Intensive Statin Therapy and the Risk of Hospitalization for Heart Failure After an Acute Coronary Syndrome in the PROVE IT TIMI 22 Study

Similar documents
Journal of the American College of Cardiology Vol. 54, No. 25, by the American College of Cardiology Foundation ISSN /09/$36.

Rikshospitalet, University of Oslo

APPENDIX B: LIST OF THE SELECTED SECONDARY STUDIES

The role of statins in patients with arterial hypertension

Data Alert. Vascular Biology Working Group. Blunting the atherosclerotic process in patients with coronary artery disease.

LDL cholesterol and cardiovascular outcomes?

Comparison of Original and Generic Atorvastatin for the Treatment of Moderate Dyslipidemic Patients

What have We Learned in Dyslipidemia Management Since the Publication of the 2013 ACC/AHA Guideline?

The Clinical Unmet need in the patient with Diabetes and ACS

Weigh the benefit of statin treatment: LDL & Beyond

Supplementary Online Content

Andrew Cohen, MD and Neil S. Skolnik, MD INTRODUCTION

CVD risk assessment using risk scores in primary and secondary prevention

Changing lipid-lowering guidelines: whom to treat and how low to go

Diabetes mellitus type 2 and angina pectoris : novel insights in diagnosis, prognosis and treatment Wiersma, J.J.

Statins in the Treatment of Type 2 Diabetes Mellitus: A Systematic Review.

JAMA. 2011;305(24): Nora A. Kalagi, MSc

Journal of the American College of Cardiology Vol. 41, No. 8, by the American College of Cardiology Foundation ISSN /03/$30.

Statins in the elderly : Is there a rationale?

CLINICAL OUTCOME Vs SURROGATE MARKER

Cardiovascular outcomes trials with statins in diabetes

An example of a systematic review and meta-analysis

The All Wales Medicine Strategy Group (AWMSG) is asked to support implementation of the following prescribing indicators.

Statins. ( Acute coronary syndrome ) Statins. ( Evidence-based medicine ) ( ST ST ) Statins. statins. stains. statins

The TNT Trial Is It Time to Shift Our Goals in Clinical

C-Reactive Protein Levels and Outcomes after Statin Therapy

Case Presentation. Rafael Bitzur The Bert W Strassburger Lipid Center Sheba Medical Center Tel Hashomer

Supplementary appendix

The JUPITER trial: What does it tell us? Alice Y.Y. Cheng, MD, FRCPC January 24, 2009

What is New About Statins? M Mohsen Ibrahim, MD

Is Lower Better for LDL or is there a Sweet Spot

How would you manage Ms. Gold

References List. References cited on CVInflammation.com

Differential Expression of Cardiac Biomarkers by Gender in Patients With Unstable Angina/Non ST-Elevation Myocardial Infarction

Supplementary Online Content

Val-MARC: Valsartan-Managing Blood Pressure Aggressively and Evaluating Reductions in hs-crp

( Diabetes mellitus, DM ) ( Hyperlipidemia ) ( Cardiovascular disease, CVD )

QUT Digital Repository:

Cholesterol lowering intervention for cardiovascular prevention in high risk patients with or without LDL cholesterol elevation

Effects of Statin Therapy on Arrhythmic Events and Survival in Patients With Nonischemic Dilated Cardiomyopathy

LIST OF ABBREVIATIONS

Preventing Myocardial Infarction in the Young Adult in the First Place: How Do the National Cholesterol Education Panel III Guidelines Perform?

In-Ho Chae. Seoul National University College of Medicine

Effect of the PCSK9 Inhibitor Evolocumab on Cardiovascular Outcomes

Long-term prognostic value of N-Terminal Pro-Brain Natriuretic Peptide (NT-proBNP) changes within one year in patients with coronary heart disease

Comparison of Effects of High (80 mg) Versus Low (20 mg) Dose of Simvastatin

Novel PCSK9 Outcomes. in Perspective: Lessons from FOURIER & ODYSSEY LDL-C. ASCVD Risk. Suboptimal Statin Therapy

Clinical and Economic Value of Rivaroxaban in Coronary Artery Disease

Measuring Natriuretic Peptides in Acute Coronary Syndromes

Traitements associés chez l hypertendu: Statines, Aspirine

Antihypertensive Trial Design ALLHAT

Evaluation of C-reactive protein prior to and on-treatment as a predictor of benefit

Influence of Baseline Lipids on Effectiveness of Pravastatin in the CARE Trial

In the Literature 1001 BP of 1.1 mm Hg). The trial was stopped early based on prespecified stopping rules because of a significant difference in cardi

Overcoming the Risk-Treatment Paradox in Non-STE ACS: It s Time! Christopher Granger, MD

2013 Cholesterol Guidelines. Anna Broz MSN, RN, CNP, AACC Adult Certified Nurse Practitioner North Ohio Heart, Inc.

Dyslipidemia in the light of Current Guidelines - Do we change our Practice?

Beta-blockers in Patients with Mid-range Left Ventricular Ejection Fraction after AMI Improved Clinical Outcomes

Risk Stratification of ACS Patients. Frans Van de Werf, MD, PhD University of Leuven, Belgium

Cardiovascular Event Reduction Versus New-Onset Diabetes During Atorvastatin Therapy

22 Is Aggressive Lipid

Update on Dyslipidemia and Recent Data on Treating the Statin Intolerant Patient

A: Epidemiology update. Evidence that LDL-C and CRP identify different high-risk groups

Medscape: What do we currently know about the role of CRP as a prognostic marker for primary prevention?

Journal of the American College of Cardiology Vol. 35, No. 4, by the American College of Cardiology ISSN /00/$20.

FOURIER: Enough Evidence to Justify Widespread Use? Did It fulfill Its Expectations?

JUPITER NEJM Poll. Panel Discussion: Literature that Should Have an Impact on our Practice: The JUPITER Study


Fasting or non fasting?

Heart Rate in Patients with Coronary Artery Disease - the Lower the Better? An Analysis from the Treating to New Targets (TNT) trial

Clinical Seminar. Which Diabetic Patient is a Candidate for Percutaneous Coronary Intervention - European Perspective

Journal of the American College of Cardiology Vol. 40, No. 6, by the American College of Cardiology Foundation ISSN /02/$22.

New evidences in heart failure: the GISSI-HF trial. Aldo P Maggioni, MD ANMCO Research Center Firenze, Italy

LAMIS (Livalo in AMI Study)

Heart disease is the leading cause of death

Journal of the American College of Cardiology Vol. 35, No. 5, by the American College of Cardiology ISSN /00/$20.

STATINS FOR PAD Long - term prognosis

Adults With Diagnosed Diabetes

Revascularization in Severe LV Dysfunction: The Role of Inducible Ischemia and Viability Testing

Ezetimibe and SimvastatiN in Hypercholesterolemia EnhANces AtherosClerosis REgression (ENHANCE)

Should I use statins?

Decline in CV-Mortality

Journal of the American College of Cardiology Vol. 45, No. 11, by the American College of Cardiology Foundation ISSN /05/$30.

Impaired Chronotropic Response to Exercise Stress Testing in Patients with Diabetes Predicts Future Cardiovascular Events

The CARI Guidelines Caring for Australians with Renal Impairment. Cardiovascular Risk Factors

2016 ESC/EAS Guideline in Dyslipidemias: Impact on Treatment& Clinical Practice

New Strategies for Lowering LDL - Are They Really Worth It?

Supplementary Appendix

egfr > 50 (n = 13,916)

Characterization of Types and Sizes of Myocardial Infarction Reduced with Evolocumab in FOURIER

High-Sensitivity Cardiac Troponin in Suspected ACS

2013 Cholesterol Guidelines. Anna Broz MSN, RN, CNP, AACC Cer=fied Adult Nurse Prac==oner North Ohio Heart, Inc.

Attainment of Combined Optimal Lipid Values With the Use of Niacin

ACCP Cardiology PRN Journal Club

PCSK9 Inhibitors and Modulators

Disclosures. Dr. Scirica has also served as a consultant for Lexicon, Arena, Gilead, and Eisai.

Peri-operative Troponin Measurements - Pathophysiology and Prognosis

CLINICIAN INTERVIEW RECOGNIZING ACS AND STRATIFYING RISK IN PRIMARY CARE. An interview with A. Michael Lincoff, MD, and Eric R. Bates, MD, FACC, FAHA

Diabetic Patients: Current Evidence of Revascularization

Supplementary Online Content

Transcription:

Journal of the American College of Cardiology Vol. 47, No. 11, 2006 2006 by the American College of Cardiology Foundation ISSN 0735-1097/06/$32.00 Published by Elsevier Inc. doi:10.1016/j.jacc.2006.03.034 Intensive Statin Therapy and the Risk of Hospitalization for Heart Failure After an Acute Coronary Syndrome in the PROVE IT TIMI 22 Study Benjamin M. Scirica, MD, MPH,* David A. Morrow, MD, MPH,* Christopher P. Cannon, MD,* Kausik K. Ray, MD,* Marc S. Sabatine, MD, MPH,* Petr Jarolim, MD, PHD, Amy Shui, BS,* Carolyn H. McCabe, BS,* Eugene Braunwald, MD,* for the PROVE IT TIMI 22 Investigators Boston, Massachusetts OBJECTIVES BACKGROUND METHODS RESULTS CONCLUSIONS We aimed to determine whether intensive statin therapy reduces hospitalization for heart failure (HF) in high-risk patients. While the relationship between intensive statin therapy and ischemic events is well established, its relationship to the risk of HF after an acute coronary syndrome (ACS) is not well defined. The Pravastatin or Atorvastatin Evaluation and Infection Trial Thrombolysis In Myocardial Infarction 22 (PROVE IT TIMI 22) study randomized 4,162 patients, stabilized after ACS, to either intensive statin therapy (atorvastatin 80 mg) or moderate statin therapy (pravastatin 40 mg). Hospitalization for HF occurring more than 30 days after randomization was determined during a mean follow-up of 24 months. B-type natriuretic peptide (BNP) levels were measured at baseline (median seven days after randomization). Treatment with atorvastatin 80 mg significantly reduced the rate of hospitalization for HF (1.6% vs. 3.1%, hazard ratio [HR] 0.55, 95% confidence interval [CI] 0.35 to 0.85, p 0.008) independently of a recurrent myocardial infarction or prior history of HF. The risk of HF increased steadily with increasing quartiles of BNP (HR 2.6, 95% CI 1.2 to 5.5, p 0.016 for the highest quartile compared with the lowest). Among patients with elevated levels of BNP ( 80 pg/ml), treatment with atorvastatin significantly reduced the risk of HF compared with pravastatin (HR 0.32, 95% CI 0.13 to 0.8, p 0.014). A meta-analysis of four trials that included 27,546 patients demonstrates a 27% reduction in the odds of hospitalization for HF with intensive statin therapy. Intensive statin therapy reduces the risk of hospitalization for HF after ACS with the most gain in patients with elevated levels of BNP. (J Am Coll Cardiol 2006;47:2326 31) 2006 by the American College of Cardiology Foundation Lipid-lowering therapy, and in particular intensive statin therapy, reduces the risk of death and recurrent ischemia in patients hospitalized for an acute coronary syndrome (ACS) (1) and in patients with chronic coronary artery disease (2,3). The relationship between statin therapy and congestive heart failure (HF) is less well described with some investigators raising theoretical concerns that statins could worsen HF. For example, in one study, low cholesterol levels were associated with worse outcomes among patients with HF (4) while another study suggested that statins, via inhibition of the mitochondrial enzyme ubiquinone, may decrease myocardial contraction (5). Trials that compared moderate dose statin therapy versus placebo in stable patients have reported conflicting results with some showing a benefit of statin therapy (6) while others have not (7 10). The primary reports from trials of intensive statin therapy suggest that higher doses of statin may reduce rates of From the *TIMI Study Group, Cardiovascular Division, Department of Medicine, Boston, Massachusetts; and the Department of Pathology, Brigham and Women s Hospital and Harvard Medical School, Boston, Massachusetts. The TIMI Study Group has received research funding from BMS, Merck, Pfizer, and AstraZeneca, all manufacturers of statins, and from Biosite, Bayer, and Roche, manufacturers for assays for BNP. Drs. Scirica and Morrow contributed equally to the design, drafting, and editing of this manuscript. Manuscript received January 25, 2006; revised manuscript received March 8, 2006, accepted March 16, 2006. rehospitalization for HF when compared with moderate statin therapy, but there are few details (2,3,11). Heart failure is an important cause of morbidity and mortality in patients with ACS and is gaining in relative importance as effective therapies reduce the risk of recurrent ischemia (12,13). Identifying those patients at high risk for developing HF after ACS is clearly of clinical importance. The use of biomarkers, in particular B-type natriuretic peptide (BNP) (14,15), has improved the clinician s ability to identify patients who are at high risk of death or HF after an ACS. However, the influence of intensive statin therapy on this risk is unknown. METHODS The Pravastatin or Atorvastatin Evaluation and Infection Trial Thrombolysis In Myocardial Infarction 22 (PROVE IT TIMI 22) study has been reported in detail previously (1,16). This trial enrolled 4,162 patients hospitalized for ACS either acute myocardial infarction (with or without ST-segment elevation) or high-risk unstable angina in the preceding 10 days. Eligible patients were in stable condition and had a total cholesterol level within the first 24 h after the onset of the index event that was 240 mg/dl (6.21 mmol/l), or 200 mg/dl (5.18 mmol/l) if they were on prior

JACC Vol. 47, No. 11, 2006 June 6, 2006:2326 31 Scirica et al. Intensive Statin Therapy and HF in ACS 2327 Abbreviations and Acronyms ACS acute coronary syndrome BNP B-type natriuretic peptide CI confidence interval HR hazard ratio OR odds ratio lipid-lowering therapy. Patients were ineligible for the study if they had a co-existing condition that shortened expected survival to 2 years, had undergone percutaneous coronary intervention within the previous six months (other than for the qualifying event), or coronary artery bypass surgery within the previous two months, or were scheduled to undergo bypass surgery in response to the index event. Study protocol. The protocol specified that patients were to receive standard medical and interventional treatment for ACS. Eligible patients were randomly assigned in a 1:1 ratio to receive 40 mg of pravastatin or 80 mg of atorvastatin daily in a double-blind, double-dummy fashion. Patients were seen for follow-up visits at 30 days, 4 months, and every 4 months thereafter until their final visit. Plasma samples included in this analysis were obtained at baseline in 3,752 patients, and measurements were made in a core facility (Brigham and Women s Hospital, Boston, Massachusetts). A validated assay for BNP (ADVIA Centaur BNP, Bayer Healthcare Diagnostics, Tarrytown, New York) was used, and concentrations were evaluated as quartiles: BNP 15 pg/ml (n 1,032) for quartile 1, BNP 16 to 32 pg/ml (n 867) for quartile 2, BNP 33 to 65 pg/ml (n 928) for quartile 3, and BNP 65 pg/ml (n 925) for quartile 4 and with the cut-point of 80 pg/ml (17). End points. Heart failure was defined by the need for hospitalization for the condition. The primary efficacy outcome for this analysis was the time from randomization to the first occurrence of hospitalization for congestive HF that occurred 30 days or longer after randomization. Myocardial infarction was defined by the presence of symptoms suggestive of ischemia or infarction, with either electrocardiographic evidence (new Q waves in two or more leads) or cardiac-marker evidence of infarction (1,16). Statistical analysis. All analyses are based on the intentionto-treat principle. Cumulative event curves of hospitalization for HF derived from Kaplan-Meier estimates are presented. Estimates of the hazard ratios (HRs) and associated 95% confidence intervals (CIs) comparing pravastatin with atorvastatin were obtained with a Cox proportional hazards model with randomized treatment as the covariate. For analyses including BNP, cumulative event curves of hospitalization for HF derived from Kaplan-Meier estimates are presented along with the HR from a Cox proportional hazards model that included age, gender, diabetes, hypertension, body mass index, creatinine, index diagnosis, and percutaneous coronary intervention during the index event. We performed a meta-analysis of four large randomized trials that compared an intensive versus moderate statin therapy in high-risk cardiac patients: the PROVE IT TIMI 22 trial that compared 40 mg of pravastatin versus 80 mg of atorvastatin in patients stabilized after ACS (1); the Treating to New Targets (TNT) trial that compared 10 versus 80 mg of atorvastatin in patients with stable coronary disease (2); the A to Z trial that compared 20 versus 80 mg of simvastatin in ACS patients (11); and the Incremental Decrease in Clinical End Points Through Aggressive Lipid Lowering (IDEAL) trial that compared 20 mg of simvastatin versus 80 mg of atorvastatin in patients with a history of myocardial infarction (3). Summary data on the rates of congestive HF were abstracted from the publications of the other trials. Odds ratios (ORs) and 95% CIs for the effect of intensive statin therapy versus moderate statin therapy on the incidence of HF were calculated for each trial. The results from trials were combined using a random-effects model that used weighting based on inverse variance. Between-trial heterogeneity was assessed. All statistical analyses were performed using Stata/SE, version 9.1 (Stata- Corp. LP, College Station, Texas). RESULTS Benefit of intensive statin therapy of HF. This analysis included all 4,162 patients enrolled in the PROVE IT TIMI 22 study. As previously described, patients were enrolled a median of seven days after onset of their index event, and there were no differences between treatment groups in terms of age, gender, index diagnosis, or rates of prior myocardial infarction, revascularization, diabetes, or hypertension (1). There were also no differences in the rate of prior HF between treatment arms (3.2% for atorvastatin vs. 3.5% for pravastatin, p NS), the rate of ST-segment elevation myocardial infarction (33.4% vs. 35.6%, p NS), or the rate of revascularization for the index event (69.1% vs. 68.7%, p NS). Treatment with atorvastatin 80 mg was associated with a significant 45% reduction in the rate of hospitalization for HF (1.6% vs. 3.1% [HR 0.55, 95% CI 0.35 to 0.85, p 0.008]) (Fig. 1). This reduction in the risk of HF was not attenuated when controlling for recurrent myocardial infarction (HR 0.58, 95% CI 0.37 to 0.90, p 0.016) or a history of prior HF (HR 0.55, 95% CI 0.35 to 0.86, p 0.008). The benefit of atorvastatin 80 mg was similar after excluding all patients (n 36) who developed HF after having suffered a recurrent myocardial infarction or recurrent ischemia requiring hospitalization or revascularization (HR 0.47, 95% CI 0.26 to 0.86, p 0.015). The benefit of intensive statin therapy was also similar when the first 30 days after randomization were included in the analysis (HR 0.53, 95% CI 0.35 to 0.80, p 0.002). BNP and the risk of HF. Compared with those without subsequent hospitalization for HF, patients who developed HF had higher baseline levels of BNP (median 58 vs. 31 pg/ml, p 0.001) and were more likely to have a concentration of BNP 80 pg/ml (41.2% vs. 23.2%, p 0.001).

2328 Scirica et al. JACC Vol. 47, No. 11, 2006 Intensive Statin Therapy and HF in ACS June 6, 2006:2326 31 Figure 1. Cumulative incidence of the hospitalization for congestive heart failure. Intensive statin therapy with atorvastatin 80 mg, as compared with moderate statin therapy with pravastatin 40 mg, reduced the risk for hospitalization for congestive heart failure by 45% (hazard ratio 0.55, 95% confidence interval 0.35 to 0.85, p 0.008). This benefit was not attenuated after controlling for recurrent myocardial infarction (MI) or prior history of heart failure. The concentration of BNP showed a significant graded relationship with the risk of HF, with a significantly higher risk of HF among patients in the highest (BNP 65 pg/ml) compared with the lowest quartile (BNP 15 pg/ml, adjusted HR 2.6, 95% CI 1.2 to 5.5, p 0.016). Intensive statin therapy and BNP. There was no difference in baseline levels of BNP between treatment arms (31 vs. 32 ng/l, p NS). When examined by elevated ( 80 pg/ml) or normal ( 80 pg/ml) baseline levels of BNP and treatment arm, patients with elevated baseline levels ( 80 pg/ml) of BNP randomized to pravastatin had the highest rate of hospitalization for HF (6.9%) followed by those patients with normal BNP randomized to pravastatin (2.3%), patients with an elevated BNP randomized to atorvastatin (2.2%), and then patients normal baseline levels of BNP randomized to atorvastatin were at 1.2% (Fig. 2). Assignment to atorvastatin significantly reduced the risk of the development of HF among patients with elevated levels of BNP (HR 0.32, 95% CI 0.13 to 0.8, p 0.014). Although patients with such elevated levels of BNP had a greater absolute reduction in the risk of HF (4.7%, HR 0.29, 95% CI 0.11 to 0.73, p 0.009) with intensive statin therapy than patients with low BNP (1.1%, HR 0.56, 95% CI 0.29 to 1.1, p 0.09), formal statistical testing for an interaction of BNP with the effect of treatment was not significant (p interaction 0.32). Meta-analysis of intensive statin therapy trials. A metaanalysis of the four published large, randomized trials Figure 2. Cumulative incidence of hospitalization for congestive heart failure stratified into four groups: 1) patients with normal baseline levels of B-type natriuretic peptide (BNP) ( 80 ng/l) on atorvastatin; 2) patients with normal BNP on pravastatin; 3) patients with elevated levels of BNP ( 80 ng/l) on atorvastatin; and 4) patients with elevated BNP on pravastatin. Comparisons between groups were performed using a Cox proportional hazard model that included age, gender, diabetes mellitus, hypertension, smoking, body mass index, creatinine, index event, percutaneous coronary intervention for index event. Among patients with elevated levels of BNP, treatment with atorvastatin significantly reduced the risk of heart failure. *Hazard ratio (HR) 6.9, 95% confidence interval (CI) 3.3 to 14.4, p 0.001 compared with BNP 80/atorvastatin; **HR 2.2, 95% CI 0.85 to 5.9, p 0.115 compared with BNP 80/atorvastatin; ***HR 1.7, 95% CI 0.90 to 3.4, p 0.099 compared with BNP 80/atorvastatin; HR 0.32, 95% CI 0.13 to 0.8, p 0.014 compared with BNP 80/pravastatin.

JACC Vol. 47, No. 11, 2006 June 6, 2006:2326 31 Scirica et al. Intensive Statin Therapy and HF in ACS 2329 that compared intensive statin therapy with moderate statin therapy and that reported the rates of congestive HF demonstrates a highly significant 27% reduction in the odds of hospitalization for HF in (n 27,546, OR 0.73, 95% CI 0.63 to 0.84, p 0.001) (chi-square for heterogeneity 2.25 [degrees of freedom 3], p 0.523) (Fig. 3). DISCUSSION Among patients hospitalized for an ACS, treatment with intensive statin therapy significantly reduced the subsequent development of HF requiring hospitalization. This benefit was independent of recurrent infarction suggesting that intensive statin therapy lowers the risk of HF independently of its ability to reduce recurrent ischemic injury. As anticipated, baseline levels of BNP in patients with ACS were strongly associated with the risk of future HF. However, among patients with elevated levels of BNP ( 80 pg/ml), treatment with intensive statin therapy (atorvastatin 80 mg) significantly reduced the risk of HF compared with moderate statin therapy (pravastatin 40 mg); the absolute risk of development of HF in patients with such elevated levels of BNP was reduced by 4.7% by intensive statin therapy (47 hospitalizations for HF prevented per 1,000 patients treated). Our findings, both from the PROVE IT TIMI 22 study and from the other large randomized trials, reveal a consistent benefit of intensive statin therapy in reducing episodes of HF by 27% among more than 27,000 patients who had a low baseline incidence of prior HF. The benefit observed in the PROVE IT TIMI 22 study was directionally, though not statistically, greater than the benefit seen in the other trials (2,3,11). This trend may be because this trial was comprised of a post-acs population that received immediate intensive statin therapy, as opposed to the A to Z trial, another post-acs trial, in which intensive statin therapy with simvastatin 80 mg was not started until one month after randomization. In comparison with the Scandinavian Simvastatin Survival Study (4S) trial in which a benefit of moderate dose simvastatin on HF was not observed until three years of therapy (6), the benefit of intensive statin therapy in the PROVE IT TIMI 22 study was demonstrated at two years, with an early separation of the event curves for hospitalization for HF. To determine whether the benefit of intensive statin therapy in reducing the occurrence of HF was due to a mechanism other than the reduction of recurrent infarction, we controlled both for the rate of recurrent infarction as well as excluded all patients who suffered a recurrent infarction. The benefit of intensive statin therapy was consistent in both of these analyses, suggesting that statins act to reduce new onset HF via pathways other than by reducing new myocardial necrosis. There are several proposed mechanisms by which statin therapy, and in particular intensive statin therapy, may reduce the rate of HF. These proposed pathways include potential pleiotropic actions of statins, such as decreases in both Ras and Rho protein production via blockade of the mevalonate pathway, which, in turn, prevents cell proliferation and hypertrophy (Ras) (18) and increases nitric oxide production (Rho) (18,19). These effects may, in turn, improve vascular function and potentially enhance ventricular function. A small randomized trial, for example, demonstrated improved ventricular function with one-year of therapy with 20 mg of atorvastatin compared with placebo in patients with non-ischemic cardiomyopathy (20). This finding may provide a mechanistic explanation to the improved outcomes associated with statin therapy observed in several retrospective studies of patients with chronic HF (21 23). Figure 3. Benefit of intensive statin therapy versus moderate statin therapy in reducing the risk of hospitalization for heart failure in 27,546 patients. This analysis includes the Pravastatin or Atorvastatin Evaluation and Infection Trial Thrombolysis In Myocardial Infarction 22 (PROVE IT TIMI 22) (1), Treating to New Targets (TNT) (2), A to Z(11), and Incremental Decrease in End Points Through Aggressive Lipid Lowering (IDEAL) (3) studies.

2330 Scirica et al. JACC Vol. 47, No. 11, 2006 Intensive Statin Therapy and HF in ACS June 6, 2006:2326 31 The effect of statins on circulating markers of inflammation in patients with HF has resulted in conflicting results. Several studies in patients with HF have shown that statins reduce biomarkers such as C-reactive protein, endothelin-1 (24), and tumor necrosis factor-alpha (22). On the other hand, another study that compared atorvastatin 80 mg to placebo did not demonstrate any change in levels of inflammatory, hemostatic, or neurohormonal markers after 12 weeks of intense statin therapy (25). The apparent discrepancy in findings may be due to the relative severity of HF in the different studies (the majority of the patients in the negative trial were in class II failure [25] while in the other studies they were class III or IV) and in the duration of therapy (24,26). Studies with longer follow-up are needed to resolve the important questions concerning potential mechanisms of beneficial action seen with statin therapy. Identifying patients at high risk for developing HF after ACS is clearly of clinical importance. Several reports have now shown that elevated baseline concentrations of BNP are associated with the development of HF after an ACS (14,15). As confirmed in this analysis, measurement of BNP at the time of the index hospitalization is a powerful tool for risk stratification in order to identify patients at high risk for developing HF. The value of biomarkers in clinical practice rests on both improved risk assessment and guidance of therapy. We found that these results highlight the utility of BNP in identifying patients in whom the affect of intensive statin therapy produced the greatest benefit. Even among patients treated with atorvastatin, elevated levels of BNP still tended to confer an increased, although attenuated, risk of hospitalization for HF. Study limitations. There are several potential limitations of this analysis. The end point of hospitalization for HF was a pre-specified secondary end point of the PROVE IT TIMI 22 study and was chosen in order to identify more serious presentations of HF. It may then underestimate the true incidence of HF in this population as milder states of HF may be treated as an outpatient and may also explain the relatively low overall event rates. Despite this, the treatment effect of intensive statin therapy was readily observed. Conclusions. In addition to the proven benefit of intensive statin therapy in reducing recurrent ischemic events, this analysis demonstrates the ability of intensive statin therapy to lower the risk of the development of HF independently of the reduction in ischemic events. Trials of intensive statins in patients with known HF are ongoing. Results from these studies, in particular among patients with non-ischemic cardiomyopathy, will provide further insight into whether statins improve outcome independently of reducing ischemia and potentially identify a new therapy for these patients. In the meantime, the reduction in HF associated with intensive statin therapy observed in the PROVE IT TIMI 22 study and the other trials of intensive statin therapy further emphasize the clinical importance of aggressive statin therapy in patients at high risk for cardiovascular complications of ACS and chronic coronary artery disease. Reprint requests and correspondence: Dr. Benjamin M. Scirica, TIMI Study Group, 350 Longwood Avenue, 1st Floor, Boston, Massachusetts 02115. E-mail: bscirica@partners.org. REFERENCES 1. Cannon CP, Braunwald E, McCabe CH, et al. Intensive versus moderate lipid lowering with statins after acute coronary syndromes. N Engl J Med 2004;350:1495 504. 2. LaRosa JC, Grundy SM, Waters DD, et al. Intensive lipid lowering with atorvastatin in patients with stable coronary disease. N Engl J Med 2005;352:1425 35. 3. Pedersen TR, Faergeman O, Kastelein JJ, et al. High-dose atorvastatin vs usual-dose simvastatin for secondary prevention after myocardial infarction: the IDEAL study: a randomized controlled trial. JAMA 2005;294:2437 45. 4. Horwich TB, Hamilton MA, Maclellan WR, Fonarow GC. Low serum total cholesterol is associated with marked increase in mortality in advanced heart failure. J Card Fail 2002;8:216 24. 5. Laaksonen R, Jokelainen K, Laakso J, et al. The effect of simvastatin treatment on natural antioxidants in low-density lipoproteins and high-energy phosphates and ubiquinone in skeletal muscle. Am J Cardiol 1996;77:851 4. 6. Kjekshus J, Pedersen TR, Olsson AG, Faergeman O, Pyorala K. The effects of simvastatin on the incidence of heart failure in patients with coronary heart disease. J Card Fail 1997;3:249 54. 7. ALLHAT Officers and Coordinators for the ALLHAT Collaborative Research Group. Major outcomes in moderately hypercholesterolemic, hypertensive patients randomized to pravastatin vs usual care: the Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial (ALLHAT-LLT). JAMA 2002;288:2998 3007. 8. Sever PS, Dahlof B, Poulter NR, et al. Prevention of coronary and stroke events with atorvastatin in hypertensive patients who have average or lower-than-average cholesterol concentrations, in the Anglo-Scandinavian Cardiac Outcomes Trial Lipid Lowering Arm (ASCOT-LLA): a multicentre randomised controlled trial. Lancet 2003;361:1149 58. 9. Lewis EF, Moye LA, Rouleau JL, et al. Predictors of late development of heart failure in stable survivors of myocardial infarction: the CARE study. J Am Coll Cardiol 2003;42:1446 53. 10. Shepherd J, Blauw GJ, Murphy MB, et al. Pravastatin in elderly individuals at risk of vascular disease (PROSPER): a randomised controlled trial. Lancet 2002;360:1623 30. 11. de Lemos JA, Blazing MA, Wiviott SD, et al. Early intensive vs a delayed conservative simvastatin strategy in patients with acute coronary syndromes: phase Z of the A to Z trial. JAMA 2004;292: 1307 16. 12. Haim M, Battler A, Behar S, et al. Acute coronary syndromes complicated by symptomatic and asymptomatic heart failure: does current treatment comply with guidelines? Am Heart J 2004;147: 859 64. 13. Kashani A, Giugliano RP, Antman EM, et al. Severity of heart failure, treatments, and outcomes after fibrinolysis in patients with STelevation myocardial infarction. Eur Heart J 2004;25:1702 10. 14. de Lemos JA, Morrow DA, Bentley JH, et al. The prognostic value of B-type natriuretic peptide in patients with acute coronary syndromes. N Engl J Med 2001;345:1014 21. 15. Morrow DA, de Lemos JA, Blazing MA, et al. Prognostic value of serial B-type natriuretic peptide testing during follow-up of patients with unstable coronary artery disease. JAMA 2005;294:2866 71. 16. Cannon CP, McCabe CH, Belder R, Breen J, Braunwald E. Design of the Pravastatin or Atorvastatin Evaluation and Infection Therapy (PROVE IT)-TIMI 22 trial. Am J Cardiol 2002;89:860 1. 17. Morrow DA, de Lemos JA, Sabatine MS, et al. Evaluation of B-type natriuretic peptide for risk assessment in unstable angina/non STelevation myocardial infarction: B-type natriuretic peptide and prognosis in TACTICS-TIMI 18. J Am Coll Cardiol 2003;41:1264 72. 18. Liao JK. Isoprenoids as mediators of the biological effects of statins. J Clin Invest 2002;110:285 8.

JACC Vol. 47, No. 11, 2006 June 6, 2006:2326 31 Scirica et al. Intensive Statin Therapy and HF in ACS 2331 19. Rikitake Y, Liao JK. Rho GTPases, statins, and nitric oxide. Circ Res 2005;97:1232 5. 20. Sola S, Muhammad QS, Lerakis S, Tandon N, Khan BV. Atorvastatin improves left ventricular systolic function and serum markers of inflammation in nonischemic heart failure. J Am Coll Cardiol 2006; 47:332 7. 21. Horwich TB, MacLellan WR, Fonarow GC. Statin therapy is associated with improved survival in ischemic and non-ischemic heart failure. J Am Coll Cardiol 2004;43:642 8. 22. Node K, Fujita M, Kitakaze M, Hori M, Liao JK. Short-term statin therapy improves cardiac function and symptoms in patients with idiopathic dilated cardiomyopathy. Circulation 2003;108: 839 43. 23. Ray JG, Gong Y, Sykora K, Tu JV. Statin use and survival outcomes in elderly patients with heart failure. Arch Intern Med 2005;165: 62 7. 24. Mozaffarian D, Minami E, Letterer RA, Lawler RL, McDonald GB, Levy WC. The effects of atorvastatin (10 mg) on systemic inflammation in heart failure. Am J Cardiol 2005;96:1699 704. 25. Bleske BE, Nicklas JM, Bard RL, et al. Neutral effect on markers of heart failure, inflammation, endothelial activation and function, and vagal tone after high-dose HMG-CoA reductase inhibition in nondiabetic patients with non-ischemic cardiomyopathy and average low-density lipoprotein level. J Am Coll Cardiol 2006;47:338 41. 26. Ramasubbu K, Mann DL. The emerging role of statins in the treatment of heart failure. J Am Coll Cardiol 2006;47:342 4.