanalization of the iliac artery occlusion. Materials and methods: Three octogenarians having abdominal aortic aneurysm (AAA)/common iliac artery aneurysms (CIAA) with unilateral external iliac artery (EIA) occlusion underwent EVAR with recanalization of the occluded iliac arteries. Crossing the iliac artery occlusions was attempted in a retrograde approach using a 0.035 inch-hydrophilic guidewire. After passage of a guidewire, predilation was performed using 6mm balloon. Then a 12-Fr sheath was advanced via the occluded EIA for contralateral iliac limb delivery. Internal iliac artery embolization was subsequently performed as needed. A self-expanding stent was then placed in the occluded EIA after EVAR. Results: Recanalization of the EIA occlusion, followed by stentgraft delivery through the occlusion and EVAR, was successfully performed in all three patients. Penetration of the occluded EIA was successfully achieved only by retrograde approach in two patients, and by bidirectional approach in the other patient. No perioperative complication or death occurred. Postoperative CT showed no type I or III endoleaks in the aneurysms and patent iliac arteries in all patients. Conclusions: Total endovascular repairs were successfully performed for three patients with AAA and concomitant unilateral EIA occlusions. The proposed steps described in this report might reduce the complication rate and enhance the technical success rate associated with this procedure. Keywords: Abdominal aortic aneurysm; Endovascular aneurysm repair; Iliac artery occlusion; Peripheral arterial disease; Stent placement Introduction Endovascular aneurysm repair (EVAR) is less invasive and is associated with a lower 30-day mortality rate when compared with open surgery. As a result, its use has increased worldwide (Greenhalgh et al. 2010, De Bruin et al. 2010). However, the feasibility and outcomes of EVAR are highly dependent on various anatomic factors, including the stent-graft access route of the iliac * Correspondence: shigeoichihashi@yahoo.co.jp 1 Department of Radiology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan Full list of author information is available at the end of the article artery. The reported incidence of peripheral arterial disease (PAD) with concomitant abdominal aortic aneurysm (AAA) ranges between 10% and 40% (Wanhainen et al. 2005). Iliac recanalization of occlusive disease is commonly performed during management of aorto-iliac occlusive disease (AIOD), but only few reports have described this technique combined with bifurcated EVAR (Vallabhaneni et al. 2012, Scurr et al. 2007). Further, no reports have described the technical strategy and procedural steps needed to achieve successful results without complications. Therefore, the purpose of this report was to describe our experiences in 2013 Uchiyamada et al.; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Uchiyamada et al. SpringerPlus 2013, 2:605 Page 2 of 5 regards to three cases of EVAR after recanalization of occluded iliac arteries, focusing on our technical strategy and procedural steps. Materials and methods EVAR with concomitant recanalization of unilateral external iliac artery (EIA) occlusion was performed in three octogenarians. All patients had AAA, and two patients had concomitant common iliac artery (CIA) aneurysms, one of which was present ipsilateral to the EIA occlusion. All procedures were performed via the bilateral common femoral arteries under local anesthesia with conscious sedation. An Excluder endograft (W. L. Gore and Associates, Flagstaff, AZ, USA) was chosen for its simple maneuver and lowest delivery profile of the contra-lateral leg at the time of procedures. After cut down of the bilateral common femoral arteries, 8-Fr sheaths were inserted into the bilateral common femoral arteries. Passage of the iliac artery occlusions was attempted in a retrograde manner using a 0.035-inch hydrophilic guidewire (Radifocus, Terumo, Tokyo, Japan). When this failed, a bidirectional approach with a 10mm snare kit (Amplatz GooseNeck Snare kit, ev3 Endovascular, Inc. Plymouth, MN, USA) was performed to establish a through and through wire. If recanalization of the occluded iliac artery was successfully achieved, predilation was performed using a 6mm sized balloon. Then, a 12-Fr sheath (Dryseal sheath, W. L. Gore and Associates, Flagstaff, AZ, USA) was advanced via the occluded iliac artery for delivery of a contralateral iliac limb, which required a lower profile sheath when compared with the 18-Fr sheath of the main body device. Unilateral IIA embolization was thereafter performed in patients who required stent-graft extension to the EIA for treatment of concomitant CIA aneurysms. After deployment of the stent-graft in a routine manner and confirmation of the absence of major endoleaks, a self-expanding E-Luminexx vascular stent (Bard Peripheral Vascular, Inc., Tempe, AZ, USA) was placed in the occluded EIA. This study was performed according to the guidance of Helsinki Declaration. All patients signed an informed consent form regarding procedures. Results Recanalization of the occluded EIA and implantation of the Excluder endograft was successfully performed in all cases. In one patient with concomitant bilateral CIA aneurysms (Case 1), the large leg of an Endurant endograft (ETEW 2828C82E; Medtronic Cardiovascular, Santa Rosa, CA, USA) was deployed in the left CIA to avoid bilateral internal iliac artery (IIA) embolization that could otherwise cause bowel ischemia or buttock claudication. Penetration Figure 1 An example of the procedural steps. (Case 1), a. Curved multiplanar reconstruction of the CTA showed AAA, bilateral CIAA and right EIA occlusion. b. Angiogram showed CTO of the right EIA (dashed line) and right CIAA. c. Lesion was successfully crossed using bidirectional wiring (white arrow head). d. After predilation, a 14-Fr sheath was advanced along the wire (white arrow head). e. Completion angiogram showed residual stenosis at the right EIA despite placement of a self-expanding stent (black arrow head). f. Express LD stent was deployed to support the self-expanding stent (white arrow head). g. Successful dilation of the EIA was achieved. AAA: abdominal aortic aneurysm, CIAA: common iliac artery aneurysm, CTO: chronic total occlusion, EIA: external iliac artery.

Uchiyamada et al. SpringerPlus 2013, 2:605 Page 3 of 5 of the occluded EIA was successfully achieved only by retrograde approach in two patients. However, in one patient (Case 1), the retrograde guidewire ran through the sub-intimal space and could not get re-entry to the true lumen, and bidirectional approach was subsequently employed. Unilateral IIA embolization was then performed in two patients (Case 1, 3) who required stentgraft extension to the EIA for treatment of concomitant CIA aneurysms. In one case of sub-intimal recanalization (Case 1), insufficient expansion of the E-Luminexx stent was recognized, requiring placement of a balloon-expandable stent Express LD (Boston Scientific Corporation, Natick, MA, USA) in a stent-in-stent manner to support stent dilation (Figure 1). All three patients were returned to the general ward without requiring intensive care, and ambulation was allowed beginning on the next morning. No major adverse event or death occurred. Contrast-enhanced CT was performed 1 week after the procedures, confirming exclusion of the aneurysms and patency of the iliac stent. Perioperative and postoperative parameters are summarized in Table 1. Discussion AAA with concomitant AIOD is not uncommon, and 15.4% of patients were excluded from EVAR because of inadequate access vessel size for stent-graft delivery (Joels et al. 2009). Open surgery is the traditional treatments for patients with aortic aneurysms and AIOD, but compared with endovascular treatment, this strategy is associated with higher rates of perioperative morbidity and mortality in the elderly or obese patients, and is technically challenging on patients with hostile abdomen due to previous open surgery or radiation (Oderich et al. 2012). Hybrid strategies using iliac conduits also have been used for endovascular repair of aneurysms in patients with poor vascular access, but conduit construction requires retroperitoneal incision, which is also associated with higher complication rates and longer hospital stay when compared with total endovascular procedures (Lee et al. 2003). An alternative strategy is the use of aortouniiliac (AUI) stent-graft repair with crossover femoro-femoral bypass graft, however, compared with bifurcated stent grafts, decreased patency and higher risk of perioperative complications such as femoral graft infections were reported (Clouse et al. 2003). Recent advancements in medical devices and technical expertise have allowed the performance of total endovascular repair for patients with complex aortoiliac pathologies. Yano et al. (2001), Hinchliffe et al. (2007), and Peterson and Matsumura (2008) described the usefulness of ancillary technique such as PTA and endoluminal conduit to facilitate endograft delivery through the stenosed iliac arteries. Regarding AAA with Table 1 Patient characteristics Case 1 Case 2 Case 3 Gender Male Male Male Age 86 years old 92 years old 84 years old Comorbidity Alzheimer Hypertension Hypertension, CKD, CVD Aneurysm diameter AAA 53 mm AAA 56 mm AAA 36 mm R-CIAA 25mm L-IIAA 26 mm R-CIAA 56 mm L-CIAA 25mm Occluded EIA -Side R R L -Length/ Diameter 85 mm/8 mm 75 mm/9 mm 6 mm/7 mm Recanalization Bidirectional Retrograde Retrograde IIA embolization R - R Landing site (R/ L) EIA/ CIA CIA/ CIA EIA/ CIA Device size Mainbody: 28.5mm/ 12mm/12cm Mainbody: 26mm/ 12mm/14cm Mainbody:22mm/ 12mm/18cm Rt leg: 12mm/ 14cm, Lt leg (Endurant): 28mm/9.3cm Rt leg: 14.5mm/ 14cm, Lt leg: 18mm/ 11.5cm Rt leg: 12mm/ 10cm, 10mm/ 7cm Lt leg: 18mm/ 13.5cm Complication -During EVAR No No No -Follow-up (CT/MR) Type II Type II Type II Endoleak Endoleak Endoleak ABI at occluded ilac site pre/ posttreatment 0.5/ 0.93 0.72/ 0.91 0.62/ 0.61 Rutherford classification at occluded iliac site Pre/ post- treatment 2/ 0 2/ 0 0/ 0 Aneurysm diameter AAA 47 mm AAA 52 mm NA (after 6 months) R-CIAA 23mm L-IIAA 27 mm L-CIAA 25mm ABI; ankle-brachial index, CIAA; common iliac artery aneurysm, CKD; chronic kidney disease; CVD; cerebro vascular disease, EIA; external iliac artery aneurysm, EVAR; endovascular aneurysm repair, IIAA; internal iliac artery aneurysms, L; left, NA; not available, R; right. iliac artery occlusions, Vallabhaneni et al. (2012) reported a technical success rate of 93.3% when using endovascular recanalization. Our present report also describes successful performance of EVAR after recanalization of occluded iliac arteries without major complication in all three octogenarian patients. Recanalization of the occluded iliac artery and use of a bifurcated device allows restoration of arterial flow with low risk of infection and a high rate of patency.

Uchiyamada et al. SpringerPlus 2013, 2:605 Page 4 of 5 The ability to perform this procedure depends on recanalization of the occluded artery and the ability to advance the delivery sheath. We successfully crossed the lesion using a 0.035-inch guidewire in two patients using a retrograde approach and in one patient using bidirectional wiring from the ipsilateral and contralateral iliac arteries. Previous reports regarding primary stent placement for iliac artery occlusive disease showed a high rate of technical success for crossing the iliac artery occlusions when using bidirectional approach (Ichihashi et al. 2011). In the case of the EIA occlusion coexisting the CIA aneurysm ipsilaterally like Case 1 (Figure 1), there could be a risk of aneurysm wall perforated by the guidewire when the guidewire run through the subintimal space of the aneurysm wall, which could be fragile compared to the wall of the non-aneurysmal part. Careful handling of the guidewire is required. When the guidewire from the retrograde approach can not re-enter into the true lumen, using re-entry device could be one option for avoiding the excessive manipulation in the subintimal lumen of the aneurysms. To date re-entry devices are not available in Japan. We performed predilation of the occluded iliac artery using 6mm balloons, because outer diameter of the 12F sheath is around 5mm. Overdilation of iliac arteries could increase the risk of arterial rupture, especially in the case of diffuse calcified iliac arteries. In this regard, it is reasonable to choose the occluded iliac side as a pathway for the contralateral limb. If severe calcification is identified by CT preoperatively, internal endoconduit using stentgraft followed by non-compliant balloon dilation could be useful for avoiding arterial ruptures (Hinchliffe et al. 2007, and Peterson and Matsumura 2008). However this technique may require the coverage of origin of the internal iliac artery, which could cause the spinal cord ischemia in the patient treated for concomitant thoracic or thoracoabdominal aneurysms. In such cases, open surgical endoconduit could decrease the risk by preservation or reconstruction of the internal iliac artery (Oderich et al. 2012). IIA embolization was performed after the successful advancement of a sheath through the occluded iliac artery. If IIA embolization (especially at the same side of the occluded EIA) was performed before recanalization of the occluded artery, blood flow to the lower extremity via pelvic collateral channels might be profoundly decreased for a prolonged time, resulting in severe ischemia and muscle necrosis, because we could not predict the required time for penetration of the occlusion in contrast to the stenosis. Stent placement for an occluded artery was routinely performed after EVAR in the present cases. Previous studies suggested that primary stenting produced a better patency rate when compared with balloon angioplasty with provisional stenting when used for iliac artery occlusion (Ichihashi et al. 2011). Stent placement in the iliac artery prior to EVAR may interfere the passage of the sheath or touch-up balloon. Lam et al. (2008) described a case of migrated self-expanding stent after endograft passage. Whether complications during the stentgraft delivery, such as stent migration or stent collapse occur or not depends on the degree of the expansion of the stent itself. If the stent expands insufficiently due to the arterial recoil or calcification, the risk of complications could become higher. Except when using the technique of internal endoconduit, we believe the stent placement should be performed after EVAR to lower the complication risk. In conclusion, totally endovascular repair was successfully performed for three patients with AAA and concomitant unilateral EIA occlusions. The proposed steps described in this report might reduce the complication rate and enhance the technical success rate associated with this procedure. Competing interests The authors declare that they have no competing interests. Authors contributions All authors have made substantial contributions to revise the manuscript critically for important intellectual content and have given their final approval of the version to be published. Author details 1 Department of Radiology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan. 2 Department of Thoracic and Cardiovascular Surgery, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan. Received: 17 October 2013 Accepted: 9 November 2013 Published: 13 November 2013 References Clouse WD, Brewster DC, Marone LK, Cambria RP, LaMuraglia GM, Watkins MT et al (2003) Durability of aortouniiliac endografting with femorofemoral crossover: 4-year experience in the EVT/Guidant trials. J Vasc Surg 37:1143 1149 De Bruin JL, Baas AF, Buth J, Prinssen M, Verhoeven EL, Cuypers PW et al (2010) Long-term outcome of open or endovascular repair of abdominal aortic aneurysm. N Engl J Med 362:1881 1889 Greenhalgh RM, Brown LC, Powell JT, Thompson SG, Epstein D, Sculpher MJ (2010) Endovascular versus open repair of abdominal aortic aneurysm. N Engl J Med 362:1863 1871 Hinchliffe RJ, Ivancev K, Sonesson B, Malina M (2007) Paving and cracking : an endovascular technique to facilitate the introduction of aortic stent-grafts through stenosed iliac arteries. J Endovasc Ther 14:630 633 Ichihashi S, Higashiura W, Itoh H, Sakaguchi S, Nishimine K, Kichikawa K (2011) Long-term outcomes for systematic primary stent placement in complex iliac artery occlusive disease classified according to Trans-Atlantic Inter-Society Consensus (TASC)-II. J Vasc Surg 53:992 999 Joels CS, Langan EM, Daley CA, Kalbaugh CA, Cass AL, Cull DL et al (2009) Changing indications and outcomes for open abdominal aortic aneurysm repair since the advent of endovascular repair. Am Surg 75:665 669 Lam RC, Rhee SJ, Morrissey NJ, McKinsey JF, Faries PL, Kent KC (2008) Minimally invasive retrieval of a dislodged Wallstent endoprosthesis after an endovascular abdominal aortic aneurysm repair. J Vasc Surg 47:450 453 Lee WA, Berceli SA, Huber TS, Ozaki CK, Flynn TC, Seeger JM (2003) Morbidity with retroperitoneal procedures during endovascular abdominal aortic aneurysm repair. J Vasc Surg 38:459 463

Uchiyamada et al. SpringerPlus 2013, 2:605 Page 5 of 5 Oderich GS, Picada-Correa M, Pereira AA (2012) Open surgical and endovascular conduits for difficult access during endovascular aortic aneurysm repair. Ann Vasc Surg 26:1022 1029 Peterson BG, Matsumura JS (2008) Internal endoconduit: an innovative technique to address unfavorable iliac artery anatomy encountered during thoracic endovascular aortic repair. J Vasc Surg 47:441 445 Scurr J, How T, Vallabhaneni SR, Torella F, McWilliams RG (2007) EVAR in iliac occlusion. J Endovasc Ther 01:59 61 Vallabhaneni R, Sorial EE, Jordan WD, Minion DJ, Farber MA (2012) Iliac artery recanalization of chronic occlusions to facilitate endovascular aneurysm repair. J Vasc Surg 56:1549 1554 Wanhainen A, Bergqvist D, Boman K, Nilsson TK, Rutegard J, Bjorck M (2005) Risk factors associated with abdominal aortic aneurysm: a population-based study with historical and current data. J Vasc Surg 41:390 396 Yano OJ, Faries PL, Morrissey N, Teodorescu V, Hollier LH, Marin ML (2001) Ancillary techniques to facilitate endovascular repair of aortic aneurysms. J Vasc Surg 34:69 75 doi:10.1186/2193-1801-2-605 Cite this article as: Uchiyamada et al.: Technical tips and procedural steps in endovascular aortic aneurysm repair with concomitant recanalization of iliac artery occlusions. SpringerPlus 2013 2:605. Submit your manuscript to a journal and benefit from: 7 Convenient online submission 7 Rigorous peer review 7 Immediate publication on acceptance 7 Open access: articles freely available online 7 High visibility within the field 7 Retaining the copyright to your article Submit your next manuscript at 7 springeropen.com