Research Article Optic Nerve and Spinal Cord Are the Major Lesions in Each Relapse of Japanese Multiple Sclerosis

Similar documents
Multiple sclerosis in Japan: Nationwide surveys over 30 years

The role of anti-aquaporin-4 antibody in Asian patients with multiple sclerosis: Confusions and controversies

Magnetic Resonance Imaging of Neuromyelitis Optica (Devic s Syndrome)


MRI features and anti-aqp4 antibody status in Idiopathic inflammatory demyelinating CNS disease (IIDCD) in Thai patients

Yoko Warabi, Mikihiro Yamazaki, Toshio Shimizu, and Masahiro Nagao. 1. Introduction. 2. Patients and Methods

Autologous Hematopoietic Stem Cell Transplantation for the Treatment of Neuromyelitis Optica in Singapore

New Insights on Optic Neuritis in Young People

Blood Brain Barrier Disruption is More Severe in Neuromyelitis Optica than in Multiple Sclerosis and Correlates with Clinical Disability

Neuromyelitis optica (NMO), or Devic s disease, is a rare

Neuromyelitis optica and neuromyelitis optica-igg seropositivity in Saudis with demyelinating diseases of the central nervous system

ORIGINAL CONTRIBUTION. Painful Tonic Spasm in Neuromyelitis Optica. Incidence, Diagnostic Utility, and Clinical Characteristics

Wingerchuk et al, Neurol, 2006

ORIGINAL CONTRIBUTION

Neuromyelitis Optica: A Case Report

Actualização no diagnóstico e tratamento das doenças desmielinizantes na infância. Silvia Tenembaum

ORIGINAL CONTRIBUTION

Salintip Kunadison MD, Chaiwiwat Tungkasereerak MD, Surin Saetang MD, Pawut Mekawichai MD

Low sensitivity of McDonald MRI criteria in the diagnosis of multiple sclerosis among Asians

The use of AQP4-antibody testing in diagnosis Thai patients with neuromyelitis optica

Professor Yasser Metwally. Neuromyelitis optica. EPIDEMIOLOGY

RSR RSR RSR RSR RSR. ElisaRSR AQP4 Ab RSR. Aquaporin-4 Autoantibody Assay Kit

MYELITIS. A Mochan Neurology

Heterogeneity of Demyelinating Disease: Definitions and Overlap Overview

Opticospinal multiple sclerosis in Japanese

The Use of Serum Glial Fibrillary Acidic Protein Measurements in the Diagnosis of Neuromyelitis Optica Spectrum Optic Neuritis

Sawada J, Orimoto R, Misu T, Katayama T, Aizawa H, Asanome A, Takahashi K, Saito T, Anei R, Kamada K, Miyokawa N, Takahashi T, Fujihara K, Hasebe N.

NMOSD: CURRENT AND EMERGING THERAPIES AND STRATEGIES

Clinical Study Interferon Alpha Association with Neuromyelitis Optica

MULTIPLE SCLEROSIS MSJ

Heterogeneity of aquaporin-4 autoimmunity and spinal cord lesions in multiple sclerosis in Japanese

Clinical improvement in a patient with neuromyelitis optica following therapy with the anti-il-6 receptor monoclonal antibody tocilizumab

The Etiological Spectrum of Acute Sensory Myelitis

Pediatric acute demyelinating encephalomyelitis in Denmark: a nationwide population-based study

Setting the Scene: Neuromyelitis Optica epidemiology, population variability, subgroups: relapsing/monophasic, Ab +ve/-ve, NMO/SD, treated/untreated

ORIGINAL CONTRIBUTION. The Natural History of Recurrent Optic Neuritis

Disease of Myelin. Reid R. Heffner, MD Distinguished Teaching Professor Emeritus Department of Pathology and Anatomy January 9, 2019

Ocular Oscillations and Transient Oscillopsia in Neuromyelitis Optica

NMO-IgG: A specific biomarker for neuromyelitis optica

COPYRIGHT 2012 THE TRANSVERSE MYELITIS ASSOCIATION. ALL RIGHTS RESERVED

CNS pathology Third year medical students. Dr Heyam Awad 2018 Lecture 4: Myelin diseases of the CNS

Research Article Urinary Catheterization May Not Adversely Impact Quality of Life in Multiple Sclerosis Patients

Research Article Opioid Use Is Not Associated with Incomplete Wireless Capsule Endoscopy for Inpatient or Outpatient Procedures

Neuromyelitis optica (NMO) is characterized as a

TECFIDERA (dimethyl fumarate) oral capsule

MRI in Differential Diagnosis. CMSC, June 2, Jill Conway, MD, MA, MSCE

Clinical Study The Diagnostic and Prognostic Value of Neurofilament Heavy Chain Levels in Immune-Mediated Optic Neuropathies

Loss of Aquaporin-4 in Active Perivascular Lesions in Neuromyelitis Optica: A Case Report

THE FIRST DESCRIPTION OF BIlateral

Association between neuromyelitis optica and tuberculosis in a Chinese population

Magnetic Resonance Imaging in the Acquired Demyelinating Disorders: A Pediatric Cohort Study

Soliris in NMOSD Phase 3 PREVENT Study Topline Results September 24, 2018

Research Article Abdominal Aortic Aneurysms and Coronary Artery Disease in a Small Country with High Cardiovascular Burden

Clinical Study Metastasectomy of Pulmonary Metastases from Osteosarcoma: Prognostic Factors and Indication for Repeat Metastasectomy

Demyelinating Diseases: Multiple Sclerosis January 10, 2018 Dr. Ostrow

Case Report Successful Closed Reduction of a Lateral Elbow Dislocation

Research Article Clinical Outcome of a Novel Anti-CD6 Biologic Itolizumab in Patients of Psoriasis with Comorbid Conditions

ORIGINAL CONTRIBUTION. Neuromyelitis Optica Brain Lesions Localized at Sites of High Aquaporin 4 Expression

Research Article Predictions of the Length of Lumbar Puncture Needles

THE NATURAL HISTORY OF MS: DIAGNOSIS, CLINICAL COURSE, AND EPIDEMIOLOGY

GILENYA (fingolimod) oral capsule

Review Article Neuromyelitis Optica: An Antibody-Mediated Disorder of the Central Nervous System

NMO IgG (Aquaporin-4) autoantibodies in immune-mediated optic neuritis

Patologie infiammatorie encefaliche e midollari

Correspondence should be addressed to Taha Numan Yıkılmaz;

Case Report A Rare Case of Near Complete Regression of a Large Cervical Disc Herniation without Any Intervention Demonstrated on MRI

Clinical Study Changing Trends in Use of Laparoscopy: A Clinical Audit

Late-onset neuromyelitis optica spectrum disorder in AQP4-seropositive patients in a Chinese population

Title: Recurrent myelitis after allogeneic stem cell transplantation. Report of two cases.

Neurological update: MOG antibody disease

Objective: To assess the evidence for diagnostic tests and therapies for transverse myelitis (TM) and make evidence-based recommendations.

NIH Public Access Author Manuscript Arch Neurol. Author manuscript; available in PMC 2012 July 1.

PMH: No medications; Immunizations UTD No hospitalizations or surgeries Speech Delay. Birth Hx: 24 WGA, NICU x6 months

R. J. L. F. Loffeld, 1 P. E. P. Dekkers, 2 and M. Flens Introduction

Endpoints in a treatment trial in NMO: Clinician s view. Anu Jacob Consultant Neurologist The Walton Centre, Liverpool,UK

Research Article Relationship between Pain and Medial Meniscal Extrusion in Knee Osteoarthritis

MRI Imaging of Neuromyelitis Optica

Sylwia Mizia, 1 Dorota Dera-Joachimiak, 1 Malgorzata Polak, 1 Katarzyna Koscinska, 1 Mariola Sedzimirska, 1 and Andrzej Lange 1, 2. 1.

Case Report A Case Report of Isolated Cuboid Nutcracker Fracture

Clinical prospective study of visual function in patients with acute optic neuritis

Neuromyelitis optica mimics the morphology of spinal cord tumors

Research Article The Cost of Prolonged Hospitalization due to Postthyroidectomy Hypocalcemia: A Case-Control Study

Case Report Two Cases of Small Cell Cancer of the Maxillary Sinus Treated with Cisplatin plus Irinotecan and Radiotherapy

Case Report Multiple Giant Cell Tumors of Tendon Sheath Found within a Single Digit of a 9-Year-Old

MRI and differential diagnosis in patients suspected of having MS

Research Article Epidemiology of Thyroid Cancer in an Area of Epidemic Thyroid Goiter

An overview of NMO Spectrum Disorder and the diagnostic utility of anti-nmo antibodies

Paraparesis. Differential Diagnosis. Ran brauner, Tel Aviv university

Clinical Study Incidence of Retinopathy of Prematurity in Extremely Premature Infants

Baris Beytullah Koc, 1 Martijn Schotanus, 1 Bob Jong, 2 and Pieter Tilman Introduction. 2. Case Presentation

Research Article Reduction of Pain and Edema of the Legs by Walking Wearing Elastic Stockings

Clinical Study Treatment of Mesh Skin Grafted Scars Using a Plasma Skin Regeneration System

AUBAGIO (teriflunomide) oral tablet

MRI diagnostic criteria for multiple sclerosis: an update

Severe spinal cord involvement is a universal feature of Asians with multiple sclerosis: A joint Asian study

Case Report Features of the Atrophic Corpus Mucosa in Three Cases of Autoimmune Gastritis Revealed by Magnifying Endoscopy

Fast Facts: Multiple Sclerosis

Epidemiology, Diagnosis, Natural History & Clinical Course

Research Article Predictive Factors for Medical Consultation for Sore Throat in Adults with Recurrent Pharyngotonsillitis

Thashi Chang 1,2* and Milinda Withana 2

Transcription:

International Scholarly Research Network ISRN Neurology Volume 211, Article ID 9476, 4 pages doi:1.542/211/9476 Research Article Optic Nerve and Spinal Cord Are the Major Lesions in Each Relapse of Japanese Multiple Sclerosis Yoko Warabi Department of Neurology, Tokyo Metropolitan Neurological Hospital, 2-6-1 Musashidai Fuchu, Tokyo 183-42, Japan Correspondence should be addressed to Yoko Warabi, youko warabi@tmhp.jp Received 1 June 211; Accepted 7 July 211 Academic Editors: P. Annunziata and J. Haas Copyright 211 Yoko Warabi. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. For the purpose of predicting multiple sclerosis (MS) and neuromyelitis optica (NMO) relapses in Japanese population, we evaluated the localization and age of each demyelinating attack. We retrospectively analyzed the 78 medical records of Japanese MS and NMO patients. Then we identified 49 cases of relapsing-remitting-type patients and defined each of 116 demyelinating attacks. NMO had an older age at onset than MS, although the initial symptoms cannot predict the clinical phenotypes. Only 21.3% of demyelinating attacks were localized in the cerebrum and 78.7% were optic-spinal lesions, although MS comprised 7% and NMO comprised 3% of these 78 cases. Brainstem lesion had a relative male predominancy and a young age at attack. Our findings showed that optic nerve and spinal cord lesions are the major and critical lesions in each attack of Japanese CNS demyelinating diseases. There might be distinctive Japanese pathogenic features even in Western type MS. 1. Introduction Multiple sclerosis (MS) and neuromyelitis optica (NMO) are inflammatory demyelinating diseases of the central nervous system (CNS). Although MS and NMO are characterized by dissemination of lesions in space and dissemination in time, it has not been able to predict when and where the next relapse will appear. One of the possibilities that suggests where the next relapse occurs is due to the clinical phenotype of the CNS inflammatory demyelinating diseases in the Japanese population. Japanese CNS demyelinating disease has two major clinical phenotypes. One is NMO [1, 2] which is characterized by lesions confined to the optic nerve and spinal cord, especially, longitudinally extensive spinal cord lesions [3], positive aquaporin-4 (AQP4) autoantibody seropositivity [4], and the astrocytic impairment associated with the loss of AQP4 in the NMO lesions [5]. The other is conventional Western type MS which is known to be the same pathophysiology as MS in western countries and frequently involves cerebral lesions [6]. Human leukocyte antigen (HLA)-DR2 antigen is reported to associate with MS both in Japan and western countries [7], whereas DPB1 51 is associated with NMO in Asian population [8, 9].ThereisaconsensusthatNMOcomprisesabout one-third or one-fourth of the Japanese CNS inflammatory demyelinating diseases [1]. In this paper, for the purpose of predicting the lesions of the demyelinating relapses, we evaluated the localization, sex ratio, and age of each demyelinating attack, retrospectively. As the results, we found that the attacks in optic nerve and spinal cord accounted for about 8% of all MS and NMO attacks, although NMO comprised only 3% of the Japanese CNS inflammatory demyelinating diseases. Furthermore, relapses in brainstem demonstrate unique characteristics compared to other lesions. Thus, optic nerve and spinal cord still play key roles in the Japanese CNS inflammatory demyelinating diseases of both clinical phenotypes of MS and NMO. 2. Patients and Methods 2.1. Patients and Clinical Evaluation. We retrospectively analyzed the medical records of Japanese patients admitted to the Department of Neurology, Tokyo Metropolitan Neurological Hospital, for the first time between January 1992 and December 21 and identified 78 patients diagnosed as having MS and NMO [1, 11], and we analyzed their baseline clinical characteristics. Then we followed them up

2 ISRN Neurology Characteristics Table 1: Clinical characteristics and initial symptoms of MS and NMO patients. Total of MS and NMO MS NMO n = 78 n = 55 n = 23 Sex Male/female 21 (27%)/57 (73%) 15 (27%)/4 (73%) 6 (26%)/17 (74%) Age at onset, y.o. Mean ± SD 35.3 ± 13.6 32.5 ± 13. a 41.9 ± 13.1 a Duration of disease, years Mean ± SD 5.2 ± 7. 6. ± 7.1 3.3 ± 6.3 EDSS Mean ± SD 3.9 ± 2.5 3.9 ± 2.6 3.9 ± 2.2 Initial symptoms Sensory disturbance 29% 24% 44% Visual loss 26% 27% 22% Double vision or vertigo 12% 15% 4% Acute motor weakness 5% 5% 4% Chronic motor weakness 5% 7% % Sphincter disturbance 4% 2% 9% Ataxia 1% 2% % Consciousness disturbance 1% 2% % Complex 17% 16% 17% a Mean age at onset of NMO patients was significantly older than that of MS patients (P =.5). Student s t-test was used for the statistical analysis. and identified 49 cases of relapsing-remitting-type MS and NMO. We defined each of 116 clinical demyelinating attacks that were confirmed on MRI and optic neuritis diagnosed by ophthalmologists. Thirty-three attacks occurred in 15 NMO patients, and 83 attacks occurred in 34 MS patients. 2.2. Statistical Analysis. Student s t-test or Welch s t-test was used for the statistical analysis of the age, duration of disease, and EDSS. The sex ratio was analyzed using the chi-square test or Fisher s exact probability method (where appropriate). All statistical analyses were performed using a commercial software package (SPSS version 1.J, SPSS Japan Inc., Tokyo, Japan). 3. Results 3.1. Clinical Characteristics of Japanese CNS Demyelinating Disease: Initial Symptoms Cannot Predict the Clinical Phenotypes. Dividing these 78 Japanese CNS demyelinating disease patients into the two clinical phenotypes, NMO comprised 29.5% and MS comprised 7.5%, as previously reported [1]. Table 1 shows the clinical characteristics of all the 78 Japanese CNS demyelinating disease patients. Age at onset was significantly older in NMO than in MS (P =.5). Sex ratio was not different between MS and NMO. Two major initial symptoms were sensory disturbance and visual loss both in MS and NMO. Other symptoms did not have enough number to evidently discuss. Thus, in this analysis in a general view, older age at onset is associated with the larger possibility to be classified to NMO, although sex ratio and the initial symptoms cannot predict the clinical phenotypes in Japanese population. 3.2. Localization of Each Clinical Demyelinating Attack: Optic Nerve and Spinal Cord Were the Major Lesions in Japanese MS. Localization of each of these 116 demyelinating attacks from 49 relapsing-remitting-type MS and NMO patients is shown in Figure 1. Overall, 1.2% occurred in the cerebrum, 9.2% the brainstem, 26.9% the optic nerve, 32.4% spinal cord, 1.2% comprised complex lesions excluding the cerebrum, and 11.1% complex lesions including the cerebrum. Thus, only 21.3% of demyelinating attacks were localized in the cerebrum and 78.7% were optic-spinal lesions, although the clinical phenotype showed that 7% occurred in MS and 3% in NMO. 3.3. Brainstem Lesion Has a Relative Male Predominancy and a Young Age at Attack. The characteristics of each demyelinating localization were further investigated. Figure 2(a) shows that half of the brainstem lesions occurred in males, although there was a remarkable female predominancy for other lesion sites. Furthermore, mean patient age at brainstem attack was 29.6 ± 6. year old and tended to be younger than that for other lesions. Especially, mean patient age at brainstem attack was significantly younger than that at optic nerve attack (42.5 ± 14.4 y.o.) or spinal cord attack (42.6 ± 13.6 y.o.) using Welch s t-test (P <.5) (Figure 2(b)). Brainstem attacks occurred mostly between 2 and 4 years old, although attacks at other localizations were widely distributed from teenage to over 6 years old.

ISRN Neurology 3 1.2% 11.1% 1.2% 32.4% Cerebrum Brainstem Optic nerve Spinal cord Complex excluding the cerebrum Complex including the cerebrum 9.2% 26.9% Figure 1: Localization of each of 116 demyelinating attacks from 49 relapsing-remitting MS and NMO patients. 1.2% involved the cerebrum, 9.2% the brainstem, 26.9% the optic nerve, 32.4% the spinal cord, 1.2% involved complex lesions excluding the cerebrum and, 11.1% complex lesions including the cerebrum. Thus, only 21.3% of demyelinating attacks were localized in cerebrum and 78.7% were optic-spinal lesions, although the clinical phenotype showed that MS comprised 7% and NMO comprised 3%. 4. Discussion This analysis is unique because we examined each patient in detail characterizing each demyelinating attack, although the initial symptoms of each MS patients have been widely discussed. It was reported that visual loss is one of the most common initial symptoms in Japan, although the incidence of sensory and motor dysfunctions is larger than visual loss in the western countries [12, 13]. There had been adequate importance to assess the initial symptoms in the era of when MRI was not invented and the clinical diagnosis of MS was very difficult. However, our study showed that initial symptoms were no longer able to predict the relapses and the clinical phenotypes for each Japanese CNS demyelinating disease patients. Our findings showed that optic nerve and spinal cord lesions were the major and critical lesions in each attack of Japanese CNS demyelinating diseases. Japanese MS has been considered the same disease entity as prototypic western MS. Moreover, recent revision of the McDonald Criteria for MS in 21 clearly defined that once NMO and NMO spectrum disorders have been excluded, Western type MS in Asian population is not fundamentally different from typical MS in the Caucasian population [6]. However, our findings suggest that there might be distinctive Japanese pathogenic features even in MS, and, therefore, optic nerve attacks and spinal cord attacks remain to have critical roles. It might be possible Sex ratio (%) Age at attack (y.o.) 8 6 4 2 8 6 4 2 Female Male 5 5 Cerebrum Brainstem Optic nerve Cerebrum Brainstem (a) (b) 17 14 22 83 86 Optic nerve Spinal cord Spinal cord 78 Complex Complex Figure 2: (a) Sex ratio of each localization of MS attacks. Half of the brainstem lesions occurred in males, although there was a remarkable female predominancy for other lesion sites. (b) Age at attack for each localization of MS attacks. Mean age at brainstem attack was 29.6 ± 6. years old and is significantly younger than themeanageatopticnerveattack(42.5 ± 14.4 y.o.) and spinal cord attack (42.6 ± 13.6 y.o.) using Welch s t-test (P <.5). Regarding other lesions, mean patient age at attacks involving the cerebrum was 42.3 ± 13.5 y.o., and the mean age at the development of complex lesions was 38.7 ± 1.9 y.o. Boxes represent values from the 25th to the 75th percentiles, inner lines represent the median, and whiskers show the minimal and maximal values. that attacks causing visual loss or transverse myelitis are severe and require hospital care; therefore, the number of optic and spinal attacks was increased in this study. However, we think that this hypothesis is inaccurate because the mean EDSS did not differ between NMO and MS. Brainstem lesions demonstrate striking differences in sex ratio and age at relapse compared to other lesions and were frequently seen in young adult males. Although sex differences in the pathomechanism for MS are unsolved problems, this feature would be explained by hormonal and genetic studies [14]. Interferon beta-1b (IFNB-1b) was reported to be effective for not only patients in Western countries but also Japanese relapsing-remitting MS patients according to a randomized, double-blind clinical study [15]. Conversely, IFNB-1b treatment for NMO could increase the relapse rate of NMO or cause severe side effects such as severe skin ulcers at injection sites requiring surgical repair; thus, it should not be administered to NMO patients [16]. We suspect that certain Japanese MS patients whose optic nerve attacks and spinal cord attacks have critical roles might play

4 ISRN Neurology an intermediate role between MS and NMO and that the treatment adequate for those intermediate patients might be not only immunomodulating therapy including IFNB-1b but also immunosuppressive therapy including prednisolone, immunosuppressant, monoclonal antibodies, and biologics. 5. Conclusions Our findings showed that optic nerve and spinal cord lesions were the major and critical lesions in each attack of Japanese MS. There might be the Japanese distinctive pathogenic features even in Western type MS, and, therefore, optic nerve attacks and spinal cord attacks remain to have critical roles in the Japanese population. We suspect that certain Japanese MS patients might play an intermediate role between MS and NMO and that the treatment adequate for those intermediate patients might be not only immunomodulating therapy but also immunosuppressive therapy. References International Panel on the diagnosis of multiple sclerosis, Annals of Neurology, vol. 5, no. 1, pp. 121 127, 21. [12] H. Shibasaki, W. I. McDonald, and Y. Kuroiwa, Racial modification of clinical picture of multiple sclerosis: comparison between British and Japanese patients, the Neurological Sciences, vol. 49, no. 2, pp. 253 271, 1981. [13]D.W.PatyandG.C.Ebers,Multiple Sclerosis, F.A.Davis Company, Philadelphia, Pa, USA, 1998. [14] L. T. Nguyen, M. Ramanathan, B. Weinstock-Guttman, M. Baier, C. Brownscheidle, and L. D. Jacobs, Sex differences in in vitro pro-inflammatory cytokine production from peripheral blood of multiple sclerosis patients, the Neurological Sciences, vol. 29, no. 1-2, pp. 93 99, 23. [15] T. Saida, K. Tashiro, Y. Itoyama, T. Sato, Y. Ohashi, and Z. Zhao, Interferon β-1biseffectiveinjapaneserrmspatients: a randomized, multicenter study, Neurology,vol. 64, no.4,pp. 621 63, 25. [16] Y. Warabi, Y. Matsumoto, and H. Hayashi, Interferon β- 1b exacerbates multiple sclerosis with severe optic nerve and spinal cord demyelination, the Neurological Sciences, vol. 252, no. 1, pp. 57 61, 27. [1] D. M. Wingerchuk, W. F. Hogancamp, P. C. O Brien, and B. G. Weinshenker, The clinical course of neuromyelitis optica (Devic s syndrome), Neurology, vol. 53, no. 5, pp. 117 1114, 1999. [2] D. M. Wingerchuk, V. A. Lennon, C. F. Lucchinetti, S. J. Pittock, and B. G. Weinshenker, The spectrum of neuromyelitis optica, Lancet Neurology, vol. 6, no. 9, pp. 85 815, 27. [3] T. Fukazawa, S. Kikuchi, R. Miyagishi et al., CSF pleocytosis and expansion of spinal lesions in Japanese multiple sclerosis with special reference to the new diagnostic criteria, Journal of Neurology, vol. 252, no. 7, pp. 824 829, 25. [4] V.A.Lennon,T.J.Kryzer,S.J.Pittock,A.S.Verkman,andS.R. Hinson, IgG marker of optic-spinal multiple sclerosis binds to the aquaporin-4 water channel, Experimental Medicine, vol. 22, no. 4, pp. 473 477, 25. [5] T. Misu, K. Fujihara, A. Kakita et al., Loss of aquaporin 4 in lesions of neuromyelitis optica: distinction from multiple sclerosis, Brain, vol. 13, no. 5, pp. 1224 1234, 27. [6] C. H. Polman, S. C. Reingold, B. Banwell et al., Diagnostic criteria for multiple sclerosis: 21 revisions to the McDonald criteria, Annals of Neurology, vol. 69, no. 2, pp. 292 32, 211. [7] J. Kira, T. Kanai, Y. Nishimura et al., Western versus Asian types of multiple sclerosis: immunogenetically and clinically distinct disorders, Annals of Neurology, vol. 4, no. 4, pp. 569 574, 1996. [8] K. Yamasaki, I. Horiuchi, M. Minohara et al., HLA- DPB1 51-associated opticospinal multiple sclerosis: clinical, neuroimaging and immunogenetic studies, Brain, vol. 122, no. 9, pp. 1689 1696, 1999. [9] T. Matsushita, T. Matsuoka, N. Isobe et al., Association of the HLA-DPB1 51 allele with anti-aquaporin-4 antibody positivity in Japanese patients with idiopathic central nervous system demyelinating disorders, Tissue Antigens, vol. 73, no. 2, pp. 171 176, 29. [1] Y. Warabi, K. Yagi, and H. Hayashi, Multiple sclerosis in Tokyo Metropolitan Neurological Hospital: from the view points of north latitude and Japan s rapid economic growth, Clinical Neurology, vol. 43, no. 7, pp. 432 433, 23. [11] W. I. McDonald, A. Compston, G. Edan et al., Recommended diagnostic criteria for multiple sclerosis: guidelines from the

MEDIATORS of INFLAMMATION The Scientific World Journal Gastroenterology Research and Practice Diabetes Research International Endocrinology Immunology Research Disease Markers Submit your manuscripts at BioMed Research International PPAR Research Obesity Ophthalmology Evidence-Based Complementary and Alternative Medicine Stem Cells International Oncology Parkinson s Disease Computational and Mathematical Methods in Medicine AIDS Behavioural Neurology Research and Treatment Oxidative Medicine and Cellular Longevity