Tumor targeting antibodies bridge innate to adaptive immunity. Yang-Xin Fu MD PhD Professor of Pathology and Immunology UT Southwestern

Similar documents
Supplementary figure 1. Systemic delivery of anti-cd47 antibody controls tumor growth in

Supplemental Information. The Therapeutic Effect. of Anti-HER2/neu Antibody Depends. on Both Innate and Adaptive Immunity CONTENTS:

Molecular mechanisms of the T cellinflamed tumor microenvironment: Implications for cancer immunotherapy

WIN 2015 Symposium Radiation and immunology: a new therapeutic partnership

Supplementary Materials for

CD47 blockade triggers T cell mediated destruction of immunogenic tumors

Innate immune regulation of T-helper (Th) cell homeostasis in the intestine

Targeting the Tumor Microenvironment with Interferon-b Bridges Innate and Adaptive Immune Responses

Personalized Cancer Neoantigen Vaccines

Felix Yarovinsky. Department of Immunology, UT Southwestern Medical Center. Innate immune defense to Toxoplasma gondii

Targeting CD47 to involve macrophages and dendritic cells in a holistic anti-tumor immune response

Impact of Vorinostat Treatment of Non- Hodgkin s Lymphoma on HIV-1 Latent Reservoir

VISTA, a novel immune checkpoint protein ligand that suppresses anti-tumor tumor T cell responses. Li Wang. Dartmouth Medical School

Cancer immunity and immunotherapy. General principles

Supplementary Figures

Supplementary Figure 1. Deletion of Smad3 prevents B16F10 melanoma invasion and metastasis in a mouse s.c. tumor model.

Scott Abrams, Ph.D. Professor of Oncology, x4375 Kuby Immunology SEVENTH EDITION

CELLULAR AND MOLECULAR REQUIREMENTS FOR REJECTION OF B16 MELANOMA IN THE SETTING OF REGULATORY T CELL DEPLETION AND HOMEOSTATIC PROLIFERATION

STING-Dependent Cytosolic DNA Sensing Promotes Radiation-Induced Type I Interferon-Dependent Antitumor Immunity in Immunogenic Tumors

Supplementary Materials for

Nature Medicine: doi: /nm.3922

Regulation of anti-tumor immunity through migration of immune cell subsets within the tumor microenvironment Thomas F. Gajewski, M.D., Ph.D.

Blocking antibodies and peptides. Rat anti-mouse PD-1 (29F.1A12, rat IgG2a, k), PD-

Novel Approaches to CAR-T Cell Platform

Preclinical Assessment of JTX-2011, An Agonist Antibody Targeting ICOS, Supports Evaluation In ICONIC Clinical Trial

Gamma-aminobutyric acid (GABA) treatment blocks inflammatory pathways and promotes survival and proliferation of pancreatic beta cells

Basic Principles of Tumor Immunotherapy. Ryan J. Sullivan, M.D. Massachusetts General Hospital Cancer Center Boston, MA

Radiation Therapy as an Immunomodulator

Intracellular MHC class II molecules promote TLR-triggered innate. immune responses by maintaining Btk activation

Cell-mediated Immunity

Posters and Presentations

The Ying and Yang of IFN-γ in Autoimmunity

Supplemental Materials

LDR and its potential application in clinics

NKTR-214 plus NKTR-262, a Scientifically-Guided Rational Combination Approach for Immune Oncology

Identification of novel immune regulators of tumor growth using highthroughput

Immunotherapy: The Newest Treatment Route

Dual-targeting anti- CD47 bispecific antibodies: Safely provoking macrophages to feast NALM-6 tumor cells (B-ALL) Human macrophages

Regulatory B cells in autoimmunity. Liwei Lu University of Hong Kong, China

Understanding the T cell response to tumors using transnuclear mouse models

Novel RCC Targets from Immuno-Oncology and Antibody-Drug Conjugates

IMO-8400, a novel TLR7, TLR8 and TLR9 antagonist, psoriasis

Supplementary Figure 1. Characterization of basophils after reconstitution of SCID mice

Dendritic cells in cancer immunotherapy Aimin Jiang

Shiv Pillai Ragon Institute, Massachusetts General Hospital Harvard Medical School

Understanding and overcoming immunoregulatory barriers within

Manipulating the Tumor Environment

Immunotherapy in Lung Cancer - TLR9 as a therapeutic target -

SUPPLEMENTARY INFORMATION

Supplementary Figure 1

Targeting tumour associated macrophages in anti-cancer therapies. Annamaria Gal Seminar Series on Drug Discovery Budapest 5 January 2018

Supplemental Materials for. Effects of sphingosine-1-phosphate receptor 1 phosphorylation in response to. FTY720 during neuroinflammation

Irradiation and anti PD-L1 treatment synergistically promote antitumor immunity in mice

Immune Regulation and Tolerance

Tumors arise from accumulated genetic mutations. Tumor Immunology (Cancer)

Supplementary information

NKTR-255: Accessing The Immunotherapeutic Potential Of IL-15 for NK Cell Therapies

Erbb2 transgenic mice: a tool to evaluate the potential efficacy of vaccination in the prevention and cure of carcinomas

ACTIVATION AND EFFECTOR FUNCTIONS OF CELL-MEDIATED IMMUNITY AND NK CELLS. Choompone Sakonwasun, MD (Hons), FRCPT

Hua Tang, Weiping Cao, Sudhir Pai Kasturi, Rajesh Ravindran, Helder I Nakaya, Kousik

Restoring Immune Function of Tumor-Specific CD4 + T Cells during Recurrence of Melanoma

Immunotherapy of HNC: immune mechanisms and therapeutic targets

Rationale for Combining Immunotherapy with Chemotherapy or Targeted Therapy

Supplemental Figure 1. Protein L

Nature Immunology: doi: /ni Supplementary Figure 1. Gene expression profile of CD4 + T cells and CTL responses in Bcl6-deficient mice.

Immunology Lecture 4. Clinical Relevance of the Immune System

Immunity to Bodetella pertussis. Kingston Mills. Trinity Biomedical Sciences Institute Trinity College Dublin, Ireland

Richard S. Kornbluth, M.D., Ph.D.

The Therapeutic Effect of Anti-HER2/neu Antibody Depends on Both Innate and Adaptive Immunity

Evidence for Systemic Effects Moves PV-10 Toward Further Clinical Trials

Understanding Checkpoint Inhibitors: Approved Agents, Drugs in Development and Combination Strategies. Michael A. Curran, Ph.D.

Immune Checkpoints. PD Dr med. Alessandra Curioni-Fontecedro Department of Hematology and Oncology Cancer Center Zurich University Hospital Zurich

PREPARED FOR: U.S. Army Medical Research and Materiel Command Fort Detrick, Maryland

Supplemental Materials. Stromal Modulation Reverses Primary Resistance to Immune Checkpoint Blockade in. Pancreatic Cancer.

1. Overview of Adaptive Immunity

Rational combinations with immunotherapeutics

Cetuximab-mediated Tumor Regression Depends on Innate and Adaptive Immune Responses

Gene+c fate mapping. x loxp. Foxp3 3 UTR ROSA26 RFP IRES GFP CRE. STOP loxp. Stable Foxp3 expression. Foxp3 expression in new Treg.

Integrin CD11b negatively regulates TLR-triggered inflammatory responses by. activating Syk and promoting MyD88 and TRIF degradation via cbl-b

Supplementary information. Characterization of c-maf + Foxp3 - Regulatory T Cells Induced by. Repeated Stimulation of Antigen-Presenting B Cells

Immunotherapy versus targeted treatments in metastatic renal cell carcinoma: The return game?

Utilizing Humanized NSG Mice to Evaluate Drug Efficacy in Immuno-Oncology

NKTR-255: Accessing IL-15 Therapeutic Potential through Robust and Sustained Engagement of Innate and Adaptive Immunity

In-San Kim, M.D., Ph.D. KIST InterMembrane Signaling Lab & KU-KIST, Korea University The 15 th Korea-US Forum on Nanotechnology,

Combining ADCs with Immuno-Oncology Agents

Putting it Together. Stephen Canfield Secondary Lymphoid System. Tonsil Anterior Cervical LN s

Effector T Cells and

Darwinian selection and Newtonian physics wrapped up in systems biology

Targeting the Primary Tumor to Generate CTL for the Effective Eradication of Spontaneous Metastases

Approved for Public Release; Distribution Unlimited

1. Background and Significance Currently there are no efficacious therapies for renal cell carcinoma (RCC). Despite recent

Licia Rivoltini, MD Unit of Immunotherapy of Human Tumors

Innate immunity. Abul K. Abbas University of California San Francisco. FOCiS

FcγRIIIA (CD16)-expressing monocytes mediate the depletion of tumor-infiltrating Tregs via ipilimumab-dependent ADCC in melanoma patients

Immunologic Effects of Clinical Stage FAK & PI3K-Delta/Gamma Inhibitors

Canberra, Australia). CD11c-DTR-OVA-GFP (B6.CD11c-OVA), B6.luc + and. Cancer Research Center, Germany). B6 or BALB/c.FoxP3-DTR-GFP mice were

8/3/2016. Why are abscopal effects of radiation so rare? Radiation therapy to ignite an anti-cancer immune response DISCLOSURES

Enhancing the Clinical Activity of HER2/neu Specific T Cells. William Gwin, MD Internal Medicine, Resident University of Washington

PREPARED FOR: U.S. Army Medical Research and Materiel Command Fort Detrick, Maryland Approved for public release; distribution unlimited

Cross-Regulation of Two Type I Interferon Signaling Pathways in Plasmacytoid Dendritic Cells Controls Anti-malaria Immunity and Host Mortality

Transcription:

Tumor targeting antibodies bridge innate to adaptive immunity Yang-Xin Fu MD PhD Professor of Pathology and Immunology UT Southwestern

Tumor targeting antibodies are screened and selected to kill tumor cells Tumor targeting antibodies oncogenic receptors: anti-her2/neu CD2 (cell lineage) CD47 (do not eat me signal) Bi-specific antibody: increase efficacy and reduce toxicity 2

How can anti-her2/neu antibody reduce tumor burden: complex mechanisms? Oncogenic blockade vs FcR mediated kill? NK TUMOR We select WT vs Rag-1 KO mice for stronger ADCC but lack T /B cells to test its impact TUMOR 3

Tumor volume (mm 3 ) Tumor targeting Ab controls in T cell dependent fashion 125 1 WT migg Wt -neu Rag -/- migg TUBO derived from MMTV-Rat neu Tg: oncogenic signaling dependent 75 5 Rag -/- -neu Rag-1+Ab 25 1 2 3 4 5 Days after tumor inoculation * Wt+Ab Similar T cell dependency is observed using TKI: 1% relapse in Rag-1 KO mice But % in WT mice Are T cells essential for Ab-mediated tumor regression? Nature Med, 27, Cancer Cell, 21 and 214; CCR 213, Mol. Ther. 213 4

How do antibodies trigger immune response? Anti-EGFR or anti-her2/neu CD8 ADCC cytokines IFN Increased Cross-priming Stress protein or DNA TLRs? MyD88 MyD88/HMGB-1, Type I IFN, type II IFN, DC, and T cell dependent 5

Major Mechanism for Anti-CD2 Antibodies: Is ADCC vs CDC? ADCC vs CDC: which is more important N Engl J Med 212;366:28-16. 6

V o lu m e o f th e tu m o r(m m 3 ) V o lu m e o f th e tu m o r(m m 3 ) V o lu m e o f th e tu m o r(m m 3 ) The therapeutic effect of anti-cd2 treatment is CD8 T cell dependent A 1 8 6 C trl A n ti-m C D 2 B 1 5 1 C trl A n ti-m C D 2 C 2 1 5 C trl A n ti-c D 8 A n ti-m C D 2 A n ti-m C D 2 + a n ti-c D 8 4 5 nude 1 2 5 1 2 3 T im e a fte r tu m o r in o c u la tio n (d ) 1 2 3 T im e a fte r tu m o r in o c u la tio n (d ) 1 2 3 T im e a fte r tu m o r in o c u la tio n (d )

T u m o r v o lu m e (m m 3 ) S F C s p e r 3 * 1 5 c e lls Anti-CD2 DC?? CD8 + T cell Tumor control 1.8*1 6 A2 S.C. 1μg of anti-mcd2 (Anti-mCD2) or higg (Ctrl) i.p. CD11c-DTR D12 D15 D11 DT i.p. every other day 8 h Ig G 1 h Ig G 1 + D T A n ti-m C D 2 6 A n ti-m C D 2 + D T 2 5 2 h Ig G 1 A n ti-m C D 2 h Ig G 1 + D T 1 5 A n ti-m C D 2 + D T 4 1 2 5 1 2 3 4 5 T im e a fte r tu m o r in o c u la tio n (d ) M e d iu m A 2 DC is necessary for anti-cd2 treatment 8

T u m o r v o lu m e (m m 3 ) S F C s p e r 2 *1 5 c e lls The therapeutic function of anti-cd2 is macrophage-dependent 1.8*1 6 A2 S.C. 1μg of anti-mcd2 BALB/c D12 D15 D11 Clophosome i.p. twice a week D26 IFN-γ ELISPOT 1 C trl C lo p h o s o m e A n ti-m C D 2 8 A n ti-m C D 2 + C lo p h o s o m e 5 4 P <. 1 C trl A n ti-m C D 2 C trl + C lo p h o s o m e 6 3 A n ti-m C D 2 + C lo p h o s o m e 4 2 2 1 1 2 3 T im e a fte r tu m o r in o c u la tio n (d ) M e d iu m A 2 9 How can both DC and macrophages are essential?

IF N - (p g /m l) Anti-CD2 induced increase of DC cross-presentation is macrophage-dependent Isolated DCs from A2-HA-bearing mice treated with anti-cd2 +/- MO CL4 T cells 1 5 1 5 P <. 5 Cross priming IFNg MO dep. IF N (p g /m l) 1 2 1 8 6 4 2 Isolated cell For type I IFN C trl P <. 1 A n ti-m C D 2 S F C s p e r 3 *1 5 c e lls 6 C trl 4 2 T cell responses are IFNRA dependent A n ti-m C D 2 P =. 1 A n ti-m C D 2 + a n ti-ifn a r1 C trl A n ti-m C D 2 A n ti-m C D 2 + C lo p h o s o m e D C M a c ro p h a g e D C M a c ro p h a g e M e d iu m A 2 Anti- CD2 Mɸ IFN-I DC CD8 + T cell Tumor control 1

CD47 blockade permits rapid phagocytosis of tumor cells: Innate checkpoint blockade? Do not eat me CD47 is innate checkpoint that prevent phagocytosis Eat me signals NSG mice Cell, 29 ALL model Blood; 71(4); 1374 84 11

Tumor volume(mm 3 ) Tumor volume (mm 3 ) T u m o r v o lu m e (m m 3 ) T u m o r v o lu m e (m m 3 ) Tumor volume (mm 3 ) T cells are essential for anti-cd47-mediated tumor control in syngenic tumor models A2 (lymphoma) systemic local MC38(colon cancer) a 2 1 5 1 A 2 (i.p. a n ti-c D 4 7 ) R a tig a n ti-c D 4 7 1 2 1 8 6 ra tig G a n ti-m C D 4 7 c c 8 6 4 RatIg anti-cd47 5 5 1 1 5 2 2 5 3 3 5 D a y s a fte r tu m o r in o c u la tio n * 4 2 * 5 1 1 5 2 2 5 3 D a y s a fte r tu m o r in o c u la tio n 2 ** 1 2 3 Days after tumor inoculation d 5 4 3 2 1 Nude ratigg Nude anti-mcd47 ns 5 1 15 2 Days after tumor inoculation e 12 8 4 RatIg anti-mcd47 Nude mice 5 1 15 2 25 Days after tumor inoculation *

Tumor volume (mm 3 ) But the protection of anti-cd47 Ab is dependent on CD8 T cells A: CD8 dependent B: memory response by rechallenge 1 8 6 4 2 Naive anti-cd47 5 1 15 2 25 Days after tumor rechallenge 13

Therapeutic effect of anti-cd47 depends on type I IFNs and DC responding to IFN for cross priming. re la tiv e c o p y n u m b e (x 1-3 ) Tumor volume (mm 3 ) Tumor volume (mm 3 ) A: IFN production by DC 8 6 4 2 M o n o c y te IF N R a tig a n ti-c D 4 7 * ns M a c ro p h a g e * * D C B: IFNAR signaling 5 4 3 2 1 RatIg anti-ifnar anti-cd47 anti-cd47+anti-ifnar1 5 1 15 2 25 Days after tumor inoculation C: IFNAR on DC ** CD11c-cre x IFNAR fl/fl = no IFNAR on DC 12 1 8 6 4 2 Ifnar1 fl/fl +RatIg Ifnar1 fl/fl + anti-cd47 Cd11c cre Ifnar1 fl/fl + RatIg Cd11c cre Ifnar1 fl/fl + anti-cd47 ** 5 1 15 2 25 Days after tumor inoculation Which pathway to produce IFN: MyD88, like anti-neu? 14

Tumor size (mm 3 ) Tumor volume (mm 3 ) Neither MyD88 nor Trif, two major pathways for IFN production, is essential for tumor control by anti-cd47 1 RatIg 8 anti-cd47 MyD88 -/- +RatIg 6 MyD88 -/- +anti-cd47 4 1 8 6 4 RatIg anti-cd47 Trif-/-+RatIg Trif-/-+anti-CD47 2 ns 2 ns 5 1 15 2 25 Days after tumor inoculation 5 1 15 2 25 Days after tumor inoculation Xu et al Nature Med 215 15

Tumor volume (mm 3 ) Fold induction IFN- spots/1 6 cells STING signaling is essential for type I IFNs Sting dependent: tumor control DC IFN production Cross-Priming c d e 8 RatIg anti-cd47 6 Sting mut +RatIg Sting mut +anti-cd47 8 6 * IFN * RatIg anti-cd47 CD8 T cells response 2 RatIg 15 *** *** anti-cd47 4 4 1 2 * 2 ns 5 5 1 15 2 Days after tumor inoculation WT Sting mut WT Sting mut 16

Tumor size (mm 3 ) Tumor size (mm 3 ) STING from DC but not macrophages is required for anti-cd47 therapy A B 15 Sting f/f +rat Ig Sting f/f +anti-mcd47 1 Lyz-cre;Sting f/f +rat Ig Lyz-cre;Sting f/f 5 +anti-mcd47 ** ns 2 Sting f/f +rat Ig Sting f/f +anti-mcd47 15 Cd11c-cre;Sting f/f +rat Ig 1 Cd11c-cre;Sting f/f +anti-mcd47 5 ns *** 5 1 15 2 25 Days after tumor inoculation 5 1 15 2 25 Days after tumor inoculation Why can DC but not macrophages be essential for innate sensing? Which type of DNA or DNA complex senses cgas/sting pathway? 17

% of EdU + cells Anti-CD47 increases DNA and tumor uptake by both DC and macrophages CFSE-labeled MC38 tumor cells + BMDC or BMM Ab 1 h. A Edu labeled tumor cells were inoculated Ab 4 h cells harvested Gate: CD45+CD11b+: Increased DNA uptake by anti-cd47 B 15 1 RatIg anti-cd47mab ** * 5 BMDC BMM

Cytosolic DNA (Relative copy number) Fold Change (relative to RatIg) DCs accumulate more cytosolic DNA after CD47 blockade ex vivo 3 *** *** 2 RatIg Anti-mCD47(24h) Anti-mCD47(72h) 8 6 4 Cytosolic mtdna Rat Ig Anti-mCD47 ** 1 2 gdna mtdna Mono M DC

Anti-CD47 promotes tumor-derived mtdna Cytosolic DNA (Relative copy number) Cytosolic DNA (Relative copy number) Host VS Tumor? Genomic DNA VS Mitochondrial DNA? gdna mtdna 8 RatIg Anti-mCD47 6 8 mig ** Anti-hCD47 6 4 4 2 ns mouse ns human 2 ns mouse human

IFN- spots/1 6 cells DNA abundance (%) Fold Change (relative to RatIg) Tumor mtdna is required for type I IFN production and cross-priming in DC A DDC reduces mtdna B: 1 ns *** Non-ddC ddc 6 4 IFN- * Rat Ig Anti-mCD47 5 2 ns gdna mtdna mtdna depleted Macrophage DC - - + + - - + + C 6 4 *** *** Rat Ig Anti-mCD47 2 mtdna depleted ns - - + +

Phagosomal PH Phagosomal PH Phagosomal mtdna (relative to RatIg) CD47-SIRPα signaling in DCs controls the phagosomal PH and DNA degradation A: mtdna reduced in macrophages but not DC 3 ** ns RatIg ** ** anti-cd47(') anti-cd47(3') 2 anti-cd47(9') 1 Macrophage DC B: ph in macrophage is reduced C: ph in DC increase 8 7 6 Macrophage 5 M alone M +Tumor(ratIg) 4 M +Tumor(anti-CD47) 1 9 18 36 Time of chase (min) 8 7 DC 6 DC alone 5 DC+Tumor(ratIg) DC+Tumor(anti-CD47) 4 1 9 18 36 Time of chase (min) *

Tumor Volume (mm 3 ) Tumor Volume (mm3) T u m o r V o lu m e (m m 3 ) T u m o r V o lu m e (m m 3 ) T u m o r V o lu m e (m m 3 ) % C D 3 + C D 8 + in tu m o r Cell counts CD47 on tumor cells plays dominate role in evasion and PD-L1 is an adaptive resistance A B C D 1 5 1 M C 3 8 M C 3 8 -C D 4 7 K O * 2 5 2 1 5 M C 3 8 M C 3 8 -C D 4 7 K O M C 3 8 -C D 4 7 K O + a n ti-c D 8 * * * 4 3 * * * ISO MC38 MC38-CD47 KO 5 * * * * 1 5 2 1 1 2 1 9 2 6 3 3 T im e a fte r tu m o r in o c u la tio n (d a y ) 1 2 1 9 2 6 3 3 T im e a fte r tu m o r in o c u la tio n (d a y ) M C 3 8 M C 3 8 -C D 4 7 K O PDL1 E 2 15 1 MC38 MC38-CD47 KO MC38-PDL1 KO MC38-CD47/PDL1 DKO *** F 25 2 15 1 WT:MC38 WT:MC38-CD47/PDL1 DKO Rag-/-:MC38 Rag-/-:MC38-CD47/PDL1 DKO *** G 1 5 M C 3 8 M C 3 8 -C D 4 7 /P D L 1 D K O M C 3 8 -C D 4 7 /P D L 1 D K O + a n ti-c D 8 * * 5 1 14 17 21 25 3 Time after tumor inoculation (day) 5 1 14 18 21 24 28 Time after tumor inoculation (day) 7 1 3 1 7 2 2 2 7 T im e a fte r tu m o r in o c u la tio n (d a y )

T u m o r V o lu m e (m m 3 ) IFNAR and STING/IFN on host cells are required for CD47 /PDL1-mediated evasion T u m o r V o lu m e (m m 3 ) T u m o r V o lu m e (m m 3 ) A 2 1 5 W T :M C 3 8 W T :M C 3 8 -C D 4 7 /P D L 1 D K O IF N A R -/-:M C 3 8 IF N A R -/-:M C 3 8 -C D 4 7 /P D L 1 D K O B 2 1 5 W T :M C 3 8 W T :M C 3 8 -C D 4 7 /P D L 1 D K O S T IN G m u t :M C 3 8 S T IN G m u t :M C 3 8 -C D 4 7 /P D L 1 D K O 1 * * * 1 5 5 * * * * 1 2 3 T im e a fte r tu m o r in o c u la tio n (d a y ) C 1 5 5 1 1 5 2 2 5 3 T im e a fte r tu m o r in o c u la tio n (d a y ) W T :M C 3 8 W T : M C 3 8 -C D 4 7 /P D L 1 D K O C D 1 1 C -S T IN G -/-:M C 3 8 C D 1 1 C -S T IN G -/-:M C 3 8 -C D 4 7 /P D L 1 D K O 1 5 * * * * 5 1 1 5 2 2 5 3 T im e a fte r tu m o r in o c u la tio n (d a y )

Binding RBC is the major barrier for systemic use of anti-cd47 How can we target tumor better? A B RBC MC38 SIRPa anti-pdl1-sirpa Tumor cells have both PD-L1 and CD47 while RBC have only CD47. Bi-specific anti-pdl1-sirpα maintaining binding to tumor cells while greatly reducing binding to RBC

T u m o r V o lu m e (m m 3 ) T u m o r V o lu m e (m m 3 ) T u m o r V o lu m e (m m 3 ) T u m o r V o lu m e (m m 3 ) Co-targeting of CD47 and PDL1 on tumor cells is required for tumor growth inhibition A In tra tu m o ra l tre a tm e n t B S y s te m ic tre a tm e n t 1 5 1 h Ig G a n ti-p D L 1 S IR P a a n ti-p D L 1 -S IR P a 2 1 5 h Ig G a n ti-p D L 1 -S IR P a a n ti-p D L 1 + S IR P a 5 * * * 1 5 * * 1 1 4 1 7 2 2 5 3 3 5 4 1 1 1 4 1 8 2 1 2 4 2 8 3 3 3 7 4 1 D 1 5 T im e a fte r tu m o r in o c u la tio n (d a y ) M C 3 8 -C D 4 7 K O tu m o r E 1 5 T im e a fte r tu m o r in o c u la tio n (d a y ) M C 3 8 -P D L 1 K O tu m o r 1 h Ig G a n ti-p D L 1 -S IR P a 1 h Ig G a n ti-p D L 1 -S IR P a 5 5 5 1 1 5 2 2 5 3 3 5 T im e a fte r tu m o r in o c u la tio n (d a y ) 5 1 1 5 2 2 5 3 T im e a fte r tu m o r in o c u la tio n (d a y )

T u m o r V o lu m e (m m 3 ) T u m o r V o lu m e (m m 3 ) Anti-PDL1-SIRPα enhances intratumoral DC innate sensing 1 8 W T : h Ig G W T : a n ti-p D L 1 -S IR P a S T IN G -/-: h Ig G S T IN G -/-: a n ti-p D L 1 -S IR P a 1 5 S T IN G -/-: h Ig G S T IN G -/-: a n ti-p D L 1 -S IR P a C D 1 1 c -S T IN G -/-: h Ig G C D 1 1 c -S T IN G -/-: a n ti-p D L 1 -S IR P a 6 1 4 2 * 5 * 5 1 1 5 2 2 5 T im e a fte r tu m o r in o c u la tio n (d a y ) 5 1 1 5 2 2 5 3 T im e a fte r tu m o r in o c u la tio n (d a y )

Summary Therapeutic effect of anti-cd47 depends on CTL. DCs but not macrophage are required for anti-cd47 Abmediated cross priming While macrophages degrade DNA faster than DC Anti-CD47 Ab-mediated type I IFN induction or cross priming by host DC depends on cgas-sting pathway DC can better sense cytosol mtdna through cgas-sting pathway 28

Acknowledgements: CAS collaborative group Radiation Liufu Deng Sog Auh/Youjin Lee Byron Burnette Anti-CD47 Ab Michelle Xu Xiaojuan Liu Christine Pu Hua Peng Anti-Neu SeaGwang Park Yang Wang Eric Morterson Shengdien Wang Ab-IFN Xuanming Yang Yang Wang Ab-LIGHT Haidong Tang Yang Wang CD2 Zhenhua Ren Hua Peng UC Ralph Weichselbaum Tom Gajewski Hans Schreiber UTSW Zhijian James Chen Alphamab Luan Yan Ting Xu 29

T u m o r v o lu m e (m m 3 ) Large tumors have more CTLA+ Treg and resist to anti- CD2 therapy: new strategy for combination 2 5 h Ig G + h a m s te r Ig G A n ti-m C D 2 + h a m s te r Ig G 2 A n ti-c T L A -4 + h Ig G A n ti-m C D 2 + a n ti-c T L A -4 1 5 1 5 1 2 3 4 T im e a fte r tu m o r in o c u la tio n (d ) Anti-CTLA4 therapy overcomes anti-cd2 resistance 3

P e rc e n t s u rv iv a l Cell counts P e rc e n t s u rv iv a l Pretreatment with chemotherapy induces more eat me signal and synergize with anti-pdl1-sirpα for tumor eradication A B 1 h Ig G * D O X a n ti-p D L 1 -S IR P a D O X + a n ti-p D L 1 -S IR P a 5 Calreticulin 1 2 3 4 5 6 7 8 T im e a fte r tu m o r in o c u la tio n (d a y ) C 1 h Ig G D O X + a n ti-p D L 1 -S IR P a * * Z -V A D -F M K Z -V A D -F M K + D O X + a n ti-p D L 1 -S IR P a 5 1 2 3 4 5 6 7 8 T im e a fte r tu m o r in o c u la tio n (d a y )

IF N -r s p o ts /1 6 c e lls Tumor Volume (mm3) T u m o r V o lu m e (m m 3 ) T u m o r V o lu m e (m m 3 ) CD8 + T cells are essential for the therapeutic effect of anti-pdl1-sirpα A 1 5 1 h Ig G R a g -/- a n ti-p D L 1 -S IR P a B 2 1 5 h Ig G a n ti-p D L 1 -S IR P a a n ti-c D 8 a n ti-p D L 1 -S IR P a + a n ti-c D 8 5 1 5 * * * 5 1 1 5 2 2 5 5 1 1 5 2 2 5 3 T im e a fte r tu m o r in o c u la tio n (d a y ) T im e a fte r tu m o r in o c u la tio n (d a y ) C 3 * 2 * D 15 1 higg anti-pdl1-sirpa FTY72 anti-pdl1-sirpa+fty72 1 5 ns h Ig G a n ti-p D L 1 S IR P a a n ti-p D L 1 -S IR P a 5 1 15 2 25 Time after tumor inoculation (day)

Is Tumor expressed-pdl1 essential for tumor growth or PD-L1 blockade therapy? No and no Generate PD-L1 KO tumor PD-L1 from host cells but not tumor is essential for suppression 33

Type I IFN is essential for various anti-cancer therapy induced tumor regression: such as RT, anti-her2/neu, anti-cd47 and some chemo drugs IFN has been used in some cancer therapy to suppress tumor cell proliferation Can tumor targeting antibodies bring sufficient IFN to tumor tissues for immune responses:? 34