ORIGINAL ARTICLE. Fine-Needle Aspiration Biopsy of Salivary Gland Lesions in a Selected Patient Population

Similar documents
Objectives. Salivary Gland FNA: The Milan System. Role of Salivary Gland FNA 04/26/2018

CENTRE. Stanley Medical College Chennai India

There are 3 pairs of major salivary glands, namely

ACCURACY OF FINE-NEEDLE ASPIRATION CYTOLOGY OF SALIVARY GLAND LESIONS IN THE NETHERLANDS CANCER INSTITUTE

Salivary Gland Cytology

Enterprise Interest None

Salivary gland tumor cytologic and histologic correlation: Algorithmic and risk stratification based approaches

ARIZONA SOCIETY OF PATHOLOGISTS 13 TH APRIL 2013 HEAD AND NECK CYTOPATHOLOGY. F ZAHRA ALY, MD, PhD

Fine needle aspiration cytology of the salivary glands: a twelve years experience

Repeat Thyroid Nodule Fine-Needle Aspiration in Patients With Initial Benign Cytologic Results

Salivary Glands 3/7/2017

Cytomorphological study of major salivary gland lesions: a 5-year experience at a tertiary care center

PRELIMINARY CYTOLOGIC DIAGNOSIS: Suspicious for Acinic Cell Carcinoma. Cell Block: Immunohistochemical Studies CYTOLOGIC DIAGNOSIS:

FNA OF SALIVARY GLANDS: A PRACTICAL APPROACH

Role of FNAC in Evaluation of Neck Masses

A Study of Thyroid Swellings and Correlation between FNAC and Histopathology Results

Oncocytic-Appearing Salivary Gland Tumors. Oncocytic, Cystic, Mucinous, and High Grade Salivary Gland Tumors SALIVARY GLAND FNA: PART II

The International Federation of Head and Neck Oncologic Societies. Current Concepts in Head and Neck Surgery and Oncology

Suspicious Cytologic Diagnostic Category in Endoscopic Ultrasound-Guided FNA of the Pancreas: Follow-Up and Outcomes

Review of Literatures

Tissue Effects of Salivary Gland Fine-Needle Aspiration Does This Procedure Preclude Accurate Histologic Diagnosis?

A PROFILE OF PAROTID GLAND TUMORS FROM A TERTIARY CARE HOSPITAL IN PESHAWAR

Role of Fine Needle Aspiration Cytology in the Diagnosis of Swellings in the Salivary Gland Regions: A Study of 712 Cases

Salivary Gland FNA ATYPICAL : Criteria and Controversies

See the latest estimates for new cases of salivary gland cancers in the US and what research is currently being done.

Los Angeles Society Of Pathologists Dr. Shobha Castelino Prabhu

Fine needle aspiration cytology of salivary gland lesions with histopathological correlation - A two year study

Pleomorphic Adenoma: Cytologic Variations and Potential Diagnostic Pitfalls

My Journey into the World of Salivary Gland Sebaceous Neoplasms

Fine-Needle Aspiration Cytology in the Diagnosis of Lymphoma The Next Step

Salivary Gland Cytology: A Clinical Approach to Diagnosis and Management of Atypical and Suspicious Lesions

Differential Diagnosis of Oral Masses. Palatal Lesions

Cytological Diagnosis of Salivary Gland Lesions with Histopathological Correlation

Diagnostic value of core needle biopsy and fine-needle aspiration in salivary gland lesions

Cellular Dyscohesion in Fine-Needle Aspiration of Breast Carcinoma Prognostic Indicator for Axillary Lymph Node Metastases?

ORIGINAL ARTICLE Diagnostic challenges in fine needle aspiration cytology of salivary gland lesions

Research Article Transmucosal Fine Needle Aspiration of Oral and Pharyngeal Lesions

Ben Witt, MD University of Utah/ARUP Laboratories Assistant Professor of Anatomic Pathology

J of Evolution of Med and Dent Sci/ eissn , pissn / Vol. 3/ Issue 09/ Mar 3, 2014 Page 2087

Update on Thyroid FNA The Bethesda System. Shikha Bose M.D. Associate Professor Cedars Sinai Medical Center

Fine Needle Aspiration Cytology as a Diagnostic Tool in Parotid Swellings Among Patients Attending Khartoum Teaching Dental Hospital

Salivary gland Workshop Trondheim 31th may 2012

Differentiating Malignant from Benign Lesions- The value of Preoperative Cytology. Management of Parotid Neoplasms. Original Article.

Audit. Validity of fine needle aspiration cytology in the diagnosis of salivary gland lesions Bopagoda TPM 1, Williams H 2.

Clinical, Cytological and Histopathological Study of

DISORDERS OF THE SALIVARY GLANDS Neoplasms Dr.M.Baskaran Selvapathy S IV

Fine Needle Aspiration Cytology of Neck Masses in a Hospital

Ultrasonography-Guided Core-Needle Biopsy of Parotid Gland Masses

THE DIAGNOSTIC VALUE OF FINE NEEDLE ASPIRATION CYTOLOGY IN MASSES OF THE SALIVARY GLANDS

Int.j.pathol.2017;15(4): Original Article

Predictors of Malignancy in Thyroid Fine-Needle Aspirates Cyst Fluid Only Cases

Fine-needle aspiration cytology in the management of parotid masses: Evaluation of 249 patients

Fine-Needle Aspiration and Cytologic Findings of Surgical Scar Lesions in Women With Breast Cancer

Cytopathological study of salivary gland lesion in patients at a tertiary care centre, Indore: a one-year study

Cystic Lesion of the Parotid Gland with Squamous Metaplasia Mistaken for Squamous Cell Carcinoma DO NOT DUPLICATE

Contents. Basic Ultrasound Principles and Terminology. Ultrasound Nodule Characteristics

ROSE in EUS guided FNA of Pancreatic Lesions

International Journal of Scientific & Engineering Research Volume 8, Issue 5, May-2017 ISSN

The role of the cytologist in breast cancer screening

Huq AHMZ 1, Aktaruzzaman M 2, Habib MA 3, Islam MS 4, Amin ASA 1

Application of Sal classification to parotid gland fine-needle aspiration cytology: 10-year retrospective analysis of 312 patients

Pancreatic malignant tumors are the fifth leading cause of cancerrelated

40th European Congress of Cytology Liverpool, UK, 2-5 th October 2016

performed to help sway the clinician in what the appropriate diagnosis is, which can substantially alter the treatment of management.

Mædica - a Journal of Clinical Medicine

Thyroid Cytopathology: Weighing In The Bethesda System

ORIGINAL ARTICLE. Masses of the Salivary Gland Region in Children

Outline 11/2/2017. Pancreatic EUS-FNA general aspects. Cytomorphologic features of solid neoplasms/lesions of the pancreas

Salivary Gland Imaging. Mary Scanlon MD FACR October 2016

Fine-needle aspiration (FNA) has been used increasingly

Zubair W. Baloch, MD, PhD: Consultant for Veracyyte, INC Tarik M. Elsheikh, MD: Nothing to disclose

doi: /j.anl

Department of General Surgery, Sri Manakula Vinayagar Medical College and Hospital, Pondicherry, India ABSTRACT

ORIGINAL ARTICLE PROGNOSTIC IMPLICATION OF SENTINEL LYMPH NODE BIOPSY IN CUTANEOUS HEAD AND NECK MELANOMA

Carcinoma of Unknown Primary site (CUP) in HEAD & NECK SURGERY

Fine Needle Aspiration Cytology in Parotid Lumps

A 60-year old Man with Left Jaw Mass. Simon Chiosea, MD University of Pittsburgh medical Center 3/15/2016

PLEOMORPHIC ADENOMA ( BENIGN MIXED TUMOR )

DIAGNOSTIC PROBLEMS IN CYTOLOGICAL DIAGNOSIS OF MUCOEPIDERMOID CARCINOMA: REPORT OF 6 CASES WITH HISTOPATHOLOGICAL CORRELATION

Real-time elastography of parotid gland masses: the value of strain ratio for the differentiation of benign from malignant tumors

Management of Salivary Gland Malignancies. No Disclosures or Conflicts of Interest. Anatomy 10/4/2013

system and the Bethesda system applied for reporting thyroid cytopathology

TYPES and FREQUENCY of SALIVARY GLAND TUMORS in MAJOR and MINOR. Karl Donath Department of Oral Pathology (Director:Prof. Dṛ Dr.

Abstract. Introduction. Salah Abobaker Ali

Cytology for the Endocrinologist. Nicole Massoll M.D

Imaging Technique. Ultrasound Imaging of the Salivary Glands. Parotid Gland. The Major Salivary Glands. Parotid Gland: Stenson s Duct.

Ultrasound Guided Fine Needle Aspiration Biopsy of Retroperitoneal Masses

(CYLINDROMA) ATLAS OF HEAD AND NECK PATHOLOGY ADENOID CYSTIC CARCINOMA

Original Article Efficacy of fine needle aspiration cytology in Head and Neck lesions Singal P 1, Bal MS 2, Kharbanda J 3, Sethi PS 4

Pleomorphic adenoma of submandibular gland: not so common occurrence

Cancers of unknown primary : Knowing the unknown. Prof. Ahmed Hossain Professor of Medicine SSMC

Update in Salivary Gland Pathology. Benjamin L. Witt University of Utah/ARUP Laboratories February 9, 2016

The Role of Fine Needle Aspiration Cytology in the Diagnosis and Management of Thymic Neoplasia

Sonographically Guided Core Biopsy of A Parotid Mass

Workshop 2. Controversies and Diagnostic Challenges in Head and Neck Cytopathology. Zubair Baloch, MD,PhD. Veracyte, Inc: Consultant

Cytologic Evaluation of the Enlarged Neck Node: FNAC Utility in Metastatic Neck Disease

Fine needle aspiration of breast masses: an analysis of 1533 cases in private practice

Volume 2 Issue ISSN

Percutaneous Aspiration Biopsy of Lymph Nodes

AUDIT OF FNA CYTOLOGY, ADEQUACY AND REPORTING AT THE DERRIFORD HOSPITAL ONE STOP HEAD & NECK LUMP CLINIC

Transcription:

ORIGINAL ARTICLE Fine-Needle Aspiration Biopsy of Salivary Gland Lesions in a Selected Patient Population Erik G. Cohen, MD; Snehal G. Patel, MD; Oscar Lin, MD; Jay O. Boyle, MD; Dennis H. Kraus, MD; Bhuvanesh Singh, MD; Richard J. Wong, MD; Jatin P. Shah, MD; Ashok R. Shaha, MD Objective: To report the role of selective use of preoperative fine-needle aspiration biopsy (FNAB) in patients with major salivary gland lesions at a tertiary care cancer center. Design: Retrospective review of FNAB results compared with final histologic diagnosis as the criterion standard. Setting: An academic tertiary care cancer center. Patients: A consecutive series of 258 patients who underwent FNAB of major salivary gland lesions between 1996 and 2000, of whom 169 had surgical resection. Main Outcome Measures: Predictive value, sensitivity, specificity, and accuracy. Results: FNAB was performed in 169 (37%) of 463 salivary gland lesions undergoing surgical procedures. A total of 126 lesions were in the parotid gland and 44 in the submandibular gland. Seventy-nine lesions (46%) were malignant. There were 150 FNAB specimens (89%) that were satisfactory for evaluation. The FNAB diagnosis of malignant or suspicious lesion had positive and negative predictive values of 84% and 77%, respectively. Ten of 20 false-negative FNAB results were low-grade lymphoma on final histologic assessment. Fine-needle aspiration biopsy diagnosis of a benign neoplasm had positive and negative predictive values of 83% and 88%, respectively. A cytopathologic diagnosis of a nonneoplastic lesion was predictive in only 47% of cases. Fifteen (47%) of 32 lymphocyte-predominant FNAB specimens were lymphoma on final histologic assessment. Ten (20%) of 49 patients with history of a solid, non head and neck malignancy had evidence of distant metastasis to the salivary gland by histologic and/or cytopathologic assessment. Conclusions: An FNAB diagnosis of malignant or neoplastic major salivary gland disease is generally predictive of final histologic diagnosis. The predictive value of a negative FNAB finding is low, and should not supersede clinical suspicion. Cytologic findings of a lymphocyte-predominant lesion should prompt further workup to rule out lymphoma. Arch Otolaryngol Head Neck Surg. 2004;130:773-778 From the Head and Neck Service, Department of Surgery (Drs Cohen, Patel, Boyle, Kraus, Singh, Wong, Shah, and Shaha), and the Department of Pathology (Dr Lin), Memorial Sloan-Kettering Cancer Center, New York, NY. The authors have no relevant financial interest in this article. FINE-NEEDLE ASPIRATION BIopsy (FNAB) is controversial in the evaluation of salivary gland lesions. Routine use of FNAB in the evaluation of all salivary gland masses is not absolutely necessary. Well-defined parotid masses are generally treated with surgical resection whether FNAB indicates benign or malignant disease. The extent of surgery and decisions regarding management of the facial nerve are made based on intraoperative findings rather than results of FNAB. However, there are clinical scenarios in which FNAB can be a useful diagnostic tool. Fine-needle aspiration biopsy may be useful in evaluating poorly defined salivary gland masses, and to confirm clinical suspicion of malignant disease in order to counsel patients before surgery. Fine-needle aspiration biopsy may be useful in diagnosing metastatic carcinoma, especially with submandibular gland masses, and to help distinguish surgically treatable from nonsurgical pathologic conditions, such as lymphoma. Fine-needle aspiration biopsy may also be useful in evaluation of salivary gland masses in patients who are poor surgical candidates. Prior studies have reported sensitivity of FNAB in detecting malignant lesions to range widely, from 29% to 97%. High specificity has been reported, ranging from 84% to 100%. 1-10 In many of these studies, FNAB was routinely performed for all salivary lesions before surgery. In addition, the rate of malignant lesions in most of these studies was low, ranging from 15% to 32%, 2-9 consistent with the expected rate of malignant disease in an unselected population. 773

Table 1. Demographic Data Age, mean (range), y 57 (13-87) Sex, No. (%) Male 92 (54) Female 78 (46) Site of lesion, No. (%) Parotid 126 (74) Submandibular 44 (26) Size of lesion, median (range), cm 2.0 (0.3-8.0) Table 2. Histologic Diagnoses of Salivary Gland Lesions The patient population at a tertiary care cancer center generally includes a large number of patients with prior malignancy and patients referred for management of salivary gland masses that are suspicious for malignant disease. Fine-needle aspiration biopsy is used in the evaluation of a selected group of salivary gland masses at our institution. The aim of this study was to report the accuracy of preoperative FNAB of major salivary gland lesions used selectively in a tertiary cancer referral center. We reviewed the experience at the Memorial Sloan-Kettering Cancer Center (MSKCC) over a 5-year period. Results of salivary gland FNAB were compared with histologic findings after resection to define the accuracy of this diagnostic procedure in a selected patient population. METHODS No. (%) Histologic Diagnosis Parotid Submandibular Total No. Malignant Acinic cell carcinoma 3 (5) 0 3 Adenoid cystic carcinoma 2 (3) 1 (6) 3 Lymphoma 14 (23) 7 (39) 21 Malignant mixed 5 (8) 1 (6) 6 Melanoma 7 (11) 1 (6) 8 Mucoepidermoid 7 (11) 4 (22) 11 Myoepithelial carcinoma 1 (2) 1 (6) 2 Poorly differentiated carcinoma 3 (5) 0 3 Salivary ductal carcinoma 7 (11) 0 7 Squamous cell carcinoma 6 (10) 1 (6) 7 Other malignant 6 (10) 2 (11) 8 Total Malignant 61 18 79 Benign Hemangioma 2 (3) 0 2 Lipoma 1 (2) 1 (4) 2 Hyperplastic lymph node 12 (18) 2 (8} 14 Monomorphic adenoma 4 (6) 1 (4) 5 Oncocytoma 6 (9) 0 6 Pleomorphic adenoma 26 (39) 8 (32) 34 Sialadenitis 1 (2) 11 (44) 12 Warthin tumor 10 (15) 0 10 Other benign 4 (6) 2 (8) 6 Total Benign 66 25 91 A total of 463 patients treated at the MSKCC between January 1, 1996, and December 31, 2000, who had FNAB and/or surgical excision or biopsy of previously untreated major salivary gland lesions were identified using institutional computer databases. All FNABs were performed at MSKCC or cytopathology slides from other institutions were officially interpreted by an MSKCC cytopathologist. Surgical excision or biopsy was performed by 1 of 7 staff members of the Head and Neck Service. Medical records were reviewed to retrospectively collect clinical and pathology data. Patients with a history of previously treated salivary gland neoplasm who had possible recurrent disease at the primary site were excluded from the analysis. Demographic, clinical, cytopathology, and histopathology data were entered into a computer database (Microsoft Excel 2000; Microsoft Corp, Redmond, Wash). Details of cytologic interpretation, including specimen quality, cell types identified, cytologic impression, specific cytologic diagnosis, and specific histologic diagnosis, were recorded. Cytopathologic and histologic findings were categorized as malignant, suspicious, benign neoplastic, or nonneoplastic. Sensitivity, specificity, accuracy, positive predictive value (PPV), and negative predictive value (NPV) of FNAB were calculated using histologic diagnosis of the surgical specimen as the criterion standard. All cases in which cytopathology did not correlate with histology were rereviewed by a cytopathologist (O.L.) to identify whether specimen quality or sampling error may have contributed to this lack of correlation. RESULTS A total of 463 salivary gland surgical procedures were performed during the study period, of which 169 (37%) also had a preoperative FNAB (group A). This group forms the basis of this study (Table 1). A separate cohort of 89 patients had an FNAB without undergoing surgical excision of the salivary gland mass (group B), so that a total of 258 salivary gland FNAB specimens were evaluated during the study period. One hundred eight (64%) FNABs were performed at MSKCC, while the remaining 61 (36%) were performed elsewhere prior to referral to our service. One hundred fifty FNAB specimens were satisfactory for evaluation (89%), while the remaining 19 FNAB specimens (11%) were unsatisfactory for evaluation on initial review on the basis of insufficient cells or excessive artifact. The rate of unsatisfactory FNAB specimens was similar for those performed at MSKCC (13%) and those reviewed at MSKCC (8%). Seventy-nine (46%) of 170 lesions were malignant. Distribution of histologic diagnoses of parotid (n=127) and submandibular lesions (n=43) is summarized below and in Table 2. Histologic Diagnosis Parotid Lesions Submandibular Lesions Malignant 61 (48%) 18 (43%) Benign neoplastic 49 (39%) 11 (26%) Nonneoplastic 17 (13%) 14 (33%) Representative photomicrographs of cytopathologic specimens are shown in the Figure. One patient had 2 different malignancies in a single parotid resection specimen (lymphoma and squamous cell carcinoma). The sensitivity, specificity, accuracy, PPV, and NPV for FNAB are shown in Table 3. An FNAB specimen revealing suspicious or malignant cells predicted malignant histologic diagnosis in 84% of cases. The NPV was 77%, indicating that a negative FNAB finding (no evidence of malignancy) was actually malignant in 23% of cases. Cytologic diagnosis of a benign neoplasm by FNAB correlated with histologic diagnosis of a benign neoplasm in 83% of cases. Cytologic diagnosis of neoplastic 774

A B C D Representative photomicrographs of cytopathology specimens. A, Low-grade lymphoma involving salivary gland with a uniform population of small lymphocytes (Papanicolaou stain, 400); B, squamous cell carcinoma showing typical keratinized epithelial cells (Papanicolaou stain, 400); C, pleomorphic adenoma with bland ductal cells associated with single myoepithelial cells and myxoid stroma (Papanicolaou stain, 200); D, mucoepidermoid carcinoma showing epidermoid cells and intermediate cells (Papanicolaou stain, 400). Table 3. Accuracy of Salivary Gland Fine-Needle Aspiration Biopsy* Cytologic Impression Positive Predictive Value Negative Predictive Value Sensitivity Specificity Accuracy Malignant or suspicious 84 77 73 87 80 Benign neoplastic 83 88 72 93 87 Neoplastic (benign or malignant) 94 47 80 79 79 *Values are percentages. lesions in general (either benign or malignant) correlated with histologic diagnosis of a neoplastic lesion in 94% of cases. It is noteworthy that patients with an FNAB specimen with no evidence of neoplastic cells actually had a neoplastic lesion, either benign or malignant, in more than one half of such cases (53%) on final histologic assessment. A total of 20 patients had false-negative FNAB diagnoses for malignancy. Ten (50%) of these 20 patients had low-grade lymphoma diagnosed by open biopsy. Lymphocytes were present in the FNAB specimen in all cases of lymphoma. The remaining 10 false-negative FNAB findings included 3 cases of malignant mixed tumor, 2 mucoepidermoid carcinomas, 2 acinic cell carcinomas, 1 metastatic melanoma, 1 metastatic neuroendocrine carcinoma, and 1 squamous cell carcinoma. In 4 of these cases, the FNAB was interpreted as a benign neoplastic lesion and 1 case was interpreted as a branchial cleft cyst. After rereview of the cytopathology slides, sampling error was evident in 5 cases. Ten benign neoplasms diagnosed on final histologic assessment had no neoplastic cells identified with FNAB, including 3 oncocytomas, 2 Warthin tumors, 2 pleomorphic adenomas, 1 hemangioma, 1 lipoma, and 1 benign lymphoepithelial lesion. Ten specimens with false-positive FNAB findings, interpreted as cytologically suspicious or malignant, were benign neoplasms (n=6), sialadenitis (n=3), or a lymph node (n=1) by histologic examination. In 3 of the 6 benign neoplasms, the correct diagnosis was part of the differential diagnosis offered. The accuracy of cytologic diagnosis according to final histologic assessment is summarized in Table 4. The type of lesion, ie, malignant, benign neoplastic, or nonneoplastic, was suggested by the FNAB in most cases. Notable exceptions included lymphoma and malignant mixed tumor. A more clinically meaningful approach is evaluating the value of specific FNAB diagnoses in correctly predicting final histologic diagnosis (Table 5). This table 775

Table 4. Diagnostic Accuracy of Fine-Needle Aspiration Biopsy by Specific Histologic Diagnosis Histologic Diagnoses includes the subset of specimens in which the cytologist was able to offer a specific diagnosis or considered the FNAB finding to be malignant or suspicious (n=105). Cytopathologic impression of malignancy or benign neoplasm was predictive in most cases. The cytopathologic n Cytologic Assessment, % Exact Diagnosis Correct Impression Malignant neoplasms Lymphoma 18 28 39 Mucoepidermoid carcinoma 11 55 82 Salivary duct carcinoma 7 0 100 Malignant mixed 6 17 50 Adenoid cystic 3 67 100 Poorly differentiated carcinoma 3 0 100 Acinic cell carcinoma 3 0 33 Melanoma 7 57 86 Squamous cell carcinoma 7 57 86 Other 8 50 88 Benign neoplasms Pleomorphic adenoma 28 82 89 Warthin tumor 9 67 89 Oncocytoma 6 17 67 Monomorphic adenoma 4 25 75 Other 3 0 67 Nonneoplastic Sialadenitis 12 0 83 Lymph node 13 38 92 Other 3 0 100 Total 151 39 79 Table 5. Accuracy of Specific Cytologic Diagnoses Compared With Histologic Assessment Cytologic Diagnosis n Histologic Assessment, % Exact Diagnosis Correct Impression (Malignant/ Benign Neoplastic/ Nonneoplastic) Malignant neoplasms Lymphoma 6 83 83 Mucoepidermoid carcinoma 8 75 100 Malignant mixed 2 50 100 Adenoid cystic carcinoma 4 50 100 Poorly differentiated 8 0 88 carcinoma Melanoma 4 100 100 Squamous cell carcinoma 7 71 100 Adenocarcinoma 1 100 100 Suspicious/malignant 11 0 82 (no specific diagnosis) Benign neoplasms Pleomorphic adenoma 32 72 84 Warthin tumor 9 67 100 Oncocytoma 1 100 100 Monomorphic adenoma 2 50 100 Nonneoplastic Lymph node 10 50 50 diagnosis of a benign lymph node, however, was actually lymphoma on final histologic assessment in 50% of those cases. Thirty-two cytopathology specimens, including 24 parotid and 8 submandibular lesions, contained lymphocytes or inflammatory cells with no salivary epithelium present. These were associated with lymphoma in 15 patients (47%). In only 5 of these cases were atypical lymphocytes or lymphocytes suspicious for lymphoma detected by routine cytopathology. The remaining 17 patients had 9 hyperplastic lymph nodes, 2 cases of sialadenitis, 1 oncocytoma, 1 Warthin tumor, 1 hemangioma, 1 acinic cell carcinoma, and 1 metastatic neuroendocrine carcinoma. When the analysis was limited to FNAB specimens containing salivary epithelium, the positive and negative predictive values for detecting malignancy were 82% and 85%, respectively. While the NPV was higher in this subgroup than the overall study population, malignant cells were still not detected in 15% of FNABs from patients with malignant masses. While the PPV of suspicious or malignant cells in a lymphocyte predominant FNAB was 100%, the NPV was only 57%. Forty-eight patients (28%) had a documented diagnosis of malignancy within 10 years before presentation. Malignant salivary gland lesions were found in 31 (65%) of these 48 patients compared with 48 (39%) of 122 patients with no history of malignant disease ( 2 P=.005). Ten (77%) of 13 patients with history of a head and neck malignancy had metastases (8 parotid, 2 submandibular) from their index primary tumor, including 4 of 5 patients with cutaneous squamous cell carcinoma, 4 of 5 patients with cutaneous melanoma, 1 patient with Merkel cell carcinoma, and 1 of 2 patients with oral cavity squamous cell carcinoma. Three of 7 patients with a history of lymphoma had recurrent lymphoma, while 3 of these patients had primary salivary gland malignancies. Twenty-five patients had a history of a non head and neck solid malignant tumor, and 3 of these patients had metastases to the salivary gland on final histologic assessment (gastric adenocarcinoma, neuroendocrine carcinoma, and lung adenocarcinoma). Nine (36%) of these 25 patients had a diagnosis of a new malignancy, a rate similar to that of patients with no history of malignant tumors. Among the 89 patients in group B, who had FNAB but no surgical excision, 46 patients (52%) had a documented prior malignancy. Seven of 24 patients with a history of a non head and neck, solid malignant tumor had cytologic evidence of distant metastases, including 3 lung carcinomas, 1 breast carcinoma, 1 prostate leiomyosarcoma, 1 renal cell carcinoma, and 1 pancreatic adenocarcinoma. Considering all patients from groups A and B with a prior history of a non head and neck, solid malignant tumor, 10 (20%) of 49 patients had evidence of distant metastasis to the salivary gland by either histologic and/or cytopathologic assessment. The cytopathologic interpretation of FNAB specimens from the remaining 82 patients in group B without evidence of distant metastases included 12 (15%) 776

FNAB specimens unsatisfactory for evaluation, 18 (22%) benign salivary tumor, 3 (4%) suspicious for neoplasm, 6 (7%) primary salivary malignancy, 5 (6%) metastatic carcinoma, 4 (5%) lymphoma, 11 (13%) lymph node, 16 (20%) negative for malignant cells, 1 (1%) cyst, and 6 (7%) inflammatory. These findings were not confirmed by histologic evaluation. COMMENT Our experience with selective use of FNAB for salivary gland masses in a tertiary care cancer center revealed a relatively high PPV of cytopathologic findings of suspicious or malignant cells. The NPV was only 77%, implying that even in the absence of suspicious or malignant cells, a patient with a benign FNAB result may have a malignancy in 23% of cases. Similarly, cytopathologic findings of neoplastic cells, either benign or malignant, predicted a neoplastic lesion on final histologic assessment in 94% of cases. The NPV, however, was only 47%. This means that more than half of FNAB specimens with no neoplastic cells were actually neoplastic lesions on final histologic assessment. Reported predictive value of salivary gland FNAB has varied widely between studies. A study by Al- Khafaji et al 1 with a patient population similar to the present study reported PPV and NPV of 85% and 84%, respectively. This study also reported correct identification of 10 of 10 cases of lymphoma based on FNAB, although the lymphoma grade and type was not specified. Other studies with a lower proportion of malignant lesions have reported a wide range of predictive values. Atula et al 5 reported PPV and NPV for parotid malignancy of 70% and 87%, respectively. The same group reported PPV and NPV of submandibular masses of 50% and 86%, respectively. 4 Zurrida et al 8 however, reported both high PPV and NPV of 100% and 90%, respectively. Most studies of salivary gland FNAB have reported results in terms of sensitivity and specificity. Diagnostic sensitivity of cytopathology in detecting malignant disease was 73% in this study. The implication of this finding is that if FNAB were used as a screening tool in this patient group, 27% of malignant lesions would have been missed. These values fall within the wide range of sensitivity reported in other studies, from values as low as 27% up to 97%. 2-10 The reasons for such a wide range of reported sensitivity and predictive values is unclear, but may be related to technical factors, such as experience of the physician performing the FNAB, and the availability of immediate and expert cytopathologic examination to assess adequacy of the specimen. Specificity of a cytologic diagnosis of suspicious or malignant cells was 87% in this study. Specificity reported in most studies has been similarly high, in the range of 84% to 100%. 2-10 Sensitivity and specificity of 82% and 86%, respectively, were reported from another tertiary care cancer center with a patient population similar to ours. 1 The false-negative FNAB findings included a variety of lesions. A common reason for false-negative FNAB findings is sampling error. In particular, malignant mixed tumors are heterogeneous lesions, and frequently contain both benign and malignant features. Similarly, lowgrade mucoepidermoid carcinomas are difficult to diagnose by cytopathologic evaluation alone because of the heterogeneous cellular population and scant cellularity. The potential for false-negative FNAB findings has been highlighted in several studies. Atula et al, 5 reported on 187 patients who underwent parotid FNAB with histologic confirmation. Only 52% of malignant lesions were correctly diagnosed by cytopathologic assessment. In particular, diagnosis of mucoepidermoid carcinoma, adenoid cystic carcinoma, lymphoma, and squamous cell carcinoma was frequently missed by FNAB alone. Similar to our study, 55% of FNAB specimens without neoplastic cells were neoplastic lesions on final histologic assessment. Another study published by Atula et al 4 revealed false-negative FNAB results in 10 of 14 submandibular malignancies, including 5 lymphomas and 3 adenoid cystic carcinomas. Zurrida et al 8 reported false-negative FNAB findings in 9 (29%) of 31 parotid malignancies, including several mucoepidermoid, acinic cell, adenoid cystic, and myoepithelial carcinomas. Al-Khafaji et al 1 reported 13 false-negative FNAB findings out of 76 malignant tumors (17%). These included several cases of lowgrade mucoepidermoid carcinoma, squamous cell carcinoma, acinic cell carcinoma, and malignant mixed tumors. This study highlights the difficulty in diagnosing lowgrade lymphoma based on FNAB alone. Low-grade lymphoma accounted for half of the falsely negative FNAB results in our experience. A mixed population of benign inflammatory cells and malignant lymphocytes, as well as lack of cellular atypia, makes this diagnosis difficult by cytology. Similar findings have been described in several reports. Zurrida et al 8 reported correct identification of only 2 of 7 cases of parotid lymphoma by FNAB, and both of these were high-grade lymphoma. The difficulty in diagnosis of lymphoma by FNAB is not unique to the salivary glands. Pilotti et al 11 in a study of lymph node FNABs, included 88 cases of lymphoma. Sixteen (100%) of 16 cases of high-grade lymphoma were correctly identified by FNAB; however, only 23 (64%) of 36 cases of low-grade lymphoma were identified. The patients in the present study underwent open biopsy for definitive diagnosis of lymphoma. Although several studies have reported high rates of diagnosis and subclassification of lymphomas by FNAB and flow cytometry, 12,13 accurate classification of a low-grade lymphoma usually requires an open biopsy to obtain adequate tissue samples. The high rate of malignant lymphoma in patients with FNAB specimens containing many lymphocytes was a striking finding in this study. Forty-seven percent of these cases were lymphomas on final histologic assessment. Chai et al 12 reported similar findings in a study of salivary gland FNABs with prominent lymphoid component. The large number of lymphomas may, in part, reflect a selection bias in our institution. Our philosophy regarding salivary gland FNAB has been to use this investigation in selected clinical scenarios. These include evaluation of poorly defined salivary gland masses, suspected nonsalivary pathology (eg, lymphoma), and suspected recurrent or metastatic disease to the salivary gland. Fine-needle aspiration biopsy 777

has also been used, at the surgeon s discretion, to confirm malignant disease in order to counsel patients regarding extent of surgical resection and possible neck dissection. The selection criteria for patients who received FNAB in this study are difficult to precisely define, but were generally performed for the above reasons. Only 37% of all patients undergoing salivary gland resection underwent preoperative FNAB during the study period. The rate of malignant disease in this group was 46%, compared with 33% of patients who had resection without preoperative FNAB. This reflects the higher clinical suspicion for malignant lesions in patients who underwent preoperative FNAB. We do not advocate routine use of FNAB in the evaluation of well-defined parotid masses, because it generally does not alter the surgical plan or extent of resection. More important, if interpreted out of context, a falsenegative FNAB finding may dissuade the patient and surgeon from pursuing an indicated surgical procedure. Management of the facial nerve is based on preoperative facial nerve function and intraoperative findings. In most cases, a functioning facial nerve or its branches are not sacrificed unless grossly invaded by tumor. A preoperative FNAB does not help with this determination. However, the cytologic diagnosis of a malignant lesion may allow for improved preoperative counseling of the possibility of facial nerve weakness and rehabilitation. When interpreting FNAB results from salivary gland masses, one must keep in mind the limitations of FNAB. A cytologic diagnosis of a malignant or benign neoplastic lesion is, in general, predictive of final histologic diagnosis, although 16% of malignant cytopathologic impressions were benign on final histology in this study. A negative FNAB specimen, one without neoplastic or malignant cells, does not reliably rule out a malignant or neoplastic lesion. An FNAB specimen with predominantly lymphocytes without salivary epithelium was frequently associated with low-grade lymphoma on final histologic diagnosis even when suspicious or malignant cells were not identified, and this finding should prompt further workup for lymphoma. The possibility of salivary epithelial tumor cannot be ruled out by a lymphocyte predominant FNAB. The findings in this study supports the use of FNAB in several clinical scenarios: (1) evaluation of patients with prior history of head and neck skin or upper aerodigestive malignancy; (2) evaluation of patients with prior history of non head and neck solid tumors; and (3) evaluation of suspected nonsalivary pathology, with the caveats that a negative FNAB finding by itself does not rule out lymphoma or other neoplastic diseases, and that a lymphocyte predominant cytology specimen should be interpreted by the clinician as suspicious for lymphoma. CONCLUSIONS Selective use of FNAB of major salivary gland masses yielded a PPV of 84% and an NPV of 77%. Lymphocytepredominant FNAB specimens were found to have a low predictive value and, by themselves, cannot reliably identify low-grade lymphoma. Such an FNAB finding should prompt further workup for lymphoma, and the possibility of a primary salivary tumor should also be considered. Fine-needle aspiration biopsy has a useful role in the evaluation of salivary gland masses in patients with a history of head and neck malignancy, including cutaneous malignancy, a history of a non head and neck solid malignant tumor, or a history of lymphoma to rule out recurrent or metastatic disease. When FNAB is used to rule out lymphoma, the difficulty in diagnosing lowgrade lymphoma by FNAB should be recognized. Fineneedle aspiration biopsy may also be a useful diagnostic tool in the preoperative counseling of patients with salivary gland masses. Regardless of the situation in which FNAB is used, a negative FNAB finding should not supersede clinical judgment in the management of a clinically suspected malignant or neoplastic lesion of the major salivary glands. Submitted for publication May 6, 2003; final revision received October 1, 2003; accepted October 23, 2003. This work was supported by grant TR32 CA09685 from the National Institutes of Health, Bethesda, Md (Dr Cohen). This study was presented as a poster at the American Head and Neck Society Meeting; May 11, 2002; Boca Raton, Fla. Corresponding author and reprints: Ashok R. Shaha, MD, Head and Neck Service, 1275 York Ave, New York, NY 10021 (e-mail: shahaa@mskcc.org). REFERENCES 1. Al-Khafaji BM, Nestok BR, Katz RL. Fine-needle aspiration of 154 parotid masses with histologic correlation: ten-year experience at the University of Texas M. D. Anderson Cancer Center. Cancer. 1998;84:153-159. 2. Wong DSY, Li GKH. The role of fine-needle aspiration cytology in the management of parotid tumors: a critical clinical appraisal. Head Neck. 2000;22:469-473. 3. Jayaram G, Verma AK, Sood N, Khurana N. Fine needle aspiration cytology of salivary gland lesions. J Oral Pathol Med. 1994;23:256-261. 4. Atula T, Grenman R, Laippala P. Fine-needle aspiration cytology of submandibular lesions. J Laryngol Otol. 1995;109:853-858. 5. Atula T, Grenman R, Laippala P, et al. Fine-needle aspiration biopsy in the diagnosis of parotid gland lesions: evaluation of 438 biopsies. Diagn Cytopathol. 1996; 15:185-190. 6. Boccato P, Altaville G, Blandamura S. Fine needle aspiration biopsy of salivary gland lesions: a reappraisal of pitfalls and problems. Acta Cytol. 1998;42:888-898. 7. Cajulis RS, Gokaslan ST, Yu GH, Frias-Hidvegi D. Fine needle aspiration biopsy of salivary glands. Acta Cytol. 1997;41:1412-1420. 8. Zurrida S, Alasio L, Tradati N, et al. Fine-needle aspiration of parotid masses. Cancer. 1993;72:2306-2311. 9. Hee CGQ, Perry CF. Fine-needle aspiration cytology of parotid tumors: is it useful? ANZ J Surg. 2001;71:345-348. 10. Chan MKM, McGuire LJ, King W. Cytodiagnosis of 112 salivary gland lesions. Acta Cytol. 1992;36:353-363. 11. Pilotti S, Di Palma S, Alasio L, Bartoli C, Rilke F. Diagnostic assessment of enlarged superficial lymph nodes by fine needle aspiration. Acta Cytol. 1993;37: 853-866. 12. Chai C, Dodd LG, Glasgow BJ, Layfield LJ. Salivary gland lesions with a prominent lymphoid component: cytologic findings and differential diagnosis by fineneedle aspiration biopsy. Diagn Cytopathol. 1997;17:183-190. 13. Young NA, Al-Saleem TI, Ehya H, Smith MR. Utilization of fine-needle aspiration cytology and flow cytometry in the diagnosis and subclassification of primary and recurrent lymphoma. Cancer. 1998;84:252-261. 778