Case Report Intra-Attack Vestibuloocular Reflex Changes in Ménière s Disease

Similar documents
Video Head Impulse Testing

Control of eye movement

Window to an Unusual Vestibular Disorder By Mark Parker

Monitoring of Caloric Response and Outcome in Patients With Benign Paroxysmal Positional Vertigo

Sasan Dabiri, MD, Assistant Professor

CITY & HACKNEY PATHFINDER CLINICAL COMMISSIONING GROUP. Vertigo. (1) Vertigo. (4) Provisional Diagnosis. (5) Investigations. lasting days or weeks

Acute Vestibular Syndrome (AVS) 12/5/2017

Vertigo: A practical approach to diagnosis and treatment. John Waterston

Cold Thermal Irrigation Decreases the Ipsilateral Gain of the Vestibulo-Ocular Reflex

Pseudo-Spontaneous and Head-Shaking Nystagmus in Horizontal Canal Benign Paroxysmal Positional Vertigo

Evaluation & Management of Vestibular Disorders

Corporate Medical Policy

ORIGINAL ARTICLE. A New Physical Maneuver for the Treatment of Benign Paroxysmal Positional Vertigo

Spontaneous Plugging of the Horizontal Semicircular Canal With Reversible Canal Dysfunction and Recovery of Vestibular Evoked Myogenic Potentials

Afternystagmus and Headshaking Nystagmus. David S. Zee

Paediatric Balance Assessment

exercise HOW TO DO IT: PRACTICAL NEUROLOGY

VESTIBULAR FUNCTION TESTING

VIDEONYSTAGMOGRAPHY (VNG) TUTORIAL

Three-Dimensional Eye-Movement Responses to Surface Galvanic Vestibular Stimulation in Normal Subjects and in Patients

Quick Guides Vestibular Diagnosis and Treatment:

Benign Paroxysmal Positional Vertigo (BPPV) Structures of importance. The ear is an inertial navigation device. Vestibular Reflexes

Vestibular physiology

Pseudo-Spontaneous Nystagmus in Lateral Semicircular Canal Benign Paroxysmal Positional Vertigo

Correspondence should be addressed to L. E. Walther;

Abducens nucleus (VI) Baclofen, nystagmus treatment 202, 203,

Cross Country Education Leading the Way in Continuing Education and Professional Development.

Vertigo. Definition Important history questions Examination Common vertigo cases and management Summary

Benign Paroxysmal Positional Vertigo (a.k.a.) Diagnosis: Dix-Hallpike Maneuver. Case SH. BPPV nystagmus. Video Frenzel Goggles make it easier

Case Report Relapsing Ipsilateral Vestibular Neuritis

Peripheral vestibular disorders will affect 1 of 13 people in their lifetime

Diagnostic criteria for vestibular neuritis

OBJECTIVES BALANCE EVALUATION COMMON CAUSES OF BALANCE DEFICITS POST TBI BRAIN INJURY BALANCE RELATIONSHIP

On Signal Analysis of Three-Dimensional Nystagmus

G. Doobe, 1 A. Ernst, 1 R. Ramalingam, 2 P. Mittmann, 1 and I. Todt Introduction. 2. Materials and Methods

Benign Paroxysmal Positional Vertigo. Jeff Walter PT, DPT, NCS

I m dizzy-what can I expect at my doctor visit? Dennis M. Moore, M.D. Lutheral General

Vertigo. Tunde Magyar MD, PhD

VESTIBULAR LABYRINTHS comprising of 3 semicircular canals, saccule, utricle VESTIBULAR NERVE with the sup. & inf. vestibular nerves VESTIBULAR

Otologic (Ear) Dizziness Fistula SCD Bilateral. Other. Neuritis BPPV. Menieres

Vestibular Symptoms in Concussion: Medical/Surgical Perspective. Jacob R. Brodsky, MD Boston Children s Hospital

Clinical Significance of Vestibular Evoked Myogenic Potentials in Benign Paroxysmal Positional Vertigo

VIDEONYSTAGMOGRAPHY (VNG)

Vestibular Differential Diagnosis

Quick Guides Vestibular Diagnosis and Treatment:

Medical Coverage Policy Vestibular Function Tests

Course: PG- Pathshala Paper number: 13 Physiological Biophysics Module number M23: Posture and Movement Regulation by Ear.

Because dizziness is an imprecise term, a major role of the clinician is to sort patients out into categories

Vestibular testing: what patients can expect

No Running Is BPPV Blocking the Path to a Carefree Childhood?

Assessing the Deaf & the Dizzy. Phil Bird Senior Lecturer University of Otago, Christchurch Consultant Otolaryngologist CPH & Private

Comparison of vestibulo-ocular reflex instantaneous gain and velocity regression in differentiating the peripheral vestibular disorders

Vestibular Physiology Richard M. Costanzo, Ph.D.

to vibrate the fluid. The ossicles amplify the pressure. The surface area of the oval window is

Benign Paroxysmal Positional Vertigo (a.k.a.) Diagnosis: Dix-Hallpike Maneuver. Case SH. BPPV nystagmus. Video Frenzel Goggles make it easier

What could be reffered to as dizziness by the patient?

met het oog op evenwicht

VESTIBULAR SYSTEM ANATOMY AND PHYSIOLOGY. Professor.Dr. M.K.Rajasekar MS., DLO.,

Disclosures. Goals. Canalith Repositioning Basics to Advanced. John Li, M.D. We have no conflicts of interest to disclose.

Vertigo. Definition. Causes. (Dizziness) Benign Paroxysmal Positional Vertigo (BPPV) Labyrinthitis. by Karen Schroeder, MS, RD

What is the effect on the hair cell if the stereocilia are bent away from the kinocilium?

Gerard J. Gianoli, MD, FACS The Ear and Balance Institute Baton Rouge, Louisiana

latest development in advanced testing the vestibular function

TEMPLATES FOR COMPREHENSIVE BALANCE EVALUATION REPORTS. David Domoracki PhD Cleveland Louis Stokes VA Medical Center

Ejido, Almería, Spain PLEASE SCROLL DOWN FOR ARTICLE

Benign Paroxysmal Positional Vertigo

What is Meniere's disease? What causes Meniere's disease?

Case Report Successful Closed Reduction of a Lateral Elbow Dislocation

THE UNIVERSITY OF SOUTH FLORIDA COLLEGE OF ARTS AND SCIENCES

Vestibular Function and Anatomy. UTMB Grand Rounds April 14, 2004 Gordon Shields, MD Arun Gadre, MD

Benign Paroxysmal Positional Vertigo (a.k.a.) Diagnosis: Dix-Hallpike Maneuver. Case SH. BPPV nystagmus. MMT ENG course --- BPPV 6/3/2012

BPPV latest thoughts and the atypical varieties Dr Soumit Dasgupta

Vertigo. David Clark, DO Oregon Neurology Associates Springfield, OR

Saccades. Assess volitional horizontal saccades with special attention to. Dysfunction indicative of central involvement (pons or cerebellum)

BPPV: pathophysiology, subtypes and therapy Marco Mandalà

Very few dizzy conditions have a surgical treatment SURGICAL MANAGEMENT OF THE DIZZY PATIENT. Surgical Treatments for. Shunts and Sac Surgery

Protocol. Vestibular Function Testing. Medical Benefit Effective Date: 10/01/17 Next Review Date: 05/18 Preauthorization No Review Dates: 05/17

Ocular Tilt Reaction: Vestibular Disorder in Roll Plane

Clinical aspects of vestibular and ocular motor physiology: bringing physiology and anatomy to the bedside. Skews Nystagmus Tilts

Application of the Video Head Impulse Test to Detect Vertical Semicircular Canal Dysfunction

Management of Ear, Hearing and Balance Disorders: Fact, Fiction, and Future

15 Marzo 2014 Aspetti radiologici dei disordini vestibolari: approccio multidisciplinare

INTRATYMPANIC GENTAMICIN PERFUSIONS. ENDOLYMPHATIC HYDROPS (ELH, Meniere s disease)

VERTIGO. Tuesday 20 th February 2018 Dr Rukhsana Hussain. Disclaimers apply:

Research Article Predictive Factors for Medical Consultation for Sore Throat in Adults with Recurrent Pharyngotonsillitis

Vestibular System. Dian Yu, class of 2016

BPPV and Pitfalls in its Management. Reza Golrokhian Sani MD, Otolaryngologist- Head & Neck Surgeon Otologist & Neurotologist

Vestibular Learning Manual: Interview with Bre Lynn Myers, AuD

An Introduction to Dizziness and Vertigo

Delayed Endolymphatic Hydrops: Episodic Vertigo of Delayed Onset after Profound Inner Ear Hearing Loss

Magnetic Vestibular Stimulation (MVS): An Update

Case Report Long-Term Outcomes of Balloon Dilation for Acquired Subglottic Stenosis in Children

A Case of Acute Vestibular Neuritis with Periodic Alternating Nystagmus

BENIGN PAROXYSMAL POSITIONAL VERTIGO (BPPV)

Vertigo Presentations in the Emergency Department

Case Report A Rare Case of Near Complete Regression of a Large Cervical Disc Herniation without Any Intervention Demonstrated on MRI

VEMP: Vestibular Evoked Myogenic Potential

Case Report Tortuous Common Carotid Artery: A Report of Four Cases Observed in Cadaveric Dissections

Clinical Policy Title: Video head impulse testing

Vestibular Function Testing

Transcription:

Case Reports in Otolaryngology Volume 216, Article ID 2427983, 4 pages http://dx.doi.org/1.1155/216/2427983 Case Report Intra-Attack Vestibuloocular Reflex Changes in Ménière s Disease Dario A. Yacovino 1,2 and John B. Finlay 1,3 1 Department of Neurology, Cesar Milstein Hospital, Buenos Aires, Argentina 2 Memory and Balance Clinic, Buenos Aires, Argentina 3 Princeton University, Princeton, NJ, USA Correspondence should be addressed to Dario A. Yacovino; yac@intramed.net Received 26 September 216; Accepted 7 November 216 Academic Editor: Augusto Casani Copyright 216 D. A. Yacovino and J. B. Finlay. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Ménière s attack has been shown to temporarily alter the vestibuloocular reflex (VOR). A patient with unilateral Ménière s disease was serially evaluated with the video Head Impulse Test during single, untreated episodes of acute vertigo. Spontaneous nystagmus activity was concurrently recorded in order to establish the three typical phases of Ménière s attack (irritative, paralytic, and recovery) and correlate them with VOR performance. The onset of attack was associated with a quick change in VOR gain on the side of the affected ear. While a rapidly progressive reduction of the VOR was evident at the paralytic nystagmus phase, in the recovery phase the VOR gain returned to normal and the direction of the previous nystagmus reversed. The membrane rupture potassium intoxication theory provides a good foundation with which to explain these dynamic VOR changes and the observed triphasic direction behavior of the spontaneous nystagmus. We additionally postulated that endolymphatic fluid displacement could haveasynergiceffectduringtheearliestphaseofattack. 1. Introduction Ménière s disease (MD) is a fluctuating audiovestibular disorder. The recurrent vertigo attacks, among others, are the most stressful symptoms. According to the temporal direction of spontaneous nystagmus, three classic phases of the attack have been recognized: an initial irritative phase beating toward the affected ear, the contralateral paralytic phase, and the final recovery phase beating again toward the affected side. However, to date, few studies have considered vestibular function measurements during the progression of the attack, and the exact VOR performance in each of the three phases is unknown [1]. The new video Head Impulse Test (vhit) provides an objective way to measure the dynamic vestibuloocular reflex (VOR)andcanbeusedeveninacutevestibularepisodes[2]. This procedure is a very valuable, brief test to assess online VOR function, which is particularly helpful for studying short-lived vestibular phenomenon such as Ménière s attack. The aim of this work is to report the VOR changes measured with vhit throughout a single Ménière s attack in the following patient. 2. Case Report An 82-year-old male with right-sided MD for the last 1 years suffered spontaneous attacks of vertigo ranging in frequency from 2 to 4 times per year. He had also occasionally suffered from right posterior canal benign paroxysmal positional vertigo (PC-BPPV) in the quiescent period of the MD. He came to the clinic with typical positional brief upbeating and torsional nystagmus of right PC-BPPV on the Dix- Hallpike maneuver. As a practical routine in our clinic, a vhit was performed prior to a Semont maneuver. Ten minutes after the maneuver, while he was in a seated position, the vertigo started again. Reexamination showed right beating horizontal nystagmus lasting 3 to 5 minutes (irritative nystagmus). After this, a change of direction was evident:

2 Case Reports in Otolaryngology progressive build-up of left beating horizontal nystagmus (paralytic nystagmus) reached a peak intensity about 1 to 15 minutes from the beginning (12 /secofspvwithvision), accompanied by severe vertigo, nausea, sweating, and gait disequilibrium. The duration of the vertigo attack was about 1 hour. VHIT ( Eye see cam, Interacoustics, Inc.) and spontaneous nystagmus (binocular 15 Hz Videonystagmography, VNG/V425, Interacoustics, Inc.) measurements were taken at regular intervals throughout the episode, interchanging the goggles and recalibrating both devices at each interval (Figure 1). In order to minimize patient intolerance during the vhit procedure, no more than twenty-five horizontal head impulses were passively and randomly applied toward each side. The horizontal VOR gains were automatically measured by the vhit software in two forms: the instantaneous 4, 6,and8msvelocitygain-VOR(headandeyevelocityat 4, 6, and 8 ms head movement), and the slope of the linear regression of head on eye velocity variables (regression gain) [3]. Since the latter measurement is a mathematically more robust value in an otherwise unstable vhit baseline trace (i.e., generated by compensatory eye movements or spontaneous nystagmus), this method was ultimately used to document the VOR changes (Figure 1). When the vertigo started to decrease, a recovery nystagmus (right beating) was recognized after a short quiescent period without any nystagmus. Screening tests to rule out similar conditions were done beforehand, all with normal results, including blood syphilis antibody, anti-cochlear antibody (68 KD), immunological panel, inner ear MRI, and CT Scan. New controls at 2, 7, and 3 days with BPPV still present showednormalgainsonthevhitandnospontaneous nystagmus (SN). An informed consent for the academic use of patient clinical data was obtained. 3. Discussion 3.1. Pathophysiological Discussion. Supported by the membrane rupture potassium intoxication theory, the mechanism of Ménière s attack is a dynamic, triphasic biological process (irritative, paralytic, and recovery), and the exact time frame regarding how early into the attack the VOR recordings are made is critical. The severe reduction of the VOR during Ménière s attack has been suspected in the clinical setting. However, to the best of our knowledge, the instantaneous VOR changes over a single episode have never been well-documented. In the intercrisis period (1 week before and 1 and 4 weeks after attack), the vhit showed normal gain and symmetry on the 6 semicircular canals, and no corrective saccades were identified. We were unable to detect higher than normal VOR gainduringthequiescentphase,aswasreportedinsomemd patients [4]. However, there were severe reductions in VOR gain on the affected side during the attack. Pertinent histopathologic findings in Ménière s Disease include endolymphatic hydrops and associated rupture in almost every part of the membranous labyrinth (excluding the nonampullated portions of the semicircular canals) [5]. According to this theory, the rupture of the distended membranous labyrinth would release neurotoxic potassium-rich endolymph into the perilymph. Irritative acute (depolarization phase) nystagmus, which later becomes paretic (ATPase pump blocking phase), was thought to result from a complete depolarization of either first-order vestibular afferent nerve fibers passing through the perilymph space, or of sensory cells on their synaptic area directly by the escaping endolymph, which increases perilymphatic potassium concentration [6]. This idea is supported by the observation that the direction of the spontaneous nystagmus documented during the attacks was congruent with both phases in the present case. A group of patients in nonserial HIT studies during Ménière s attack showed variable VOR gains (from normal to reduced) [7]. Since the nystagmus during the irritative and recovery phases had the same direction (beating toward the affected ear), the authors reasoned that it was impossible to determine the phase of the attack that was studied. As shown in the present case, the attack is a dynamic process. We detected an irritative nystagmus that was short-lived [8]. Unfortunately, we were unable to perform a vhit at this phase since it lasted only a few minutes. It has been theorized that the presence of irritative nystagmus depends on the size of the perilymph leak into the endolymph system. A sudden and rapid increase in the potassium concentration in the perilymphaticspaceontheaffectedsidewouldinduceaparetic nystagmus without a visible irritative phase [9]. Contrarily, a smaller progressive filtration of the endolymph should induce a longer (when present) irritative phase followed by a paretic phase, which was the pattern of this case. Using the distended membrane theory (hydrops) as a base,wepostulatedthatthelocationofthemembranerupture (leaking) with respect to the ampullary cupula could induce a sudden endolymphatic fluid displacement with either ampullofugal or ampullopetal endolymphatic flow direction. In the horizontal canal, the ampullopetal is excitatory, so the irritative nystagmus should be evidently brief. On the other hand, in the case of ampullofugal flow, which is inhibitory, the inducednystagmuswouldhavethesamedirectionastheparalyticphase,sotheinitialphaseshouldnotbeevident.finally, once the paralytic phase (nerve blocking) starts the cupula deflection, no clinically visible effects should be produced. Inthecaseofstudy,theparalyticphasewasassociated with severe reduction of the VOR, which could not be explained by either the central adaptation or the baseline SN effect. It was recently reported that when induced in postrotatory conditions, an intense baseline SN (SPV greater than 3 /sec) could affect the VOR absolute gain value in the vhit [1]. However, these baseline conditions were not obtained in the present case (max SPV of 12 /sec). In the recovery nystagmus phase, the VOR returned to normal gain, compatible with central mediate adaptation nystagmus without peripheral involvement. According to thefloatingbiastowardthesideoflessactivevestibular input [1], when the side with the less active vestibular input recovers to levels analogous with the contralateral side, the bias becomes unmasked in the form of nystagmus toward the formerly less active side. Vestibular adaptation provides a good conceptual framework for the phenomenon observed here in vivo and in other similar conditions (p.e. post caloric reversal nystagmus).

Case Reports in Otolaryngology 3 2 2 1 1 2 2 1 1 2 2 1 1 1.2 2 1.14 1 2 1 1 1 1 1 2 2 1.1 1.8 2 1 1 1.1 1.2.71 2 2.95.96 1.3.91 2 1 1.96 2.6 2 1 2 2.4 1 1 2.39.31 1 2 2 1 2.2 1 1 1 5 5 1 15 2 25 Before attack 1 2 2 (a) 1 2 3 6 9 Attack: duration (minutes approximately) (b) Figure 1: (a) The VOR regression gain values on the y-axis shows evolution of the right affected side (red line) and left side (blue line) during a vertigo attack from the beginning ( minutes before attack) to the symptomatic end (9 minutes). The small plots show the video Head Impulse Test (vhit) recordings; the velocity trajectories ( /s) of the eye (dark grey lines) and head (light grey lines) are depicted during right and left impulses. There are short time mismatches between the vhit records and the VNG records (spontaneous nystagmus), which can be attributed to the changes and calibration of each instrument. On the right HIT, note the saturated profile of the eye velocity curve and the low VOR gain (from 1.1 to.31) as well as the grouped, same direction corrective saccades (at.71 right gain). Note also that, with the progression of the attack (at.39 and.31 right gain), the untidy saccadic movements observed on the ocular velocity baseline trace are due totheinterferenceeffectattheonsetofthefastphaseofthespontaneousnystagmus.attheendoftheacutestage(about6minutes),the horizontal nystagmus changes direction, and the eye velocity curve regains its normal trajectory, although the VOR gain still shows a slight asymmetry. A week later, the gain was normal (1.9 right and 1.1 left), and no corrective saccades or spontaneous nystagmus were recorded. Technical conditions of the vhit: number of head impulses technically accepted for analysis: from 1 to 25. Head velocity: from 14 to 19 ( /sec). (b) Spontaneous nystagmus. Velocity SPV /sec on the y-axis is shown with fixation (black line) and without fixation (grey line). At 6 minutes, the nystagmus reversed to the right. The irritative period was not recorded. 3.2. Clinical Discussion. A causal relationship between BPPV and its subsequent development of Ménière s attack has been proposed. Studies of Ménière s disease after physical trauma have described a hypothetical mechanism in which free-floating otoliths could induce hydrops by mechanically obstructing the longitudinal flow and absorption of endolymph [11]. The particle could conceivably provoke the obstruction and accumulation of endolymphatic fluid, which would lead to membrane rupture. In our case, however, the very short period (minutes) between the Semont maneuver performed and the presented Ménière s attack makes this theoretical mechanism less plausible. As further evidence against this hypothesis, the canal reposition maneuver (CRM) was ineffective due to the fact that the Dix- Hallpike test at the follow-up remained positive. There were also various attacks of BPPV without Ménière s attack and vice versa. Another condition that could mimic the VOR features described in the presented case is the plugging of the horizontal canal due to a jamming of particles after the CRM. However, the three observed instances of direction change

4 Case Reports in Otolaryngology of the spontaneous horizontal nystagmus, the self-limited evolution, and the progressive reduction of VOR could not be explained by a single canal plugging mechanism [12] Martinez-Lopez and coauthors reported a similar case and presented additional discussion [13]. However, there were some remarkable clinical differences. First, the ear studied had previously been submitted to a partial chemical ablation procedure (transtympanic gentamicin). Second, the nystagmus found was monophasic (same direction throughout the episode) on the horizontal axis with a vertical component soon added. However, by definition, only one of the typical three stages of attack was documented. Third, although the affected side superior canal did show a gain in VOR reduction, the horizontal did not, even when a significant horizontal component of the SN was observed. The authors hypothesized that the horizontal component could actually be of utricular origin. On the other hand, in our case the spontaneous direction-changing horizontal nystagmus throughout the single attack was associated with a rapid and severe reduction of the VOR on the same horizontal axis. Because of the severity of the vertigo attack, we attempted to minimize stimuli by only performing horizontal impulses in the vhit. This brief study protocol allowed us to achieve a higher number of VOG and vhit in an hour-long episode and assess the online VOR behavior during Ménière s attack. Contrary to the cochlear component (progressive hearing reduction),inthiscasethehighvorchangeswererapid and reversible. According to other similar cases [4, 7], in the presence of a fluctuating unilateral gain in the vhit in a recurrent vertigo case, endolymphatic hydrops should also be considered as a diagnosis. 4. Conclusions This case showed a severe rapid fluctuation of the high velocity VOR during Ménière s attack. The membrane rupture, fluid displacement, and perilymphatic intoxication theories, postulated in vitro,properlyexplainthedynamicneurophysiological changes presented here, in a human case. [4] L.Manzari,A.M.Burgess,H.G.MacDougall,A.P.Bradshaw, and I. S. Curthoys, Rapid fluctuations in dynamic semicircular canal functioninearlyménière s disease, European Archives of Oto-Rhino-Laryngology,vol.268,no.4,pp.637 639,211. [5]H.F.SchuknechtandA.E.Seifi, Experimentalobservations on the fluid physiology of the inner ear, The Annals of Otology, Rhinology, and Laryngology,vol.72,pp.687 712,1963. [6] G. F. Dohlman, Experiments on the mechanism of Ménière attacks, Otolaryngology, vol. 6, no. 2, pp. 135 156, 1977. [7] S. Lee, H. Kim, J. Koo, and J. Kim, Comparison of caloric and head-impulse tests during the attacks of Meniere s disease, The Laryngoscope,216. [8] J. Hozawa, K. Fukuoka, S. Usami et al., The mechanism of irritative nystagmus and paralytic nystagmus. A histochemical study of the guinea pig s vestibular organ and an autoradiographic study of the vestibular nuclei, Acta Oto-Laryngologica. Supplementum,vol.481,pp.73 76,1991. [9] G.DohlmanandW.H.Johnson, Experimentsonthemechanism of the Ménière attack, Proc Can Otolaryngol, vol. 19,p.73, 1965. [1] G. Mantokoudis, A. S. S. Tehrani, L. Xie et al., The video head impulse test during post-rotatory nystagmus: physiology and clinical implications, Experimental Brain Research,vol.234,no. 1, pp. 277 286, 216. [11] M. M. Paparella and F. Mancini, Trauma and Ménière s syndrome, Laryngoscope, vol. 93, no. 8, pp. 14 112, 1983. [12]L.Luis,J.Costa,F.V.Garcia,J.Valls-Solé, T. Brandt, and E. Schneider, Spontaneous plugging of the horizontal semicircular canal with reversible canal dysfunction and recovery of vestibular evoked myogenic potentials, Otology and Neurotology,vol.34,no.4,pp.743 747,213. [13] M. Martinez-Lopez, R. Manrique-Huarte, and N. Perez- Fernandez, A puzzle of vestibular physiology in a Meniere s disease acute attack, Case Reports in Otolaryngology,vol.215, Article ID 46757, 5 pages, 215. Competing Interests The authors declare no potential conflicts of interest. References [1] M. Bance, M. Mai, D. Tomlinson, and J. Rutka, The changing direction of nystagmus in acute Meniere s disease: pathophysiological implications, Laryngoscope,vol.11,no.2,pp.197 21, 1991. [2] H. G. MacDougall, K. P. Weber, L. A. McGarvie, G. M. Halmagyi, and I. S. Curthoys, The video head impulse test: diagnostic accuracy in peripheral vestibulopathy, Neurology, vol. 73, no. 14, pp. 1134 1141, 29. [3] S.T.Aw,T.Haslwanter,G.M.Halmagyi,I.S.Curthoys,R.A. Yavor,andM.J.Todd, Three-dimensionalvectoranalysisofthe human vestibuloocular reflex in response to high-acceleration head rotations: I. Responses in normal subjects, Neurophysiology,vol.76,no.6,pp.49 42,1996.

MEDIATORS of INFLAMMATION The Scientific World Journal Gastroenterology Research and Practice Diabetes Research International Endocrinology Immunology Research Disease Markers Submit your manuscripts at BioMed Research International PPAR Research Obesity Ophthalmology Evidence-Based Complementary and Alternative Medicine Stem Cells International Oncology Parkinson s Disease Computational and Mathematical Methods in Medicine AIDS Behavioural Neurology Research and Treatment Oxidative Medicine and Cellular Longevity