Risk Analysis of the Long-Term Outcomes of the Surgical Closure of Secundum Atrial Septal Defects

Similar documents
Clinical material and methods. Fukui Cardiovascular Center, Fukui, Japan

Does Patient-Prosthesis Mismatch Affect Long-term Results after Mitral Valve Replacement?

Which Type of Secondary Tricuspid Regurgitation Accompanying Mitral Valve Disease Should Be Surgically Treated?

Quality Outcomes Mitral Valve Repair

Use of Cardiac Computed Tomography for Ventricular Volumetry in Late Postoperative Patients with Tetralogy of Fallot

Persistent Tricuspid Regurgitation After Tricuspid Annuloplasty During Redo Valve Surgery Affects Late Survival and Valve-Related Events

3D Echo for Evaluation of Tricuspid Regurgitation Jong-Min Song, MD, PhD

Development of tricuspid regurgitation late after left-sided valve surgery: A single-center experience with long-term echocardiographic examinations

Presenter Disclosure. Patrick O. Myers, M.D. No Relationships to Disclose

Remodeling of the Remnant Aorta after Acute Type A Aortic Dissection Surgery

Ann Thorac Cardiovasc Surg 2015; 21: Online April 18, 2014 doi: /atcs.oa Original Article

Management of Tricuspid Regurgitation

Hani K. Najm MD, Msc, FRCSC FACC, FESC President Saudi Society for Cardiac Surgeons Associate Professor of Cardiothoracic Surgery King Abdulaziz

Repair or Replacement

Diversion of the inferior vena cava following repair of atrial septal defect causing hypoxemia

De Vega Annuloplasty for Functional Tricupsid Regurgitation: Concept of Tricuspid Valve Orifice Index to Optimize Tricuspid Valve Annular Reduction

Heart Transplantation in Patients with Superior Vena Cava to Pulmonary Artery Anastomosis: A Single-Institution Experience

Atrial Septal Defects

Mitral Valve Disease, When to Intervene

Late secondary TR after left sided heart disease correction: is it predictibale and preventable

Robot-Assisted Cardiac Surgery Using the Da Vinci Surgical System: A Single Center Experience

Atrioventricular valve repair: The limits of operability

Assessing the Impact on the Right Ventricle

Really Less-Invasive Trans-apical Beating Heart Mitral Valve Repair: Which Patients?

Haiping Wang 1,2, Xiancheng Liu 2, Xin Wang 2, Zhenqian Lv 2, Xiaojun Liu 2, Ping Xu 1. Introduction

Indication, Timing, Assessment and Update on TAVI

Long-term results (22 years) of the Ross Operation a single institutional experience

ΔΙΑΧΕΙΡΙΣΗ ΑΣΘΕΝΩΝ ΜΕ ΜΕΣΟΚΟΛΠΙΚΗ ΕΠΙΚΟΙΝΩΝΙΑ ΖΑΧΑΡΑΚΗ ΑΓΓΕΛΙΚΗ ΚΑΡΔΙΟΛΟΓΟΣ ΗΡΑΚΛΕΙΟ - ΚΡΗΤΗ

The MAIN-COMPARE Study

Revascularization after Drug-Eluting Stent Implantation or Coronary Artery Bypass Surgery for Multivessel Coronary Disease

Prof. Patrizio LANCELLOTTI, MD, PhD Heart Valve Clinic, University of Liège, CHU Sart Tilman, Liège, BELGIUM

Clinical outcomes of robotic mitral valve repair: a single-center experience in Korea

Outcomes of Mitral Valve Repair for Mitral Regurgitation Due to Degenerative Disease

Adult Echocardiography Examination Content Outline

Surgical Management of TOF in Adults. Dr Flora Tsang Associate Consultant Department of Cardiothoracic Surgery Queen Mary Hospital

Hani K. Najm MD, Msc, FRCSC, FRCS (Glasgow), FACC, FESC President of Saudi Heart Association King Abdulaziz Cardiac Centre Riyadh, Saudi Arabia.

The Incidence and Predictors of Postoperative Atrial Fibrillation After Noncardiothoracic Surgery

MITRAL VALVE PATHOLOGY WITH TRICUSPID REGURGITATION (AND PHT)

A Surgeon s Perspective Guidelines for the Management of Patients with Valvular Heart Disease Adapted from the 2006 ACC/AHA Guideline Revision

The Tricuspid Valve: The Not So Forgotten Valve. Manuel J Antunes Cardiothoracic Surgery Coimbra, Portugal

Expanding Relevance of Aortic Valve Repair Is Earlier Operation Indicated?

Late Outcome of Tricuspid Annuloplasty Using a Flexible Band/Ring for Functional Tricuspid Regurgitation

A Validated Practical Risk Score to Predict the Need for RVAD after Continuous-flow LVAD

What is the Role of Surgical Repair in 2012

Restoration of Sinus Rhythm by the Maze Procedure Halts Progression of Tricuspid Regurgitation After Mitral Surgery

Atrial Septal Defect Closure. Stephen Brecker Director, Cardiac Catheterisation Labs

The MAIN-COMPARE Registry

Evaluation of Left Ventricular Diastolic Dysfunction by Doppler and 2D Speckle-tracking Imaging in Patients with Primary Pulmonary Hypertension

Cover Page. The handle holds various files of this Leiden University dissertation.

Tricuspid valve surgery in patients with a systemic right ventricle

Χειρουργική Αντιμετώπιση της Ανεπάρκειας της Μιτροειδούς Βαλβίδας

Transcatheter Aortic Valve Implantation in Patients With Concomitant Mitral and Tricuspid Regurgitation

Pediatric Echocardiography Examination Content Outline

42yr Old Male with Severe AR Mild LV dysfunction s/p TOF -AV Replacement(tissue valve) or AoV plasty- Kyung-Hwan Kim

Transcatheter Aortic Valve Replacement: Current and Future Devices: How do They Work, Eligibility, Review of Data

Clinical Outcomes of Lung Transplantation: Experience at Asan Medical Center

Tricuspid Annuloplasty Using the MC 3 Ring for Functional Tricuspid Regurgitation

Bicuspid aortic root spared during ascending aorta surgery: an update of long-term results

Transthoracic Echocardiographic

Perimembranous VSD: When Do We Ask For A Surgical Closure? LI Xin. Department of Cardiothoracic Surgery Queen Mary Hospital Hong Kong

Flexible band versus rigid ring annuloplasty for tricuspid regurgitation: a systematic review and meta-analysis

Repair of very severe tricuspid regurgitation following detachment of the tricuspid valve

Trend and Outcomes of Direct Transcatheter Aortic Valve Replacement from a Single-Center Experience

Surgical AF Ablation : Lesion Sets and Energy Sources. What are the data? Steven F Bolling, MD Cardiac Surgery University of Michigan

Chapter 24: Diagnostic workup and evaluation: eligibility, risk assessment, FDA guidelines Ashwin Nathan, MD, Saif Anwaruddin, MD, FACC Penn Medicine

Technical aspects of robotic posterior mitral valve leaflet repair

Echo Week - Learning Objectives

Surgery For Ebstein Anomaly

Concomitant procedures using minimally access

DECISION MAKING DEL CARDIOCHIRURGO NELL INSUFFICIENZA MITRALICA: ISTRUZIONI D USO D CARDIOLOGO

Indicator Mild Moderate Severe

Multimodality Imaging of Anomalous Left Coronary Artery from the Pulmonary

Management of Difficult Aortic Root, Old and New solutions

Effect of Valve Suture Technique on Incidence of Paraprosthetic Regurgitation and 10-Year Survival

Research Presentation June 23, Nimish Muni Resident Internal Medicine

The Edge-to-Edge Technique f For Barlow's Disease

The Ross Procedure: Outcomes at 20 Years

Importance of the third arterial graft in multiple arterial grafting strategies

Successful radiofrequency catheter ablation in refractory atrial flutter developed 15years after Mustard's operation -a case report-

Cardiovascular Surgery

CONGENITAL HEART DEFECTS IN ADULTS

Chronic Primary Mitral Regurgitation

SURGICAL ABLATION OF ATRIAL FIBRILLATION DURING MITRAL VALVE SURGERY THE CARDIOTHORACIC SURGICAL TRIALS NETWORK

Since first successfully performed by Jatene et al, the

Clinical Practice Guidelines and the Under Treatment of Concomitant AF Vinay Badhwar, MD

Mechanical Tricuspid Valve Replacement Is Not Superior in Patients Younger Than 65 Years Who Need Long-Term Anticoagulation

Concomitant tricuspid valve repair in patients with minimally invasive mitral valve surgery

Professor and Chief, Division of Cardiac Surgery Chief Medical Officer, Harpoon Medical. The Houston Aortic Symposium February 23-25, 2017

cctga patients need lifelong follow-up in an age-appropriate facility with expertise in

Interventions in Adult Congenital Heart Disease: Role of CV Imaging. Associate Professor. ACHD mortality. Pillutla. Am Heart J 2009;158:874-9

Functional tricuspid regurgitation (TR) is common in

Durability and Outcome of Aortic Valve Replacement With Mitral Valve Repair Versus Double Valve Replacement

Segmental Tissue Doppler Image-Derived Tei Index in Patients With Regional Wall Motion Abnormalities

We present the case of an asymptomatic, 75-year-old

Extra-Anatomic Ascending Aorta to Abdominal Aorta Bypass in Takayasu Arteritis Patients with Mid-Aortic Syndrome

Candice Silversides, MD Toronto Congenital Cardiac Centre for Adults University of Toronto Toronto, Canada

Ischemic mitral valve reconstruction and replacement: Comparison of long-term survival and complications

Mitral Gradients and Frequency of Recurrence of Mitral Regurgitation After Ring Annuloplasty for Ischemic Mitral Regurgitation

Surgical repair techniques for IMR: future percutaneous options?

Transcription:

Korean J Thorac Cardiovasc Surg 2017;50:78-85 ISSN: 2233-601X (Print) ISSN: 2093-6516 (Online) CLINICAL RESEARCH https://doi.org/10.5090/kjtcs.2017.50.2.78 Risk Analysis of the Long-Term Outcomes of the Surgical Closure of Secundum Atrial Septal Defects Hong Rae Kim, M.D., Sung-Ho Jung, M.D., Ph.D., Jung Jun Park, M.D., Ph.D., Tae Jin Yun, M.D., Ph.D., Suk Jung Choo, M.D., Ph.D., Cheol Hyun Chung, M.D., Ph.D., Jae Won Lee, M.D., Ph.D. Department of Thoracic and Cardiovascular Surgery, Asan Medical Center, University of Ulsan College of Medicine Background: Closure of a secundum atrial septal defect (ASD) is possible through surgical intervention or device placement. During surgical intervention, concomitant pathologies are corrected. The present study was conducted to investigate the outcomes of surgical ASD closure, to determine the risk factors of mortality, and establish the effects of concomitant disease correction. Methods: Between October 1989 and October 2009, 693 adults underwent surgery for secundum ASD. Their mean age was 40.9±13.1 years, and 199 (28.7%) were male. Preoperatively, atrial fibrillation was noted in 39 patients (5.6%) and significant tricuspid regurgitation (TR) in 137 patients (19.8%). The mean follow-up duration was 12.4±4.7 years. Results: There was no 30-day mortality. The 1-, 5-, 10-, and 20-year survival rates were 99.4%, 96.8%, 94.5%, and 81.6%, respectively. In multivariate analysis, significant preoperative TR (hazard ratio [HR], 1.95; 95% confidence interval [CI], 1.09 to 3.16; p=0.023) and preoperative age (HR, 1.04; 95% CI, 1.01 to 1.06; p=0.001) were independent risk factors for late mortality. The TR grade significantly decreased after ASD closure with tricuspid repair. However, in patients with more than mild TR, repair was not associated with improved long-term survival (p=0.518). Conclusion: Surgical ASD closure is safe. Significant preoperative TR and age showed a strong negative correlation with survival. Our data showed that tricuspid valve repair improved the TR grade effectively. However, no effect on long-term survival was found. Therefore, early surgery before the development of significant TR mat be beneficial for improving postoperative survival. Key words: 1. Survival 2. Heart septal defects, atrial 3. Tricuspid valve insufficiency Introduction Atrial septal defect (ASD) is one of the most common conditions known as grown-up congenital heart diseases. Excellent results after surgical correction have been well documented in long-term follow-up studies, especially in the young population [1,2]. Currently, percutaneous device closure is the method of choice for secundum ASD closure, when applicable [3]. However, shunt remnants, migration of the device after intervention, and atrial tachyarrhythmias can occur [4]. Substantial tricuspid regurgitation (TR) and atrial fibrillation are common comorbidities with ASD; in these cases, it may be more beneficial to proceed with surgical closure, in order to correct these conditions simultaneously. Some studies have Received: July 1, 2016, Revised: September 20, 2016, Accepted: September 26, 2016, Published online: April 5, 2017 Corresponding author: Jae Won Lee, Department of Thoracic and Cardiovascular Surgery, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul 05505, Korea (Tel) 82-2-3010-3584 (Fax) 82-2-3010-6966 (E-mail) jwlee@amc.seoul.kr The Korean Society for Thoracic and Cardiovascular Surgery. 2017. All right reserved. This is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/ licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. 78

Risk Factors in Survival After ASD Surgery addressed the effect of ASD closure on TR and have identified several risk factors for persistent TR after closure [5,6]. However, the effect of concomitant TR correction remains unknown. The aims of the present study were to investigate the outcomes of surgical ASD closure and to determine the risk factors for mortality, as well as to establish the effect of concomitant disease correction. Methods 1) Patients From the institutional prospective cardiac surgical database, we identified 715 consecutive adult patients (age >17 years) who underwent ASD closure from October 1989 to October 2009. Of these, we were able to retrieve the data of 693 patients with secundum ASD. We excluded patients with no follow-up echocardiographic data and those with other types of ASD, such as ostium primum and sinus venous ASD. Their mean age was 40.9±13.1 years (range, 18 to 76 years), and 199 patients (28.7%) were male. The mean follow-up duration was 12.4± 4.70 years (range, 5 months to 25.5 years). For all patients, 12-lead electrocardiograms were reviewed to determine whether atrial fibrillation was present. All the patients were examined using 2-dimensional and Doppler transthoracic echocardiography. TR was evaluated using the apical 4-chamber view, and graded as none, trace, mild, moderate, and severe when the jet area occupied 0%, <10%, 10% 20%, 20% 33%, and >33% of the right atrial area, respectively. The regurgitation scoring was as follows: 0, no regurgitation; 1+, trivial; 2+, mild; 3+, moderate; 4+, severe. Significant TR was defined as moderate or severe TR. Pulmonary artery pressure was computed using the simplified Bernoulli equation with Doppler echocardiographic data. We defined severe pulmonary hypertension as a calculated systolic pulmonary artery pressure >45 mm Hg. The surgical correction methods and cardiopulmonary bypass strategy were left to the attending surgeon s discretion. In the tricuspid annuloplasty (TAP) group, 27 patients underwent TAP using prosthetic rings, 108 patients underwent De Vega suture annuloplasty, and 24 patients underwent Kay annuloplasty. The classic Carpentier-Edwards ring (Edwards Lifesciences Inc., Irvine, CA, USA) and the Duran ring Table 1. Baseline characteristics Characteristic Value No. of patients 693 Age (yr) 40.9±13.1 Male gender 199 (28.7) Diabetes mellitus 21 (3.0) Hypertension 73 (10.5) History of cerebrovascular accident 1 (0.1) Atrial fibrillation 39 (5.6) Chronic renal failure 2 (0.3) Chronic obstructive pulmonary disease 1 (0.1) Echocardiographic data Left ventricular ejection fraction (%) 62.9±6.40 Size of atrial septal defect (mm) 24.3±7.80 Peak TR pressure gradient (mm Hg) 38.8±16.2 TR None-to-trace 26 (3.8) Grade I 366 (52.8) Grade II 164 (23.7) Grade III 85 (12.3) Grade IV 52 (7.5) Pulmonary hypertension 162 (23.4) Approach Sternotomy 439 (63.3) Thoracotomy 254 (36.7) AESOP 50 (7.2) Da Vinci 23 (3.3) Tricuspid annuloplasty technique 159 (22.9) Ring annuloplasty 27 Carpentier-Edwards 13 Duran 14 De Vega 108 Kay 24 Maze procedure 35 (5.1) Cardiopulmonary bypass time (min) 71.0±28.2 Aortic cross clamp time (min) 33.0±17.0 Values are presented as mean±standard deviation or number (%). The following instrument was used: AESOP (Automated Endoscope System for Optimal Positioning Computer Motion Inc., Santa Barbara, CA, USA), Da Vinci (Da Vinci Surgical System Intuitive Inc., Sunnydale, CA, USA). TR, tricuspid regurgitation. (Medtronic Inc., Minneapolis, MN, USA) were used in ring annuloplasty. In the subgroup analysis, patients with significant preoperative TR were divided into TAP (n=107) and non-tap (n=30) groups. Clinical follow-up examinations were performed at 2-week to 6-month intervals through the outpatient clinic. All data on mortality were obtained from the Korean National Registry of Vital Statistics (KNRB). 79

Hong Rae Kim, et al Table 2. Baseline characteristics of patients with significant TR Characteristic TR grade 2 TR grade >2 p-value No. of patients 556 137 Age (yr) 39.5±12.6 46.4±13.5 <0.001 Male gender 169 (30.4) 30 (21.9) 0.05 Diabetes mellitus 13 (2.3) 8 (5.8) 0.03 Hypertension 56 (10.1) 17 (12.4) 0.42 Atrial fibrillation 15 (2.7) 24 (17.5) <0.001 Chronic renal failure 1 (0.2) 1 (0.7) 0.28 Echocardiographic data Left ventricular ejection fraction (%) 63.2±6.02 62.0±7.57 0.11 Size of atrial septal defect (mm) 23.7±7.28 26.9±9.08 <0.001 Peak TR pressure gradient (mm Hg) 35.8±12.9 49.7±21.2 <0.001 Pulmonary hypertension 93 (18.0) 69 (51.1) <0.001 Maze procedure 15 (2.7) 20 (14.6) <0.001 Cardiopulmonary bypass time (min) 68.1±26.6 82.9±31.2 <0.001 Aortic cross-clamp time (min) 30.4±15.0 42.5±20.4 <0.001 Values are presented as mean±standard deviation or number (%). TR, tricuspid regurgitation. 2) Statistical analysis Categorical variables are presented as percentages or frequencies, and continuous variables are ex - pressed as mean±standard deviation or median with range. The variables of the 2 groups were compared using the Student t-test. Kaplan-Meier curves were used to describe the overall survival and event-free survival rates, and the differences in these rates between the groups were assessed using the log-rank test. Cox proportional hazard models were used to identify predictors of mortality. Variables identified as significant in the univariate analysis (p<0.1) were included in the multivariate analysis to determine the independent risk factors. All p-values <0.05 were considered to indicate statistical significance. Statistical analysis was carried out using IBM SPSS ver. 21.0 (IBM Corp., Armonk, NY, USA). Results 1) Baseline characteristics The baseline characteristics of the patients are summarized in Table 1. The median size of the ASD was 24.3±7.80 mm. All operations were performed in an elective setting; 63.3% of the operations were performed through a sternotomy and 36.7% of the operations were performed via thoracotomy. The most common concomitant surgical procedures were TAP (n=159, 22.9%) followed by the maze procedure (n=35, 5.1%). Table 2 describes the baseline characteristics of the patients with significant TR. The mean age of the significant TR group was older than that of the non-significant TR group. Atrial fibrillation and pulmonary hypertension were more frequent in patients with significant TR. Table 3 shows the baseline characteristics of the TAP group and non-tap group with significant TR. The mean age was older in the TAP group. No significant differences were found in preoperative ejection fraction or defect size. The TAP patients had atrial fibrillation and severe TR more frequently than the non-tap group. 2) Outcomes There were no early hospital deaths. The 1-year, 5-year, 10-year, and 20-year survival rates were 99.4%, 96.8%, 94.5%, and 81.6%, respectively (Fig. 1). There were 65 late deaths. However, it was not possible to determine the specific cause of death. There was one case of reoperation for a remnant shunt after ASD closure. Nine patients experienced postoperative bleeding. Temporary neurologic dysfunction occurred in 4 patients (Table 4). Fig. 2 shows the effects of atrial fibrillation, pulmonary hypertension, and significant TR at the time of operation on long-term survival. Survival was decrea- 80

Risk Factors in Survival After ASD Surgery Table 3. Baseline characteristics compared between the TAP and non-tap groups with significant TR Characteristic TAP Non-TAP p-value No. of patients 107 30 Age (yr) 47.7±13.4 42.0±13.2 0.04 Male gender 25 (23.4) 5 (16.7) 0.43 Diabetes mellitus 7 (6.5) 1 (3.3) 0.50 Hypertension 15 (14.0) 2 (10.0) 0.28 Atrial fibrillation 22 (20.6) 2 (6.7) 0.07 Chronic renal failure 1 (0.9) 0 0.59 Echocardiographic data Left ventricular ejection fraction (%) 61.8±7.70 63.0±7.05 0.49 Size of atrial septal defect (mm) 26.4±9.27 29.2±8.04 0.15 Peak TR pressure gradient (mm Hg) 48.9±21.3 53.2±21.2 0.38 TR Grade III 58 (54.2) 27 (90.0) <0.001 Grade IV 49 (45.8) 3 (10.0) <0.001 Pulmonary hypertension 52 (48.6) 17 (56.7) 0.49 Approach Sternotomy 89 (83.1) 24 (80.0) Thoracotomy 18 (16.9) 6 (20.0) AESOP 7 (6.5) 0 Da Vinci 1 (0.9) 0 Maze procedure 18 (16.8) 2 (6.7) 0.16 Cardiopulmonary bypass time (min) 87.4±31.7 66.9±23.9 0.001 Aortic cross-clamp time (min) 45.8±20.8 29.0±11.9 <0.001 Values are presented as mean±standard deviation or number (%). The following instrument was used: AESOP (Automated Endoscope System for Optimal PositioningComputer Motion Inc., Santa Barbara, CA, USA), Da Vinci (Da Vinci Surgical System Intuitive Inc., Sunnydale, CA, USA). TAP, tricuspid annuloplasty; TR, tricuspid regurgitation. Table 4. Postoperative complications Variable No. (%) Cerebrovascular accident 4 (0.57) Postoperative bleeding 9 (1.29) Pericardial effusion 5 (0.72) Wound dehiscence 6 (0.86) Others 8 (1.15) Total 32 (4.61) Fig. 1. Kaplan-Meier plots for overall survival, showing a 1-year survival rate of 99.4%, a 5-year survival rate of 96.8%, a 10-year survival rate of 94.5%, and a 20-year survival rate of 81.6%. sed to a statistically significant extent in the presence of pulmonary hypertension and significant TR. In the univariate Cox proportional hazard models, age, atrial fibrillation, significant TR, and pulmonary hypertension were significant and independent predictors of the major adverse outcome (death). When multivariate Cox proportional analysis was performed using these significant variables, age (hazard ratio [HR], 1.03; 95% confidence interval [CI], 1.01 to 1.06; p=0.001) and significant TR (HR, 1.95; 95% CI, 81

Hong Rae Kim, et al Fig. 2. Kaplan-Meier plots for overall survival in patients with (A) AF, (B) pulmonary HTN, and (C) significant TR, showing that decreased survival was associated with pulmonary HTN and significant TR. AF, atrial fibrillation; HTN, hypertension; TR, tricuspid regurgitation. Table 5. Cox-regression analysis for preoperative characteristics predictive of mortality Univariate analysis Multivariate analysis Variable OR (95% CI) p-value OR (95% CI) p-value Age 1.04 (1.02 1.06) 0.001 1.03 (1.01 1.06) 0.001 Sex 1.04 (0.41 2.63) 0.930 - Atrial fibrillation 2.59 (1.10 6.07) 0.028 1.08 (0.43 2.70) 0.878 Significant tricuspid regurgitation 2.80 (1.12 7.00) 0.027 1.95 (1.09 3.16) 0.023 Pulmonary hypertension 2.26 (1.34 3.70) 0.002 1.66 (0.94 2.94) 0.080 Diabetes mellitus 0.92 (0.21 3.97) 0.912 - Size of atrial septal defect 1.02 (0.98 1.05) 0.310 - Preoperative left ventricle ejection fraction 0.98 (0.94 1.03) 0.476 - OR, odds ratio; CI, confidence interval. 82

Risk Factors in Survival After ASD Surgery Fig. 3. The tricuspid regurgitation grade decreased in both TAP and non-tap groups after surgery. (A) Preoperative TAP group; (B) Postoperative TAP group; (C) Preoperative non-tap group; (D) Postoperative non-tap group. TR, tricuspid regurgitation; TAP, tricuspid annuloplasty. 1.09 to 3.16; p=0.023) were significant and independent predictors of the major adverse outcome (Table 5). In a subgroup analysis of patients with significant TR, the grade of tricuspid valve regurgitation decreased after ASD closure. In the TAP group, the TR grade improved more prominently (Fig. 3). The Kaplan-Meier curves for estimated freedom from significant TR in the TAP and non-tap groups showed a statistically significant difference between groups, in favor of the TAP group. However, no significant difference was found in the survival curves between the 2 groups (Fig. 4). Discussion In this study, we evaluated the outcomes of surgical ASD closure and the benefits of the concomitant correction of associated defects. The low mortality rate in our study confirms the safety of this surgical strategy, as has been demonstrated previously [1,2]. However, in this era, device closure has become the treatment of choice for secundum ASD when the morphology is suitable [3,4]. Therefore, in this study, we investigated the risk factors for poor outcomes in surgical ASD closure and the effect of correcting associated lesions. In the risk factor analysis, our data showed that significant preoperative TR and age had a strong negative correlation with long-term survival. Atrial fibrillation was not correlated with survival. However, the total number of atrial fibrillation cases in our study population was only 39. Thus, we cannot come 83

Hong Rae Kim, et al Fig. 4. Kaplan-Meier plots showed no significant difference in (A) overall survival, but a statistically significant difference in (B) freedom from TR between the TAP and non-tap groups. TAP, tricuspid annuloplasty; TR, tricuspid regurgitation. to a firm conclusion on the effect of correcting atrial fibrillation in surgical ASD closure based on the findings of this study. Chronic left-to-right shunting induces right ventricular (RV) volume overloading, resulting in progressive RV dilatation. Change in the geometry of the ventricle accompanied with dilatation of the tricuspid valve annulus, which is possible in the anterior and posterior sides, results in tricuspid insufficiency. After shunt closure, annular dilatation and RV dilatation may improve. Our data also show that the TR grade improved after ASD closure. However, Toyono et al. [5] reported that persistent TR was observed in 50% of patients, although TR decreased after ASD closure. Furthermore, some patients in our study developed more severe TR after ASD closure. More than moderate TR is an indication for surgical treatment, and some reports have also argued that high pulmonary artery pressure is another indication for surgery [5-7]. In the subgroup analysis, the TAP group showed superior results in terms of TR grade improvement and duration of freedom from significant TR compared to the non-tap group. However, no statistically significant differences in survival were found (log rank p=0.518). Several possible explanations exist for the lack of a benefit associated with survival found in our study. The first is that TR itself is an expression of deterioration of the RV, which is remodeled via irreversible fibrosis. Jones and Ferrans [8] found that histologic abnormalities increased progressively with age. Thus, relief of TR is not necessarily linked to improvement in ventricular function. Second, some of the baseline characteristics of the patients in the 2 groups were different, such as age and TR grade. In particular, the TAP group consisted of patients with more severe TR than those in the non-tap group. Most of the non-tap group had moderate TR. These are major risk factors affecting survival in the general population, meaning that these differences between the 2 groups may confound the effect of TAP on survival. Third, the retrospective nature of this study might have influenced the results. All data on mortality were obtained from the KNRB retrospectively. Detailed information regarding mortality is not included in the KNRB data. Furthermore, we were unable to show a direct causal relationship between TR and the endpoint (death). Thus, an additional study is needed to validate our results. It is not clear in this study how significant TR changed the patients subjective symptoms or quality of life. Therefore, it is difficult to conclude whether corrective tricuspid valve surgery should be performed jointly with ASD closure. It is known, however, that the development of increased pulmonary artery pressure is associated with poor long-term survival [9,10]. Therefore, we conclude that early intervention before the development of significant TR 84

Risk Factors in Survival After ASD Surgery might be beneficial for improving postoperative survival after ASD closure. This study has limitations, specifically the retrospective nature of the analysis. Additionally, the data in this study were limited to a single high-volume tertiary academic center, and our results may not be generalizable. Surgical ASD closure was confirmed to be safe. Significant preoperative TR and age were strongly correlated with long-term survival. In our data, tricuspid valve repair effectively improved the TR grade. However, we were not able to prove its effect on long-term survival. Therefore, early surgery before the development of significant TR may be beneficial for improving postoperative survival. Additional study is needed to further assess the effect of correcting associated lesions jointly with surgical ASD closure. Conflict of interest No potential conflicts of interest relevant to this article are reported. Acknowledgments This study was supported by a Grant of the Samsung Vein Clinic Network (Daejeon, Anyang, Cheongju, Cheonan; Fund No. KTCS04-066). References 1. John Sutton MG, Tajik AJ, McGoon DC. Atrial septal defect in patients ages 60 years or older: operative results and long-term postoperative follow-up. Circulation 1981;64: 402-9. 2. Murphy JG, Gersh BJ, McGoon MD, et al. Long-term outcome after surgical repair of isolated atrial septal defect: follow-up at 27 to 32 years. N Engl J Med 1990;323:1645-50. 3. Baumgartner H, Bonhoeffer P, De Groot NM, et al. ESC guidelines for the management of grown-up congenital heart disease (new version 2010). Eur Heart J 2010;31: 2915-57. 4. Butera G, Carminati M, Chessa M, et al. Percutaneous versus surgical closure of secundum atrial septal defect: comparison of early results and complications. Am Heart J 2006;151:228-34. 5. Toyono M, Fukuda S, Gillinov AM, et al. Different determinants of residual tricuspid regurgitation after tricuspid annuloplasty: comparison of atrial septal defect and mitral valve prolapse. J Am Soc Echocardiogr 2009;22:899-903. 6. Toyono M, Krasuski RA, Pettersson GB, Matsumura Y, Yamano T, Shiota T. Persistent tricuspid regurgitation and its predictor in adults after percutaneous and isolated surgical closure of secundum atrial septal defect. Am J Cardiol 2009;104:856-61. 7. Yun TJ, Kim SH, Lee JW, et al. Intermediate-term result of tricuspid annuloplasty for tricuspid regurgitation associated with congenital heart disease in adult. Korean J Thorac Cardiovasc Surg 2003;36:136-41. 8. Jones M, Ferrans VJ. Myocardial ultrastructure in children and adults with congenital heart disease. Cardiovasc Clin 1979;10:501-30. 9. McCarthy PM, Bhudia SK, Rajeswaran J, et al. Tricuspid valve repair: durability and risk factors for failure. J Thorac Cardiovasc Surg 2004;127:674-85. 10. Nath J, Foster E, Heidenreich PA. Impact of tricuspid regurgitation on long-term survival. J Am Coll Cardiol 2004; 43:405-9. 85