Soham Gupta 1,2, Vishnu Prasad Shenoy 1, Chiranjay Mukhopadhyay 1, Indira Bairy 1 and Sethumadhavan Muralidharan 2

Similar documents
A study of socio-demographic profile and treatment outcome of tuberculosis patients in an urban slum of Mumbai, Maharashtra

PASSIVE SMOKING, INDOOR AIR POLLUTION AND CHILDHOOD TUBERCULOSIS: A CASE CONTROL STUDY

Clinico epidemiological profile of HIV-TB co-infected patients in Coastal South India

Factors that determine them, tuberculosis transmission includes

PREVALENCE OF HIV INFECTION AND RISK FACTORS OF TUBERCULIN INFECTION AMONG HOUSEHOLD CONTACTS IN AN HIV EPIDEMIC AREA: CHIANG RAI PROVINCE, THAILAND

A study of treatment outcomes of pulmonary tuberculosis and extrapulmonary tuberculosis patients in a tertiary care centre

A CASE CONTROL STUDY ON CLINICAL CHARACTERISTICS AND TREATMENT OUTCOMES IN TUBERCULOSIS PATIENTS WITH DIABETES IN PALAKKAD DISTRICT

A Review on Prevalence of TB and HIV Co-infection

Diabetes and Tuberculosis: A Practical Approach to Diagnosis and Treatment

Contact Follow-Up and Treatment of LTBI in Households of Infectious Cases in Pakistan

August - September 2017; 6(5):

A PROFILE OF PATIENTS REGISTERED AT ART CENTRE AT SURAT MUNICIPAL INSTITUTE OF MEDICAL EDUCATION & RESEARCH IN SURAT CITY, GUJARAT, INDIA

CLINICAL PROFILE OF TYPE 2 DIABETIC PATIENTS IN A TERTIARY CARE HOSPITAL IN COASTAL KARNATAKA

Health Related Quality of Life, Anxiety and Depression among Tuberculosis Patients in Kathmandu, Nepal Devkota J* 1,3, Devkota N 2, Lohani SP 1

SOCIO-DEMOGRAPHIC FACTORS AFFECTING THE TREATMENT OUTCOME IN PATIENTS OF TUBERCULOSIS

COHORT STUDY OF HIV POSITIVE AND HIV NEGATIVE TUBERCULOSIS in PENANG HOSPITAL: COMPARISON OF CLINICAL MANIFESTATIONS

Prevalence of Pulmonary Tuberculosis in Jutpani VDC, Chitwan, Nepal

Study of Opportunistic Infections In HIV Seropositive Patients Admitted to Community Care centre (CCC), KIMS Narketpally.

Nutrition, Tuberculosis (and HIV) Andrew Thorne-Lyman, ScD MHS

Research Article. The Epidemiological findings of a 5-Year study on Tuberculosis in the Khuzestan Province during 2008 to 2012

A study on role of sputum conversion rate in management of tuberculosis in South Indian population

Globally, it is well documented that certain

INTEGRATION OF PREVENTION AND CONTROL OF NONCOMMUNICABLE DISEASES AND TUBERCULOSIS: A CASE FOR ACTION

Role of RNTCP in the management MDR-TB

Ongoing Research on LTBI and Research priorities in India

EXTRA-PULMONARY TUBERCULOSIS AT A REGIONAL HOSPITAL IN THAILAND

World Journal of Pharmaceutical and Life Sciences WJPLS

Int.J.Curr.Microbiol.App.Sci (2015) 4(9):

CORRELATES OF DELAYED INITIATION OF TREATMENT AFTER CONFIRMED DIAGNOSIS UNDER RNTCP: A CROSS SECTIONAL STUDY IN AHMEDABAD MUNICIPAL CORPORATION, INDIA

Association between Environmental Factors and Pulmonary Tuberculosis: A Case Control Study

Is the Initial Size of Tuberculous Lymphadenopathy associated with Lymph Node Enlargement during Treatment?

Tuberculosis: An Eight Year ( ) Retrospective Study At The University of Malaya Medical Centre (UMMC), Kuala Lumpur, Malaysia

Diagnosis and Medical Management of Latent TB Infection

Title: Nutritional Support for Children Living with HIV

2016 Annual Tuberculosis Report For Fresno County

Eritrea Health Update Issue 3 No. 4

Nutritional Status of Anganwadi Children under the Integrated Child Development Services Scheme in a Rural Area in Goa

Prevalence of Intestinal Parasitic Infections in HIV-Positive Patients

Assessment of knowledge, attitude and practice about Hepatitis B among medical students in an urban area of Kanchipuram: A cross sectional study

2014 Annual Report Tuberculosis in Fresno County. Department of Public Health

DM and TB Double Burden. Anil Kapur

SEROPOSITIVE INDIVIDUALS: SOCIO-BEHAVIOURAL PROFILE AND UTILIZATION OF INTEGRATED COUNSELLING AND TESTING CENTRE SERVICES

CORRELATES OF DELAYED PULMONARY TUBERCULOSIS DIAGNOSIS AMONG HIV-INFECTED PULMONARY TUBERCULOSIS SUSPECTS IN A. Respicious L Boniface

Original Article. Karanjekar VD, Lokare PO 1, Gaikwad AV 2, Doibale MK 3, Gujrathi VV 2, Kulkarni AP 4. Abstract. Introduction

Seroprevalence and risk factors in blood-borne viral hepatitis cases attending a tertiary care hospital in Lucknow

Page 126. Type of Publication: Original Research Paper. Corresponding Author: Dr. Rajesh V., Volume 3 Issue - 4, Page No

An Epidemiological Study of Hypertension and Its Risk Factors in Rural Population of Bangalore Rural District

Introduction: WHO recommends that criteria for starting ART be defined in national protocols and that these

Treatment Outcome of Pulmonary and Extra Pulmonary Tuberculosis Patients in TB and Chest Disease Hospital DOT Centre, Goa, India

TB & HIV CO-INFECTION IN CHILDREN. Reené Naidoo Paediatric Infectious Diseases Broadreach Healthcare 19 April 2012

RISK FACTORS FOR NON-ADHERENCE TO DIRECTLY OBSERVED TREATMENT (DOT) IN A RURAL TUBERCULOSIS UNIT, SOUTH INDIA

Response to Treatment in Sputum Smear Positive Pulmonary Tuberculosis Patients In relation to Human Immunodeficiency Virus in Kano, Nigeria.

Prevalence and determinants of peripheral neuropathy among diabetics in a rural cum costal area of Villupuram district, Tamil Nadu

Indian Journal of Basic and Applied Medical Research; March 2018, Vol.-7, Issue- 2, P

International Journal of Health Sciences and Research ISSN:

Study of demographic features of abdominal tuberculosis in Urban population in Pune

Impact of diabetes mellitus on clinical presentation and treatment response of smear positive pulmonary tuberculosis patients

Summary of Key Points WHO Position Paper on BCG Vaccine, February 2018

A Rare case of Tubercular Gingivitis Case Report

Prevalence of depression among patients with end stage renal disease

PEAK EXPIRATORY FLOW RATES AMONG WOMEN EXPOSED TO DIFFERENT COOKING FUELS IN RURAL INDIA

Dr Amber Kumar Assistant Professor Department of Pediatrics AIIMS, Bhopal. Amber Kumar, Akashranjan Singh, Bhavna Dhingra Bhan

TB 2015 burden, challenges, response. Dr Mario RAVIGLIONE Director

Tobacco Smoking in India: Prevalence, Quit-rates and Respiratory Morbidity

Int.J.Curr.Microbiol.App.Sci (2016) 5(10):

International J. of Healthcare & Biomedical Research, Volume: 1, Issue: 3, April 2013, Pages

Demographic and Socio-Economic Study on Head and Neck Cancer in Andhra Pradesh, India

Predictors of drug sensitive tuberculosis treatment outcomes among hospitalised

Original Article. Gautam A.G 1, Bansal P 2, Chauhan R 3, Chadha V 4 NTRODUCTION

A socio-demographic study of the loss to follow up in TB cases under DOTS in and around tertiary teaching care hospital

Immunization status of children in the age group 0-5 years in urban slum area of Pratiksha nagar, Sion, Mumbai

IMPACT OF IMPROVED TREATMENT SUCCESS ON THE PREVALENCE OF TB IN A RURAL COMMUNITY BASED ON ACTIVE SURVEILLANCE

To assess the pulmonary impairment in treated pulmonary tuberculosis patients using spirometry

A study on clinical profile of indoor patients receiving anti-tuberculosis treatment at KPC Medical College and Hospital, Kolkata, India

Morbidity Pattern among the Elderly People Living in a Southern Rural India - A Cross Sectional Study

T uberculosis is one of the leading causes of mortality and

Overview of recent WHO guidelines:

Pulmonary tuberculosis case detection through fortuitous cough screening during home visits

International Journal of Medical and Health Sciences

Evaluation of Reasons of Pre- Blood Donor Deferrals: A Retrospective Study at a Tertiary Care Teaching Hospital

Status of Syndromic Management of Clients and their Partners at STI Clinic in a Suburban Area of Mumbai, India

Organophosphorous Compound Poisoning in Western Odisha: A Five Year Retrospective Study

TUBERCULOSIS: A RESURGENT DISEASE IN IMMUNOSUPPRESSED PATIENTS

Questions and Answers Press conference - Press Centre Room 3 Wednesday 16 August 2006, 14.00hrs

HEALTH ORGANISATIONS. National Health Programme

Study of treatment outcome of tuberculosis among HIV co-infected patients: a cross sectional study in Aurangabad city, Maharashtra

2015 Annual Report Tuberculosis in Fresno County. Department of Public Health

Chege et al...j. Appl. Biosci Study on diet, morbidity and nutrition of HIV/AIDS infected/non-infected children

TB facts & figures Microbiology of TB Transmission of TB Infection control in health care settings Special cases Resistant TB Masks

Original Research Article. Rupali R. Rajput 1 *, Shashikant R. Pawar 2. DOI:

DETERMINANTS OF DIETARY ADEQUACY OF NUTRIENTS CONSUMPTION AMONG RURAL SCHOOL AGE CHILDREN

The WHO END-TB Strategy

JMSCR Vol 3 Issue 10 Page October 2015

TUBERCULOSIS IN AIDS PATIENTS. Veeranoot Nissapatorn, *Christopher Lee, Init Ithoi, Fong Mun Yik, Khairul Anuar Abdullah

Overview of the Presentation

ISSN X (Print) Research Article. *Corresponding author Dr. JP Singh

Awareness and Prevalence of Diabetes Mellitus Among Housewives in Baneshwar of Nepal

Epidemiological Study of Tuberculosis

Delay in diagnosis of Pulmonary Tuberculosis: Study of factors related to patients and health care system

Transcription:

Tropical Medicine and International Health doi:10.1111/j.1365-3156.2010.02676.x volume 16 no 1 pp 74 78 january 2011 Role of risk factors and socio-economic status in pulmonary tuberculosis: a search for the root cause in patients in a tertiary care hospital, South India Soham Gupta 1,2, Vishnu Prasad Shenoy 1, Chiranjay Mukhopadhyay 1, Indira Bairy 1 and Sethumadhavan Muralidharan 2 1 Department of Microbiology, Kasturba Medical College, Manipal, India 2 Department of Microbiology, St. John s Medical College, Bangalore, Karnataka, India Summary objective To determine the frequency of underlying risk factors and the socio-economic impact based on occupation in the development of tuberculosis. method Retrospective analysis of 207 clinically and microbiologically diagnosed patients with pulmonary tuberculosis (PTB) admitted to Kasturba Hospital in 2005 and 2006. Demographic details and underlying risk factors were statistically evaluated. results Diabetes mellitus (DM) (30.9%) was the most prevalent condition and significantly more common than other risk factors like smoking (16.9%), alcoholism (12.6%), HIV (10.6%), malignancy (5.8%), chronic liver diseases (3.9%), history of contact with TB (3.4%), chronic corticosteroid therapy (2.9%), chronic kidney diseases and malnourishment (1.5%). There were 82 patients (39.6%) with no underlying risk factor. Men (M:F = 3.7:1) and patients older than 40 years had a higher incidence of co-existing conditions. PTB was significantly more common in blue-collar (44%) and white-collar (27.1%) workers than household workers (12.1%), students (10.6%) and retired unemployed people (6.3%). conclusion Pulmonary tuberculosis had a significant impact and predominated in male patients coexisting with DM. Patients with DM and suggestive pulmonary symptoms should be screened for tuberculosis. More stringent health education and awareness programme should be implemented at the grass root level. keywords diabetes mellitus, HIV, pulmonary tuberculosis, socio-economic impact Introduction Tuberculosis (TB) is a chronic pulmonary disease causing high morbidity and mortality since ancient times. According to WHO (2007), one-third of world s population is currently infected with TB and every second someone is newly infected. In India, there are around 1.8 million new cases of TB annually (Steinbrook 2007). With the emergence of Human Immunodeficiency Virus (HIV) pandemic, there has been a resurgence of TB infection. TB is the most common HIV-related opportunistic infection (Decker & Lazarus 2000; Devi et al. 2005; Steinbrook 2007), and HIV is considered the most powerful risk factor for the progression of TB infection to disease as it weakens the cell-mediated immunity and macrophage function (Decker & Lazarus 2000). Although more focus is being given on TB HIV coinfection as a major concern for public health, there are other underlying risk factors which compromise the immune status. Diabetes mellitus (DM) widely impairs neutrophil and macrophage functions (Ljubic et al. 2004) and thus can be a major aggravating risk factor for TB. There are several studies indicating a higher prevalence of TB in patients with chronic corticosteroid therapy, malignancies (Pal et al. 2002; Kamboj & Sepkowitz 2006; Golsha et al. 2009), chronic kidney disease (CKD) (Al- Shoaib 2000; Venkata et al. 2007) and chronic liver disease (CLD) (Kim et al. 2009). Despite the evolution of new risk factors, close contact to smear-positive pulmonary tuberculosis (PTB) patients, malnourishment and poverty are the more likely predisposing factors in developing countries for acquiring PTB (Hernandez-Garduno & Perez-Guzman 74 ª 2010 Blackwell Publishing Ltd

2007). Alcoholism and smoking are also closely associated with the development of PTB (Khan 2006; Lönnroth et al. 2008). Very few studies have been carried out in India to determine the major predisposing factors and the impact of socio-economic status. This retrospective study was planned to document the probable underlying risk factors in the development of TB and correlate them with the occupation of the patients and to assess the socio-economic impact of microbiologically confirmed cases of pulmonary TB. Materials and methods The medical records of 207 clinically and microbiologically diagnosed (based on smear microscopy and or culture) cases of PTB admitted to Kasturba Hospital, Manipal, South India, in 2005 and 2006 were studied to evaluate the frequency distribution of common underlying risk factors such as HIV infection, DM, malignancy, history of contact to a smear-positive PTB patient, chronic corticosteroid therapy, malnourishment, smoking, alcoholism, CKD and CLD along with other demographic details like age, sex and the occupation of the patients. The patients were categorized into four age groups: <20, 21 40, 41 60 and >60 years. We considered five occupational groups namely blue-collar workers (agricultural, non-agricultural and skilled labourers); white-collar workers (salaried service personnel or professionals, self-employed businessmen, drivers and hotel workers); retired and unemployed people; household workers and students. Statistical analysis of underlying risk factors was carried out by chi-square test and Fisher s exact test using GraphPad InStat 3.0 software. Occupational impact was analysed by one-tail hypothesis testing using t-statistics. Results Of 207 patients studied in 2 years (2005 2006), 163 were men (78.74%) and 44 women (M:F ratio = 3.7:1). PTB was most prevalent in the age group 21 40 years (n = 86), followed by 41 60 years (n = 79), >60 years and <20 years (n = 18). Eighty-two patients (39.61%) presented with no significant history of any underlying conditions, and 125 patients (60.39%) had at least one underlying risk factor with a relative risk of 1.52 (95% CI = 1.25 1.86) and P-value < 0.0001 (v 2 = 17.043). DM (30.92%) was the most common and significant co-morbid condition, followed by HIV infection (10.63%) (v 2 = 24.672; P-value < 0.0001), smoking (16.9%) (v 2 = 10.408; P-value < 0.0013), alcoholism (12.6%) (v 2 = 19.436; P-value < 0.0001), malignancy (5.8%) (v 2 = 41.919; P-value < 0.0001), CLD (3.9%) (v 2 = 50.859; P-value < 0.0001), history of recent close contact with a smear-positive TB patient (3.4%) (v 2 = 53.312; P-value < 0.0001), chronic corticosteroid therapy (2.9%) (v 2 = 55.859; P-value < 0.0001), malnourishment and CKD (1.5%) (v 2 = 64.106; P-value < 0.0001). Of the 125 patients presenting with potential risk factors, 85 (68%) patients presented with a single risk factor, while 40 patients (32%) in the age group above 20 years had two or more associated risk factors. HIV infection as a predisposing factor was more common in the age group 21 40 years (48.3%) than 41 60 years (13.6%), whereas no HIV-infected patients were found in the other two age groups. DM was found more common with increasing age above 40 years (54.4%), as were smoking (27.2%), alcoholism (18.4%) and malignancy (9.7%). Patients older than 40 years had a higher incidence of co-existing conditions (81.6%): DM (54.4%), smoking (27.2%), alcoholism (18.4%), malignancy (9.7%), HIV (7.8%), CLD (4.9%), CKD (2.9%) and chronic corticosteroid therapy (0.09%). Although among women, the percentage of diabetic patients was greater in the age range above 40 years (18.2%), men with (56.0%) or without (34.8%) underlying predisposing factors were more prone to have PTB than women. Table 1 shows the frequency distribution of patients with PTB based on underlying risk factors. Of the 207 patients with pulmonary TB, 44% were labourers, 27.1% were white-collar workers, 12.1% were household workers, 10.6% were students and 6.3% were retired or unemployed. Prevalence of PTB was significantly more common among labourers (t-value = 17.86; P- value < 0.0001) and white-collar workers (t-value = 17.58; P-value < 0.0001). Statistically, labourers >61 years are most vulnerable to pulmonary TB. Table 2 shows the occupational distribution of the patients with PTB. We observed a 36.4% prevalence of DM among labourers (n = 33), which was not significantly different to 61.5% among white-collar workers (n = 8), 28% among household workers (n = 7) and 26.8% among retired and unemployed patients (n = 15) with PTB. Discussion In this descriptive retrospective study, we have studied the frequency distribution of disease and underlying risk factors followed by TB in southern Karnataka. We found that DM was the most common co-morbid condition followed by smoking, alcoholism and then HIV, although a rising trend of HIV in TB has been observed by ª 2010 Blackwell Publishing Ltd 75

Table 1 Underlying risk factors in patients with pulmonary tuberculosis along with age and sex distribution Age group Below 20 years (n = 18) 21 40 years (n = 86) 41 60 years (n = 79) Above 61 years Gender (n = 12) (n =6) (n = 62) (n = 70) (n =9) (n = 19) (n =5) Total No. of patients (n = 207), (%) Underlying conditions DM 0 1 7 0 39 5 9 3 64 (30.92) HIV 0 0 11 3 8 0 0 0 22 (10.63) Malignancy 0 0 1 1 4 2 2 2 12 (5.8) H O contact 2 1 3 1 0 0 0 0 7 (3.38) Malnourished 0 0 2 0 1 0 0 0 3 (1.45) Allergy asthma on 1 0 0 1 3 1 0 0 6 (2.9) corticosteroids Alcoholic 0 0 7 0 15 0 4 0 26 (12.6) Smoker 0 0 7 0 21 0 7 0 35 (16.91) CLD 0 0 2 1 3 0 2 0 8 (3.9) CKD 0 0 0 0 2 0 0 1 3 (1.45) Nil 9 4 33 17 10 3 5 1 82 (39.61) Total 12 6 73 24 106 11 29 7 268* CKD, chronic kidney disease; CLD, chronic liver disease. *Eighty-five patients had a single risk factor, and 40 patients in the age group 21 40 years (n = 8), 41 60 years (n = 23) and above 60 years (n = 9) had two or more than two risk factors. Table 2 Occupation chart of patients with pulmonary tuberculosis along with age and sex distribution Age group Below 20 years (n = 18) 21 40 years (n = 86) 41 60 years (n = 79) Above 61 years Gender (n = 12) (n =6) (n = 62) (n = 70) (n =9) (n = 19) (n =5) Total No. of patients (n = 207), (%) Occupation Labourer 1 0 35 1 40 0 14 0 91 (43.96) Non-labourer 2 0 18 6 27 0 3 0 56 (27.05) Student 7 6 4 5 0 0 0 0 22 (10.63) Household 0 0 0 12 0 9 0 4 25 (12.08) Non-worker 2 0 5 0 3 0 2 1 13 (6.28) Total 12 6 62 24 70 9 19 5 207 Rajasekaran et al. (2000). The global burden of DM is increasing, and it is possible that areas with higher prevalence of DM could have a greater impact on TB than HIV. There were other conditions like smoking, alcoholism, malignancy, CLD, CKD, chronic corticosteroid therapy (signifies immunosuppressed conditions), history of close contact to patients with TB (signifies crowding and lack of health education) and malnourishment (signifies poverty as well as lack of health education). Yamagishi et al. (1996) stated that the onset of tuberculosis is more frequent in DM patients than in individuals with any other underlying disease. Even a systematic review of 13 observational studies from various parts of the globe suggests that DM was associated with an increased risk of tuberculosis regardless of study design and population (Jeon & Murray 2008). From India, Suryakirani et al. (1998) reported 30% smear-positive cases among DM patients. In South India, a matched case control study found DM to be a significant risk factor (Shetty et al. 2006). In our study, 30.92% patients with PTB had DM as a co-morbid condition, which was very similar to the observation by Golsha et al. (2009) in Iran (23.05%). Moreover, our finding that tuberculosis has a significant impact in men co-existing with DM was supported by a study conducted by Nissapatorn et al. (2005) in Malaysia. 76 ª 2010 Blackwell Publishing Ltd

Data on concomitant TB and DM are scarce in India, and we need more studies to assess this. Although more importance is being given on TB HIV co-infection in developing countries, our study emphasizes that other underlying risk factors cannot be ignored as DM was the most common underlying risk factor for the development of TB. WHO has projected that the global figure of people with diabetes will be 300 million in 2025, of which the greatest increase will occur in India, an estimated 57 million cases (Kant 2003). It has long been evident that there is an association between smoking, alcoholism and risk of developing pulmonary TB. Lönnroth et al.(2008) in a systematic review established that risk of active TB is substantially elevated in alcoholics, which might be because of direct toxic effect of alcohol on immune system or indirectly through macro and micro nutrient deficiency. Similar is in the case of smoking because of toxic effect of nicotine. We observed a 16.9% and 12.6% prevalence of smoking and alcoholism, respectively, in patients with PTB of southern India. Khan (2006) has suggested a risk of TB about 30 50% more among current and former smokers than never smokers. Studies carried out in developed countries observed 10 50% prevalence of alcohol use disorders among patients with TB (Lönnroth et al.2008). On the contrary, a similar study from South India has shown history of smoking and alcohol consumption not to be a significant risk factor (Shetty et al. 2006). The percentage of patients with chronic corticosteroid therapy as a predisposing factor was similar in another study (Golsha et al. 2009); however, malignancy made patients more susceptible to have TB (5.8% vs. 2%) in our study. Prevalence of CKD (1.5%) was lower in our study than in that of Golsha et al. (2009) (5.8%). CLD has not been studied much as a risk factor; the 3.9% prevalence we observed among patients with PTB was similar to that in a study from Korea (Kim et al. 2009). With one exception (Golsha et al. 2009), men with or without underlying predisposing factors are more prone to have PTB. However, the fact that fewer women than men asked for admission and microbiological check-up at our hospital cannot be ignored; thus, the actual estimation of prevalence needs more extensive investigation, especially at the community level. TB can be acquired through close household contact with cavities in the lung and smear positivity. Singh et al. (2005) has shown that 33.8% of children below 5 years in close contact with TB patients showed tuberculin positivity. Another study from Turkey detected TB in 5.6% of household contacts of patients with PTB (Talay & Kumbetli 2008). In our study population, 3.38% of our patients were in close contact with known PTB patients. However, it could not be ascertained whether those patients had acquired their infection from their close contacts only. TB is a disease of the poor, and malnourished people are at risk for developing TB (Shetty et al. 2006). We saw that 1.5% of our patients with PTB were suffering from malnutrition. The true proportion of malnourished people with PTB might be higher because poor patients with malnutrition and TB have limited access to hospital medical services and a high mortality rate. TB affected mostly the economically productive age group (Rajeswari et al. 1999; Chakroborty 2004). Rajeswari et al. (1999) had documented that the percentage of PTB was greater in waged workers than salaried or selfemployed people in India, while another study from Wardha, Maharashtra, India showed that the percentage was greater in white-collar workers closely followed by cultivators, agricultural labourers, students and professionals (Chakroborty 2004). By contrast, we observed a significantly higher prevalence (P-value < 0.0001) of PTB in labourers (43.96%), followed white-collar workers (27.05%), retired and unemployed (6.28%), household workers (12%) and students (11%). This was very similar to the findings by Khan (2006), who documented a higher prevalence of TB in agricultural workers and labourers than in business people and professionals. The increased incidence of PTB among socio-economically lower classes can be attributed to lower education level and poverty (Khan 2006; Shetty et al. 2006). In conclusion, PTB has a great impact in patients suffering from DM and occurs mostly in socio-economically lower classes, especially labourers. In a country like India, more efficient clinical diagnosis and prompt microbiological work are needed in the first instance. But this is not enough. Major national action needs to be taken to provide proper health education and create awareness among the people, especially the lower socio-economic classes, if we are to effectively combat tuberculosis, DM and HIV infection. References Al-Shoaib S (2000) Tuberculosis in chronic renal failure in Jeddah. Journal of Infection 40, 150 153. Chakroborty AK (2004) Epidemiology of tuberculosis: current status in India. Indian Journal of Medical Research 120, 248 276. Decker CF & Lazarus A (2000) Tuberculosis and HIV infection. Postgraduate Medicine 108, 57 68. Devi SB, Naorem S, Singh TJ, Singh KB, Prasad L & Devi TS (2005) HIV and TB coinfection. Journal of Indian Academy of Clinical Medicine 6, 220 223. Golsha R, Rezaei SR, Shafiee A, Najafi L, Dashti M & Roshandel G (2009) Pulmonary tuberculosis and some underlying ª 2010 Blackwell Publishing Ltd 77

conditions in Golestan province of Iran, during 2001 2005. Journal of Clinical and Diagnostic Research 3, 1302 1306. Hernandez-Garduno E & Perez-Guzman C (2007) Appetite and tuberculosis: is the lack of appetite an unidentified risk factor for tuberculosis? Medical Hypotheses 69, 869 872. Jeon CY & Murray MB (2008) Diabetes mellitus increases the risk of active tuberculosis: a systematic review of 13 observational studies. PLOS Medicine 5, e152. Kamboj M & Sepkowitz AK (2006) The risk of tuberculosis in patients with cancer. Clinical Infectious Diseases 42, 1592 95. Kant L (2003) Diabetes mellitus-tuberculosis: the brewing double trouble. The Indian Journal of Tuberculosis 50, 183 184. Khan QH (2006) Epidemiology of pulmonary tuberculosis in rural Aligarh. Indian Journal of Community Medicine 31, 39 40. Kim MJ, Kim HR, Hwang SS et al. (2009) Prevalence and its predictors of extrapulmonary involvement in patient with pulmonary tuberculosis. Journal of Korean Medical Science 24, 237 241. Ljubic S, Balachandran A, Pavlic-Renar I, Barada A & Metelko Z (2004) Pulmonary infections in Diabetes mellitus. Diabetologia Croatica 33, 115 124. Lönnroth K, Williams BG, Stadlin S, Jaramitto E & Dye C (2008) Alcohol use as a risk factor for tuberculosis a systematic review. BMC Public Health 8, 289. Nissapatorn V, Kuppusamy I, Jamaiah I, Fong MY, Rohela M & Anuar AK (2005) Tuberculosis in diabetic patients: a clinical perspective. Southeast Asian Journal of Tropical Medicine and Public Health 36, 213 220. Pal D, Behera D, Gupta D & Aggarwal A (2002) Tuberculosis in patients receiving prolonged treatment with oral corticosteroids for respiratory disorders. The Indian Journal of Tuberculosis 49, 83 86. Rajasekaran S, Lima A, Kamakshi S et al. (2000) Trend of HIV infection in patients with tuberculosis in rural south India. The Indian Journal of Tuberculosis 47, 223 226. Rajeswari R, Balasubramaniam R, Muniyandi M, Geetharamani S, Thresa X & Venkatasan P (1999) Socio economic impact of tuberculosis on patients and family in India. The International Journal of Tuberculosis and Lung Disease 3, 869 867. Shetty N, Shemko M, Vaz M & D souza G (2006) An epidemiological evaluation of risk factors for tuberculosis in south India: a matched case control study. The International Journal of Tuberculosis and Lung Disease 10, 80 86. Singh M, Mynak ML, Kumar L, Mathew JL & Jindal SK (2005) Prevalence and risk factors for transmission of infection among children in household contacts with adults having pulmonary tuberculosis. Archives of Disease in Childhood 90, 624 628. Steinbrook R (2007) Tuberculosis and HIV in India. The New England Journal of Medicine 356, 1198 1199. Suryakirani KRL, Santha kumari V & Lakshmi kumari R (1998) coexistence of pulmonary tuberculosis and diabetes mellitus: some observation. The Indian Journal of Tuberculosis 45, 47 48. Talay F & Kumbetli S (2008) Risk factors affecting the development of tuberculosis infection and disease in household contacts of patients with pulmonary tuberculosis. Turkish Respiratory Journal 9, 34 7. Venkata RK, Kumar S, Krishna RP, Kumar SB, Padmanabhan S & Kumar S (2007) Tuberculosis in chronic kidney disease. Clinical Nephrology 67, 217 220. World Health Organization (2007) Tuberculosis Fact Sheet. Fact Sheet No. 104. Available: http://www.who.int/mediacenter/ factsheets/fs104/en/print.html. Accessed on 15 February 2009. Yamagishi F, Suzuki K, Sasaki Y, Saitoh M, Izumizaki M & Koizumi K (1996) Prevalence of coexisting diabetes mellitus among patients with pulmonary tuberculosis. Kekkaku 71, 569 572. Corresponding Author Chiranjay Mukhopadhyay, Department of Microbiology, Kasturba Medical College, Manipal University, Manipal 576104, India. Tel.: +91 820 2571201 Exn. 22322; Fax: +91 820 2571927; E-mail: chiranjay@yahoo.co.in 78 ª 2010 Blackwell Publishing Ltd