Predicting the Path of Infectious Diseases

Similar documents
Preparing for a Pandemic: What Parents Need to Know About Seasonal and Pandemic Flu

FACT SHEET FOR ADDITIONAL INFORMATION CONTACT

SHOULD THE US DEVELOP AND STOCKPILE VACCINES AGAINST A(H5N1) When first reading this question, one s instinct is of course to say yes!

Case Studies in Ecology and Evolution. 10 The population biology of infectious disease

How Math (and Vaccines) Keep You Safe From the Flu

Mathematical Modeling of Infectious Diseases

Working Papers Project on the Public and Biological Security Harvard School of Public Health 17.

County of Santa Cruz. General Questions About Measles HEALTH SERVICES AGENCY. Public Health Division. What is measles?

Step 1: Learning Objectives

Disease dynamics: understanding the spread of diseases

Swine flu deaths expected to rise

I also want to thank the 56 members of the Task Force for all their hard work in helping shape the draft plan for the institution.

MERS. G Blackburn DO, MACOI Clinical Professor of Medicine MSUCOM

or seen with seasonal influenza. So we will continue to follow this and see how the picture of clinical symptoms evolves.

NCCID RAPID REVIEW. 1. What are the case definitions and guidelines for surveillance and reporting purposes?

Analysis on the Risk of Ebola

From Network Structure to Consequences & Control

Dr. Von Behring's Booklet

Should the US develop and Stockpile Vaccines and Antiviral Medications Against. A(H5N1) Avian Flu?

Pandemic Influenza Communications Exercise

SHARE SELECTION. Click here to print. Thursday, Nov 6th AM 46 F 10AM 44 F 5 Day Forecast. By Associated Press

Influenza RN.ORG, S.A., RN.ORG, LLC

Matt Smith. Avian Flu Model

COMPLETE ALL QUESTIONS AND MARGIN NOTES

SARS Outbreak Study 2

News in Review December 2014 Teacher Resource Guide EBOLA: A Deadly Virus Outbreak

The Epidemic Model 1. Problem 1a: The Basic Model

Abhinav: So, Ephraim, tell us a little bit about your journey until this point and how you came to be an infectious disease doctor.

H1N1 Pandemic The medical background. Marita Mike MD, JD Center for Health and Homeland Security

Global Connectivity and the Spread of Infectious Diseases

Republic of Malawi SPEECH BY THE GUEST OF HONOUR, MINISTER OF HEALTH, HONOURABLE DR PETER KUMPALUME, MP AT THE OFFICAL OPENING OF

Mathematical Modeling of Infectious Disease

Heart Attack Your quick guide

Infection Prevention Prevention and Contr

RESPONDING TO AN INFLUENZA OUTBREAK

Surveillance, Reporting and Control of Influenza and Pertussis. Steve Fleming, EdM Hillary Johnson, MHS Epidemiologists Immunization Program, MDPH

rskills Progress Monitoring Test 2a

Legionella bacteria found in Flint hospital s water

Occupational Infections: Risks for the Anesthesiologist

Zika and the Threat to Pregnant Women and Their Babies: How Your Local Health Departments Works to Keep Communities Safe

Fifty-third session Johannesburg, South Africa, 1 5 September 2003

Quick facts about mad cow disease

What do epidemiologists expect with containment, mitigation, business-as-usual strategies for swine-origin human influenza A?

HIV Testing After 25 Years

But, North Carolina must be ready.

An Introduction to Small-World and Scale-Free Networks

The Yin and Yang of OD

virus infectious severe sample praise isolate spreads expert

CHECK AGAINST DELIVERY:

A conversation with Michael Osterholm on July 30, 2013 about pandemics

PUBLIC ATTITUDES, BELIEFS AND KNOWLEDGE ABOUT SMALLPOX

Contact Tracing in Health-care Information System - with SARS as a Case Study

SARS: The Toronto Experience. James G. Young, M.D. Commissioner of Emergency Management Ontario, Canada

GUIDE TO INFLUENZA PANDEMIC PREPAREDNESS FOR FAITH GROUPS

DRAFT WGE WGE WGE WGE WGE WGE WGE WGE WGE WGE WGE WGE WGE WGE GETREADYNOWGE GETREADYNOWGE GETREADYNOWGE GETREADYNOWGE.

Modeling Measles Vaccination in Texas

Timing of vaccination campaigns against pandemic influenza in a population dynamical model of Vancouver, Canada

Los Caminos Peligrosos Chapter 5 Aterrizaje forzoso

INCORPORATING HEALTHCARE SYSTEMS IN PANDEMIC MODELS

introduction TEAM CAPTAIN COMPANY GUIDE

arxiv: v1 [cs.si] 29 Jan 2018

SARS: Understanding and Learning from an Epidemic of Fear. George D. Bishop, Ph.D. National University of Singapore

The 1918 Flu Pandemic That Killed Millions

Strategies for containing an emerging influenza pandemic in South East Asia 1

Unmasking the Fear of SARS Sapna Modi

Texas Bill to Regulate Vapor Products. Over the past few years, electronic cigarettes, also commonly referred to as e-cigarettes

A Comparative Analysis of Influenza Vaccination Programs

Elizabeth Tenney Infectious Disease Epidemiology Homework 2 Texarkana Epidemic Measles in a Divided City Question 1a: Any outbreak of measles is cause

Diagnosis: Tinder Herpes Ben Sarle

Should i get the H1N1 Vaccine?

Advances in Viral Immunity Stemming from the 1918 Flu Pandemic

QUESTIONS ANSWERED BY

TABLE OF CONTENTS. Peterborough County-City Health Unit Pandemic Influenza Plan Section 1: Introduction

MODELING DISEASE FINAL REPORT 5/21/2010 SARAH DEL CIELLO, JAKE CLEMENTI, AND NAILAH HART

USES FOR MRC VOLUNTEERS IN EBOLA & OTHER EMERGING INFECTIOUS DISEASE CASES

Where Health Care Meets Policy. with Dr. Mike Magee

AVIAN FLU BACKGROUND ABOUT THE CAUSE. 2. Is this a form of SARS? No. SARS is caused by a Coronavirus, not an influenza virus.

Autism, my sibling, and me

Charlie: I was just diagnosed with CLL, so my doctor and I are now in the process of deciding what

BDO Dunwoody Weekly CEO/Business Leader Poll By COMPAS in Canadian Business For Publication October 5, 2009

Two-sample Categorical data: Measuring association

Part 5. Clare s Recovery Story

Public Health Perspectives: Coordination the Response to Imported Infectious Disease Threats in New York City

SARS Outbreak Study 1

1) Complete the Table: # with Flu

U.S. and British troops head to West Africa to help fight Ebola virus

4.3.9 Pandemic Disease

Intimacy Anorexia: The Book. By Douglas Weiss, Ph.D.

FREQUENTLY ASKED QUESTIONS ABOUT PANDEMIC FLU

A Powerful Way to Understand People An introduction of the DISC concept By Robert A. Rohm, Ph.D. Everyone is not like you!

INFLUENZA FACTS AND RESOURCES

How do I comply with the Influenza Control Program Policy this year?

Controlling Worries and Habits

COMPANY TEAM CAPTAIN GUIDE

Why do Psychologists Perform Research?

By Elizabeth Clements. Applications in cancer treatment

An Overview of Dementia Capable Care for People with ID Part 1 Aging 101. Music only. Course # ID

Protect Yourself and Reduce the Spread of Infectious Disease.

What Animal Shelters Need to Know About the Canine Influenza Outbreak. Thanks! Canine Influenza: Background

Making Sense Of The Ebola Virus

Transcription:

Quick Links UT Directory UT Offices A-Z Campus & Parking Maps UT Site Map Calendars UT Direct UT Search UT Home -> Current Feature Current Feature Feature Archive Predicting the Path of Infectious Diseases Mathematical modeling traces the spread of SARS and other illnesses through human contact When severe acute respiratory syndrome (SARS) arrived in the Canadian cities of Vancouver and Toronto last spring, its first cases looked remarkably similar. Both came from individuals who were infected at the Metropole Hotel in Hong Kong and then flew home to Canada. In Vancouver, however, no additional cases grew out of the initial infection. In Toronto, that single case sparked a huge outbreak where ultimately hundreds of people were infected. Why did such different scenarios grow out of nearly identical situations? It sounds intuitive, but the key difference between these scenarios is that the infected individuals had very different contact patterns, says Dr. Lauren Ancel Meyers, an assistant professor of integrative biology at The University of Texas at Austin. In the Vancouver case, the man lived alone with his wife, and he went immediately to a hospital where he was isolated and where caregivers took significant precautions while treating him. In the Toronto case, the woman was from a large Dr. Lauren Ancel Meyers helps create mathematical models that not multigenerational family. only predict the spread of disease but can also simulate various She died at home as an interventions strategies to determine the one that might be most effective. undiagnosed case of SARS, meanwhile exposing many people in her family who later went on to expose other people. So the contact patterns of the first few cases can make all the difference as to whether you get a big outbreak or epidemic or none at all. Understanding the contact patterns in a community is central to Meyers research. She uses mathematical modeling to track and predict the spread of infectious diseases in a community. Earlier this year the University of British Columbia Centre for Disease Control (UBC CDC) asked her to help them understand the spread of SARS in Canada and worldwide and to determine the most appropriate intervention strategies to stem the disease. Meyers worked with Dr. Babak Pourbohloul, director of mathematical modeling at the UBC Page 1 of 5

CDC, and members of the Scientific Investigators Vaccine Initiative (SIVI) to create a mathematical model that describes the spread of SARS through a city. Using demographic and census data from Vancouver, they built a model of the patterns of interaction in the city. Household size, the number of houses, distribution of schools and hospitals and other data allowed them to construct a network that represents the way individuals actually interact in the community. Once they understand those interactions, they can predict how rapidly a disease will spread, what parts of the city are most at risk and what preventions are most effective in stopping it. Using mathematical models to analyze the spread of the disease isn t new, but Meyers and other researchers are approaching modeling in a new way, using network theory. In the past, most mathematical modeling of epidemics was undertaken by separating a population into three or more distinct groups: those who are susceptible to a disease, those who are already infected and those who have recovered. It assumed that there was some probability that those who are susceptible would come into contact with those who were infected, that those who were infected would recover, and that in some cases, those who recovered would once again become susceptible. This doesn t take into account the true heterogeneity of contact patterns that underlie the spread of disease, says Meyers. In reality, all susceptible people do not face the same risk of contracting a disease. An elderly person living alone at home is much less likely to come into contact with an infected person than someone who works in a large office building or a hospital, for example. In the initial Canadian SARS cases, it is clear that living in a large family increased the chance of contracting a disease. The type and frequency of interactions that a person has with others is key to determining who may become infected. Using network theory, instead of grouping people into populations, we take into account every single person, and every single person becomes a point in a network, says Meyers. Now let s say a person brings a disease like SARS into a community. We can Traditional mathematical modeling of epidemics (top) places individuals in large groups and tries to predict the probability of movement from one group to the next. Network theory (bottom) allows researchers to build more complex models that take into consideration the contact patterns of individuals. predict what parts of the community the network will be infected, how quickly it will spread, and how best to stop it. Network theory is often used by researchers investigating social interactions, and it s become popularized in the past decade through the concept of six degrees of separation. Six degrees of separation asserts that each person on the planet is at the most removed from every other person by six degrees, or six connections with others. Page 2 of 5

The term was popularized by the playwright John Guare, who wrote a play of the same name which was later made into a movie. And a few years ago some college students in Pennsylvania created a six degrees of Kevin Bacon game that become an instant fad, asking players to link the ubiquitous actor to other actors in a maximum of six steps. The mathematical models Meyers builds borrow from sociological approaches. The models account for the points of connection between individuals. Each person within a community is represented as a point in the network, Meyers explains. The edges that connect a person to other people represent interactions that take place inside or outside of the home, including interactions that take place at school or work, while shopping or dining, while at a hospital, etc. The network thereby captures the diversity of human contacts that underlie the spread of disease. Some people may come into contact with very few people, but others may have many strands connecting them to other people in the community through their work or social habits. If this person becomes sick, he or she has the potential to become what researchers call a superspreader, someone who spreads disease to a lot of people in the community. Identifying potential superspreaders is one step in curbing an outbreak. This type of mathematical modeling may have important implications for public health officials. When the SARS outbreak began, officials were in a quandary. They needed to act quickly to control the spread of the disease, yet they lacked the information necessary to determine which interventions would be most effective. Would they be best served by closing schools or by supplying health care workers with better face masks, by limiting air travel or by waiting for a vaccine? Such decisions may be easier to make in the future, thanks to advances in mathematical modeling. Mathematical models allow us to simulate the spread of diseases through different kinds of settings and test different kinds of interventions, says Meyers. This can give policymakers the tools and confidence to make educated decisions. Meyers first started working on mathematical models in the spread of infectious diseases while doing postdoctoral research in Atlanta and at the Santa Fe Institute. She collaborated with Mark Newman from the University of Michigan, one of the pioneers of epidemiological network modeling, and some researchers at the Centers This shows a municipal contact network. In a city, SARS can spread within households, schools, workplaces, hospitals and public spaces. The lines between the dots represent contacts between individuals that could potentially lead to disease transmission. for Disease Control and Prevention (CDC) who were trying to figure out how to stop the spread of mycoplasma pneumonia known as walking pneumonia in hospital wards, military barracks, college campuses and other places where individuals come into close contact. Before we began this project, the CDC hadn t yet determined the best strategies for controlling the spread walking pneumonia because they can rarely do experiments when an outbreak is in progress, Meyers explains. They can t treat half the population and not Page 3 of 5

the other half. It is also difficult to compare the success of interventions on different outbreaks because the settings in which they take place are often quite distinct. Meyers and her collaborators developed a mathematical model of a psychiatric institution in Indiana, building a network that accounted for everyone who works or lives in the facility. She found that while the focus is generally on preventing the spread of walking pneumonia from patient to patient, caregivers play a much more important role in the large-scale spread of respiratory infections across such a facility. Caregivers pick it up in one ward and spread it to the next, and because of their diverse patient load, a few infected caregivers can potentially lead to the infection hundreds of patients. Looking at this from a network modeling perspective allowed us to see how important changing the behavior of caregivers is to stopping an outbreak, Meyers says. The models then enable researchers to simulate a change in caregiver behavior and project the response in the spread of disease. This allows policymakers to test possible interventions before investing time and money into them. And should SARS or another respiratory-borne illness threaten Vancouver, policymakers there will similarly be able to test possible interventions before implementing them. Because contact patterns differ from community to community, mathematical modeling requires that a model be built for each individual community. Meyers and Pourbohloul are currently working with a large team of Canadian epidemiologists and infectious disease experts to build network models of four Canadian hospitals and two communities one rural and the other urban. Once good network models of these hospitals and communities are in place, they can be used to predict and control the spread of all kinds of diseases. Air travel can enable illnesses like SARS and flu to cross international borders. Meyers is working on a model of global disease transmission based on flights in and out of American cities. At the same time, modeling these distinct communities will allow researchers to look to see if they can draw any generalizations across communities. They hope to be able to say that, in general, one type of intervention works better than another. Ideally, however, each community, be it a large city like Toronto or a community like The University of Texas at Austin campus, would have its own model to use as a tool for preventing the spread of disease. Meyers likes the idea of building some models closer to home, be it for Texas or Austin or the university campus. In the meantime, she s working on Canada and beginning to build a network model of global disease transmission based on the flights in and out of American cities. This kind of larger scale model would be extremely helpful for diseases like SARS and flu that cross international borders. When reflecting on networks, Meyers calls to mind one of this year s other big news stories: the big power outage. Page 4 of 5

You can think about electricity spreading along a grid like disease spreading through a population, she says. But our goals for electricity and epidemiology are opposite. With electricity, you want to make sure your network is built so that if something happens to cut down one of your links, the whole system is not going to crash. In the case of disease, you want to break the connections through vaccinations or other interventions that most effectively stop its spread. Related Stories: Vivé Griffith Photos: Marsha Miller Computational infrastructure funded for establishing evolutionary relationships between all organisms - 17 September 2003 Computer scientists get $1.9 million for infrastructure to perform largescale computer simulations - 10 September 2003 University of Texas at Austin opens high-intensity laser science center - 2 September 2003 Computer scientists unveil architecture for embedded single-chip supercomputer - 27 August 2003 Month-long Hawaiian research cruise enhances secondary educators science skills - 8 August 2003 Field of Digital Dreams: Soccer-playing robots help researchers score major advances in developing autonomous machines - 30 June 2003 From Smallest Mammal to Oldest Dinosaur: Unique DigiMorph Web site reveals 3-D interior of natural objects - 14 April 2003 Related Sites: Dr. Lauren Ancel Meyers Section of Integrative Biology College of Natural Sciences University of British Columbia Centre for Disease Control Santa Fe Institute Centers for Disease Control and Prevention World Health Organization Office of Public Affairs P.O. Box Z Austin, TX 78713 512-471-3151 Fax 512-471-5812 Updated 2003 October 6 Comments to utopa@www.utexas.edu Page 5 of 5