Application of Near-infrared Spectroscopy to Quantify Fat and Total Solid Contents of Sweetened Condensed Creamer

Similar documents
Use of Near Infrared Analysis for the Evaluation of Rice Quality. Glenn Merberg, Ph.D. B. Raymond Oberg

Fast, Simple QA/QC of Milk Powder Formulations using FTIR Spectroscopy. Rob Wills Product Specialist Molecular Spectroscopy

Measurement of Acrylamide in Potato Chips by Portable FTIR Analyzers

Determination of Cannabinoid and Terpene Profiles in Cannabis Oils by Mid-Infrared Spectroscopy: 1. Cannabinoids

NEAR INFRARED TRANSMISSION SPECTROSCOPY AS APPLIED TO FATS AND OIL

Research of the Measurement on Palmitic Acid in Edible Oils by Near-Infrared Spectroscopy

For more information, please contact: or +1 (302)

MilkoScan FT1. Milk standardisation with in-built abnormality screening. Dedicated Analytical Solutions

Rapid Quality Measurements of Flour and Wheat in the Milling industry. Phillip Clancy, Next Instruments, Australia.

Arlen Moser, (Speaker #16) Wednesday, April 15, :45 a.m. Questions

COCOA; COCOA PRODUCTS, e.g. CHOCOLATE; SUBSTITUTES FOR COCOA OR COCOA PRODUCTS; CONFECTIONERY; CHEWING GUM; ICE-CREAM; PREPARATION THEREOF

MAKING IT HAPPEN: NIR CALIBRATION TRANSFER

OPTIQUAD Application list January 2016

Trans Fat Determination in the Industrially Processed Edible Oils By Transmission FT-IR Spectroscopy By

Guidebook to Proximate Analysis

DAIRY POWDER S FOR ALL NEEDS

Validation of Near Infrared Spectroscopy (NIRS) Milling Index Method

Chapter 5: Analysis of water content, total solids & water activity

COURSE OUTLINE Introduction to Food Science

It is important that you eat at regular times and divide the food intake well throughout the day.

Supplementary tables. Supplementary Table 1: Global Food Monitoring Group food categorization system. Food group Food category Description Beverages

Artificial Neural Networks and Near Infrared Spectroscopy - A case study on protein content in whole wheat grain

Brian C. Smith, Ph.D. Chief Technical Officer Big Sur Scientific (508)

Routine analysis for fish farming and processing

Pasting Cell: An Alternative Sample Cell for Detection of Aspergillus flavus Infected Milled Rice by NIR Spectroscopy

In vivo Infrared Spectroscopy

Disney Nutrition Guidelines Criteria

Randomness Rules: Living with Variation in the Nutrient Composition of Concentrate Feeds 1

Bariatric Surgery. Step 2 Diet. General guidelines

Randomness Rules: Living with Variation in the Nutrient Composition of Concentrate Feeds

Personal Touch Food Service will ensure all consumers have access to varied and nutritious foods consistent with promoting health and wellness.

BUCHI NIR Applications Milling & Bakery Industry

INTRODUCTION. CODEX STANDARD FOR PROCESSED CEREAL-BASED FOODS FOR INFANTS AND CHILDREN 1 CODEX STAN (amended 1985, 1987, 1989, 1991)

Canada s Food Supply: A Preliminary Examination of Changes,

NHANES Dairy Foods Messaging

Analysis of Food Sugars in Various Matrices Using UPLC with Refractive Index (RI) Detection

Copyright 1992 Revised 2002 by. American Dairy Products Institute. Elmhurst, Illinois. Printed in U.S.A. American Dairy Products Institute

ASHXX ASH (Residue on Ignition)

Food Analysis Project NDFS 350 March, 21, 2014 Ya Ya Wong. I. Yogurt

EDXRF APPLICATION NOTE

ISO IDF INTERNATIONAL STANDARD

Automated semi industrial system for the NIR characterization of potato composition and quality

Optimal Differentiation of Tissue Types Using Combined Mid and Near Infrared Spectroscopy

Content. 8 th International Food Data Conference. October 1-3, 2009 Bangkok, Thailand

PAPRIKA EXTRACT SYNONYMS DEFINITION DESCRIPTION FUNCTIONAL USES CHARACTERISTICS

Method development for expanding the application of Fourier-Transform Near-Infrared Spectroscopy (FT-NIR) in food samples

what is Fibersol-2 AG?

Determination of Cannabis Extract Potency Degradation Mechanism and Rate by Infrared Spectroscopy

WORKING DOCUMENT ON THE SETTING OF NUTRIENT PROFILES

Practical experiments / Oil/protein crops

Nestlé USA. Our Position on Portions

FT-NIR Spectroscopy for Food and Natural Heath Products Analysis. Subtitle

Rapid Determination of cis and trans Content, Iodine Value, and Saponification Number of Edible Oils by Fourier Transform Near-Infrared Spectroscopy

LC-MS/MS analysis of Chlorates in Milk and Whey Powder using the Agilent 6470 QQQ

Analytical Chemistry of Foods

Food Analysis. Innovation with Integrity. FT-NIR Spectroscopy for QC in the Lab and Production FT-NIR

Food protein powders classification and discrimination by FTIR spectroscopy and principal component analysis

Department of Chemistry, School of Science, Kwansei-Gakuin University, Uegahara, Nishinomiya , Japan

Nutrition Standards for Vending Machines

INTERNATIONAL PHARMACOPOEIA MONOGRAPH ON LAMIVUDINE TABLETS

Prediction of starch content in meatballs using near infrared spectroscopy (NIRS)

Standardization of Ice-Cream Mixe ll AllY If

Nutrition Update: Understanding the Department of Defense Menu Standards

EFSA s Concise European food consumption database. Davide Arcella Data Collection and Exposure Unit

Genetic and Environmental Info in goat milk FTIR spectra

DQCI Services. Trusted Dairy Laboratory Services for more than 50 Years. Dairy Instrument Calibration Validation Standards

HarvestLab John Deere Constituent Sensing

The use of a hand-held mid-infrared spectrometer for the rapid prediction of total petroleum hydrocarbons in soil

NORTHERN CORRIDORSTANDARD NC 4:2018. Roasted Macadamia Specification

Prediction of CP concentration and rumen degradability by Fourier Transform Infrared Spectroscopy (FTIR)

Research of Determination Method of Starch and Protein Content in Buckwheat by Mid-Infrared Spectroscopy

Prevalence, Trends and Disparities in Beverage Consumption Among Young Children aged 0-24 months from NHANES

Nutrition Tips to Manage Your Diabetes

BÜCHI Hydrolysis Unit B-411 BÜCHI Extraction System B-811

FTIR-ATR Characterization of Commercial Honey Samples and Their Adulteration with Sugar Syrups Using Chemometric Analysis

SECTION XE-G: FOOD TECHNOLOGY

Composition of Gray Squirrel Milk

Quality of oilseeds, protein crops and fibre plants

Address: Department of Biosystems, Faculty of Bioscience Engineering, Katholieke Universiteit Leuven KU Leuven, Kasteelpark Arenberg 30, B-3001

Determination of Copper in Green Olives using ICP-OES

the minispec mq one TD-NMR Analyzers

Relationship Between Lactoferrin, Minerals, and Somatic Cells in Bovine Milk

botanicalinnovations.com.au

Milled Rice Surface Lipid Measurement by Diffuse Reflectance Fourier Transform Infrared Spectroscopy (DRIFTS)

Medical Disclaimer. THE 80/20 FAT LOSS PROGRAM 2

Nondestructive Determination of Sugar Content in Potato Tubers Using Visible and Near Infrared Spectroscopy

FOOD SAFETY ACT (CAP. 449) Preserved Milk Regulations, 2004

Safety as Food Additives. Methylcellulose

Session Four: Vitamins, Minerals, and Fiber

Maria Teresa Scardigli Executive Director International Stevia Council. Stevia 2012 Conference 12 April 2012, London - UK

Official Journal of the European Union L 150/17

INTERPRETING FORAGE QUALITY TEST REPORTS

EVALUATION OF DEVELOPMENT IN INDIRECT DETERMINATION OF MILK FAT FREE FATTY ACIDS IN CZECH REPUBLIC

Commercial Bulleting Aloe Flakes

Use of FT-NIR Spectroscopy for Bovine Colostrum Analysis

Cotinine (Mouse/Rat) ELISA Kit

C H O C O L AT E. Nutrition Facts. 21 Vitamins and Minerals 200{ Calcium 7 Grams Soy Protein UNSURPASSED oz (2.5 lb) (1.

Raman spectroscopy of chocolate bloom

DDGS: An Evolving Commodity. Dr. Jerry Shurson University of Minnesota

Transcription:

Tropical Agricultural Research Vol. 26 (3): 554 560 (2015) Short Communication Application of Near-infrared Spectroscopy to Quantify Fat and Total Solid Contents of Sweetened Condensed Creamer S. Subajiny, M.M. Jayasiri 1 and Terrence Madhujith 2* Postgraduate Institute of Agriculture University of Peradeniya Sri Lanka ABSTRACT: Near-infrared (NIR) spectroscopy has emerged in food industry as a rapid, non-destructive method in the quality analysis of food and beverages. The objective of the present study was to explore the applicability of NIR spectroscopy for rapid quantification of fat and total solid content of a dairy product, sweetened condensed creamer. Samples (30 for fat and 24 for total solids) were analyzed using NIR spectroscopy and standard methods. Opus spectroscopy software was used to develop calibration models for the components examined. The calibration models were prepared using spectra obtained for both fat and total solid content. The constructed calibration models were validated by cross validation. The correlation coefficients (R 2 ) between the values obtained from two methods were determined. The values obtained for fat and total solid contents by NIR spectroscopy and standard method were not significantly different (p>0.05). The R 2 values determined for calibration were, 0.91 for fat and 0.87 for total solids while R 2 values for validation were 0.96 for fat and 0.96 for total solids. The results of the present study showed a strong relationship between results obtained by NIR spectroscopy and respective standard methods. Thus, it can be concluded that NIR spectroscopy is applicable for a routine analysis of fat and total solid content of Sweetened Condensed Creamer. Keywords: Fat, near infra-red (NIR) spectroscopy, sweetened condensed creamer, total solid INTRODUCTION Trends in analytical chemistry are towards simple and less time consuming analytical methods. Infrared spectroscopy is a technique that has been proposed as an excellent alternative to traditional methods for quality analysis of food and beverages (Shiroma and Rodriguez-Saona, 2009). Near-infrared (NIR) spectroscopy is based on the absorption of electromagnetic radiation at wavelengths in the range of 780 2500 nm. NIR spectra of foods comprise of broad bands arising from overlapping absorptions corresponding mainly to overtones and combinations of vibrational modes involving C-H, O-H and N-H chemical bonds (Osborne, 2006). The NIR spectroscopy possesses multiple characteristics such as rapidity, simplicity, cost effectiveness, potential for routine analysis if proper calibration and validation is developed, and non-requirement of special skilled operator among others (Shiroma and Rodriguez- Saona, 2009). In addition, for each fundamental vibration there exists a corresponding series 1 Silver Mills Limited, Loluwagoda, Meerigama 2 Department of Food Science and Technology, Faculty of Agriculture, University of Peradeniya, Sri Lanka *. Corresponding author: madujith@yahoo.com

Near-infrared Spectroscopy to Quantify Fat and Total Solid of overtone and combination bands with each successive overtone band approximately an order of magnitude less intense than the preceding one. This provides a built-in dilution series which allows several choices of absorptions of different intensity containing the same chemical information. Further, the relatively weak absorption due to water enables highmoisture foods to be analyzed (Osborne, 2006). It is mainly used to determine fat or oil, protein and moisture levels of food products, serving a grading and quality assurance function. Sweetened condensed creamer is a smooth viscous liquid manufactured from fresh milk, which is then standardised, mixed with sugar and pasteurised before evaporating. It is used undiluted in tea, coffee or cocoa and also ideal to be used in various recipes as a sweet topping on desserts, bakery products and fresh fruit. According to Food and Drug Administration (FDA), minimum requirement for analysis of sweetened condensed full cream include the analysis of Total Milk Solids (28% minimum) and Milk Fat (8.5% minimum) (FDA, 2013). The traditional methods for determining the quality of milk products and its major components are slow and expensive (Jankovska and Sustova, 2003). Therefore this study aimed to explore the applicability of NIR spectroscopy for quantifying fat and total solid content of sweetened condensed creamer. METHODOLOGY The sweetened condensed creamer samples were obtained from Nestle Lanka PLC, Pannala, Sri Lanka. Ammonia solution, ethyl alcohol, diethyl ether, petroleum ether and Congo red indicator were obtained from Analytical Instruments Limited, Sri Lanka. All the chemicals were of analytical grade. Sample preparation The number of samples selected for fat and total solid contents were 30 and 24, respectively. The calibration samples were selected to represent a range of concentrations that represents the actual fat and total solid contents (fat content ranged from 12.0% to 14.0% and total solid content ranged from 72.0% to 75.0%). The samples were gently mixed by repeatedly inverting the package before samples were drawn for analysis. After opening the package, the samples were mixed well again with a spatula. Analysis of samples using FT-NIR analyzer First, instrument check tests were performed. Two test portions were taken from the same sample within the shortest feasible time interval (<5 min.). Analyses were carried out in duplicates. Then each sample was fed to the FT-NIR Analyzer (Bruker multipurpose analyzer) to analyze fat and total solid content. The calibration models were created by Opus/Spectroscopy Software (version 6-QUANT). Samples were analyzed for calibration and cross validation of the calibration performed. The calibration models were prepared by using spectra which have been measured. 555

Subajiny et al. Determination of fat content by Mojonnier method Total fat contents of the samples were determined using Mojonnier method as described by Min and Ellefson (2010). The first extraction was performed using ether while the second extraction was performed using ethyl alcohol, diethyl ether and petroleum ether. Third extraction was done using diethyl ether and petroleum ether. Blank test was also performed. The fat content was calculated as shown in Equation 1. Fat content (%) = [{(Wt of dish + residue)- (Wt of dish)} Wt of blank residue] x 100 Wt of sample where, Wt- weight (g) Analysis of total solid content using a standard method... (1) Total solids were determined by drying a known mass of milk at 102 ± 1 C for 4 hours and subsequent weighing to determine the mass loss (Cvak et al., 1992). The total solid content was calculated as shown in Equation 2. Total solid content (%) = (Wt of dish + residue)- (Wt of dish) x 100 Wt of sample where, Wt- weight (g)... (2) Statistical analysis The data were analyzed using Minitab 16 and Microsoft (Excel) procedures. The results of the standard methods and NIR spectroscopy were statistically analyzed using paired t-test test in MINITAB. Correlations among data obtained were calculated using Pearson s correlation coefficient (R). RESULTS AND DISCUSSION Comparison of standard method and NIR spectroscopy The results of the statistical analysis of values for fat and total solid content obtained by NIR spectroscopy and standard methods by paired-t-test using MINITAB 16 are summarized in Table 1. There are no significant differences (p>0.05) between the values obtained for fat and total solid contents by both methods. Table 1. Results of analysis by paired-t-test using MINITAB (p = 0.05) Component n x-nir x-std D mean SD p-value SE mean T-value Fat 30 12.469 12.458-0.011 0.107 0.589 0.0195-0.55 Total solid 24 73.325 73.376 0.051 0.170 0.158 0.0347 1.46 n- Number of samples; x-nir- Average of NIR values; x- Std- Average of standard values; d mean- difference between average standard and NIR values; SD Standard deviation of the 556

Near-infrared Spectroscopy to Quantify Fat and Total Solid mean difference; p-value- probability value at 95% confidence interval, Se-mean- Standard error of mean difference Chemometric models and their validation The purpose of developing chemometric models and their validation is the quantitative analysis of an unknown multi component sample. Chemometric models were developed separately for fat and total solid content using calibration samples of known composition that are representative for the system. The NIR spectra of these samples were used to calculate a calibration function, which essentially is the model used for the analysis of unknown samples later. However, the model was validated by cross validation to test its reliability of prediction. Samples for calibration were selected in a way that they cover a wider concentration range than intend to analyze later. This helps create a more stable model for analysis. This becomes increasingly important when there are outliers, with concentrations that largely deviate from desired values, as this maybe the case in quality control. Setting up a chemometric model and its validation for fat and total solid content The determined correlation coefficients for calibration were for fat 0.911 and total solids 0.870, and the correlation coefficients for validation found were for fat 0.968 and total solids 0.960 (Figures 1 4). Differences between the values obtained by NIR spectroscopy and standard method for both fat and total solid content were not significant (p>0.05). Fig. 1. Correlation between the values of fat content obtained by NIR spectroscopy and standard method 557

Subajiny et al. Fig. 2. Window which displays the correlation between the prediction values and Setting up a chemometric model for total solid content and its validation Fig. 3. Correlation between the values of total solid content obtained by NIR spectroscopy and standard method 558

Near-infrared Spectroscopy to Quantify Fat and Total Solid Fig. 4. Window which displays the correlation between the prediction values and values obtained by standard method for total solid content CONCLUSION The study revealed that fat and TS content of sweetened condensed creamer measured by NIR have a strong correlation with the values obtained by standard methods. The cross validation indicated the possibility of the use of NIR spectroscopy for the determination of fat and total solid content of sweetened condensed creamer. Therefore it can be concluded that NIR spectroscopy can be applied for routine analysis of fat and total solid content of sweetened condensed creamer and related products. REFERENCES Cvak, Z., Peterkova, L. and Černa, E. (1992). Chemical and physic chemical methods in milk and dairy product quality control. Praha: VUP, Milcom servis a.s. Praha. 12-13. ISBN 80-85120-36-4. FDA. (2013). Minimum requirement for analysis of finished product. Annex J: Summary of current food standards as of 04 April 2013 [on line]. [Accessed on 4.07.2014]. Available at http://www.fda.gov.ph/attachments/article/71149/annex%20j%20- %20FOOD%20STANDARDS.pdf 559

Subajiny et al. Jankovska, R. and Sustova, K. (2003). Analysis of cow milk by near-infrared spectroscopy. Czech J. Food Sci., 21, 123-128. Min, D.B. and Ellefson, W.C. (2010). Fat analysis. pp 117-132. In: Nielson, S.S. (Ed.) Food Analysis, 4 th edition, Springer US. Osborne, B.G. (2006). Near-Infrared Spectroscopy in Food Analysis. In: Encyclopedia of Analytical Chemistry [on line]. [Accessed on 03.07.2014]. Available at http://onlinelibrary.wiley.com/doi/10.1002/9780470027318.a1018/abstract Shiroma, C. and Rodriguez-Saona, L. (2009). Application of NIR and MIR spectroscopy in quality control of potato chips. Journal of Food Composition and Analysis, 22, 596-605. 560