An Acylated Kaempferol Glycoside from Flowers of Foeniculum vulgare and F. Dulce

Similar documents
SUPPLEMENTARY MATERIAL

TWO NEW ELLAGIC ACID GLYCOSIDES FROM LEAVES OF DIPLOPANAX STACHYANTHUS

Lichtenbergstrasse 4, Graching, Germany. (Received April 13, 2003; revised October 28, 2003) INTRODUCTION

FLAVANONE AND FLAVONE GLYCOSIDE FROM TAXUS BACCATA

Delineation of the Role of Glycosylation in the Cytotoxic Properties of Quercetin using Novel Assays in Living Vertebrates

POLYPHENOLIC COMPOUNDS FROM ABUTILON GRANDIFLORUM LEAVES

Electronic Supplementary Information

SUPPLEMENTARY MATERIAL

*Corres.author: Mobile-: ,

FLAVONOIDS FROM FLOWER OF LINUM CAPITATUM KIT UDC Slavica B. Ilić, Sandra S. Konstantinović, Zoran B. Todorović

Isolation and characterization of pristimerin as the antiplasmodial and antileishmanial agent of Maytenus senegalensis (Lam.) Exell.

STILBENOIDS FROM THE LIANAS OF GNETUM PENDULUM

Asian Journal of Pharmaceutical Analysis and Medicinal Chemistry Journal home page:

molecules ISSN by MDPI

Cytotoxic sesquiterpene lactones from Eupatorium lindleyanum

THE JOURNAL OF ANTIBIOTICS. Polyketomycin, a New Antibiotic from Streptomyces sp. MK277-AF1. II. Structure Determination

Flavonol glycosides from Castanea mollissima Blume

Available online Research Article

SUMMARY. The isolation and characterisation of four flavonoid constituents. from the roots of Dalbergia congesta, not hitherto phytochemically

Supporting Information

β-sitosterol-3-o-β-d-xylopyranosyl (1 4)-O-β-D- GLUCOPYRANOSIDE FROM THE SEEDS OF ZANTHOXYLUM HEMILTONIANUM WALL

Neuroprotective and Antioxidant Constituents from Curcuma zedoaria Rhizomes

Two Novel Phenolic Compounds from the Rhizomes of Cyperus rotundus L.

C 21 Steroidal Glycosides from Acidic Hydrolysate of Cynanchum otophyllum

FLAVONOIDS FROM Albizia chinensis OF EGYPT

SYNTHESIS AND EVALUATION OF INFLUENZA VIRUS SIALIDASE INHIBITORY ACTIVITY OF HINOKIFLAVONE-SIALIC ACID CONJUGATES

Eur. J. Org. Chem WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 2007 ISSN X SUPPORTING INFORMATION

Chukvelutins A-C, 16-norphragmalin limonoids with unprecedented skeletons from Chukrasia tabularis var. velutina

Comparative HPTLC Analysis of Leaves of Allium cepa L., Ficus carica L. and Ziziphus mauritiana L. with Standard Quercetin

Supporting Information

p-toluenesulfonic Acid-Mediated 1,3-Dipolar Cycloaddition of

Supporting Information

Secondary Metabolites from Seed Extracts of Syzygium Cumini (L.)

In vitro antioxidant activity of a flavonoid compound isolated from methanolic extract of Helianthus annuus leaves (Asteraceae)

Structures and Hypotensive Effect of Flavonoid Glycosides. in Young Citrus unshiu Peelings õ

Rameshwar Prasad Pandit and Yong Rok Lee * School of Chemical Engineering, Yeungnam University, Gyeongsan , Korea

Supplementary Figure 1. ESI/MS/MS analyses of native and de-acetylated S2A Supplementary Figure 2. Partial 1D 1H NMR spectrum of S2A

Synthesis and Blastocyst Implantation Inhibition Potential of Lupeol Derivatives in Female Mice

Zinc Chloride Promoted Formal Oxidative Coupling of Aromatic Aldehydes and Isocyanides to α- Ketoamides

DETERMINATION OF PHENOLIC COMPOUNDS IN PRUNUS DOMESTICA LEAVES EXTRACT

A New Clerodane Diterpene, Flavonoids and Sterols from Cassia nodosa Growing in Egypt: Anti-inflammatory Activity of Plant Extracts

Electronic Supplementary Information

Isolation and Identification of Anthralin From the Roots of Rhubarb Plant (Rheum palmatum)

Ruthenium-Catalyzed C H Oxygenation on Aryl Weinreb Amides

Research Article. Fatty Acid Glucosides from Roots of Cichorium Intybus Linn.

Comparison in Various Bioactive Compounds of Leaves and Seeds of Foeniculum Vulgare Mill.

Naoya Takahashi, Keiya Hirota and Yoshitaka Saga* Supplementary material

13C Nuclear Magnetic Resonance Spectra of Hydrolyzable Tannins. III.1) Tannins Having 1C4 Glucose and C-Glucosidic Linkage

Investigations on Terminalia arjuna Fruits: Part 2- Isolation of Compound from ethyl Acetate Fraction

Study of Phytochemical Screening and Antimicrobial Activity of Citrus aurantifolia Seed Extracts

Steroidal saponins from the rhizomes of Agapanthus africanus (Linn)

yellow coloured amorphous powder, which on crystallization from hot acetone resulted in pale

Supporting Information

The First Au-Nanoparticles Catalyzed Green Synthesis of Propargylamines Via Three-Component Coupling Reaction of Aldehyde, Alkyne And Amine

By: Jin-Bo Fang, Wei Jia, Wen-Yuan Gao, Zhi Yao, Jie Teng, Ai-Hua Zhao, and Hong-Quan Duan

THIN LAYER CHROMATOGRAPHY

Manganese powder promoted highly efficient and selective synthesis of fullerene mono- and biscycloadducts at room temperature

Supporting Information for. Boronic Acid Functionalized Aza-Bodipy (azabdpba) based Fluorescence Optodes for the. analysis of Glucose in Whole Blood

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2008

A Chalcone Glycoside from the Fruits of Sorbus commixta Hedl.

Thiol-Activated gem-dithiols: A New Class of Controllable. Hydrogen Sulfide (H 2 S) Donors

Masatoshi Shibuya,Takahisa Sato, Masaki Tomizawa, and Yoshiharu Iwabuchi* Department of Organic Chemistry, Graduate School of Pharmaceutical Sciences,

Isolation and Identification of the Phenolic Compounds from the Roots of Sanguisorba officinalis L. and Their Antioxidant Activities

A New Alkaloid from Isatis costata

Antioxidant potential of Cedrela odorata stems extracts and Bio active Phytoconstituents

New Triterpenoid Saponins from Fruit Specimens of Panax japonicus Collected in Toyama Prefecture and Hokkaido (2)

Research Article. Flavonoids and other compound isolated from leaves of Aconitum carmichaeli Debx. growing in Viet Nam

Identification of novel endophenaside antibiotics produced by Kitasatospora sp. MBT66

Stereoselective Aza-Darzens Reactions of Tert- Butanesulfinimines: Convenient Access to Chiral Aziridines

CHEMICAL INVESTIGATION OF SOME FERNS OF KUMAUN HILLS CHAPTER-III CHEMICAL INVESTIGATION AND STRUCTURAL ELUCIDATION. Estelar

Synthesis, Characterization and Application Study of Two Glycosides as Flavour Precursors

Divergent Construction of Pyrazoles via Michael Addition of N-Aryl Hydrazones to 1,2-Diaza-1,3-dienes

Novel D-erythro N-Octanoyl Sphingosine Analogs As Chemo- and Endocrine. Resistant Breast Cancer Therapeutics

Supporting Materials. Experimental Section. internal standard TMS (0 ppm). The peak patterns are indicated as follows: s, singlet; d,

CDI Mediated Monoacylation of Symmetrical Diamines and Selective Acylation of Primary Amines of Unsymmetrical Diamines

Compounds isolation and in vitro antioxidant activity evaluation of Faidherbia albida (Del.) A. Chev. Leaves ethanolic extract

Electronic Supplementary Information. Quinine/Selectfluor Combination Induced Asymmetric Semipinacol Rearrangement of

SUPPORTING INFORMATION for. Identification of key structural characteristics of Schisandra chinensis lignans

IJPRD, 2011; Vol 4(03): May-2012 ( ) International Standard Serial Number

Quantification and bio-assay of α-glucosidase inhibitors from the roots of Glycyrrhiza uralensis Fisch.

# Supplementary Material (ESI) for Chemical Communications # This journal is The Royal Society of Chemistry 2005

Supporting Information. Efficient copper-catalyzed Michael addition of acrylic derivatives with primary alcohols in the presence of base

New immunomodulators with antitumoral properties; Isolation of active naturally-occurring anti-mitotic components of MR>1KD from pollen extract T60

Enantioselective synthesis of anti- and syn-β-hydroxy-α-phenyl carboxylates via boron-mediated asymmetric aldol reaction

Supporting Information: Cis-to-Trans Isomerization of Azobenzene Investigated by Using Thin Films of Metal-Organic Frameworks

An Orthogonal Array Optimization of Lipid-like Nanoparticles for. mrna Delivery in Vivo

ph Switchable and Fluorescent Ratiometric Squarylium Indocyanine Dyes as Extremely Alkaline Sensors

Synthesis of 7-aryl/heteraryl-1,3-diphenyl- 1,2,4-benzotriazinyls via palladium catalyzed Stille and Suzuki-Miyaura reactions

Extraction of Flavonoids and Quantification of Rutin from waste Tobacco Leaves

STABILITY INDICATING ASSAY. differentiate an intact drug from its potential decomposition products 425.

Self-organization of dipyridylcalix[4]pyrrole into a supramolecular cage for dicarboxylates

Nitro-Grela-type complexes containing iodides. robust and selective catalysts for olefin metathesis

CHARACTERIZATION OF ANTHOCYANINS BY GCMS

Phytochemical analysis of ethyl acetate extract from Astragalus corniculatus Bieb. and brain antihypoxic activity

A Previous Study of Phenolic Profiles of Quince, Pear, and Apple Purees by HPLC Diode Array Detection for the Evaluation of Quince Puree Genuineness

Supplementary Materials Contents

Two New Oleanane Triterpene Glycosides from the Bark of Terminalia arjuna

Supporting Information

Novel triterpenoidal saponin from the seeds of Pitheceilobium dulce

Antitumor Principles from Ginkgo biloba L.

Transcription:

Molecules 2002, 7, 245 251 molecules ISSN 1420-3049 http://www.mdpi.org An Acylated Kaempferol Glycoside from Flowers of Foeniculum vulgare and F. Dulce Fathy M. Soliman, Afaf H. Shehata, Amal E. Khaleel* and Shahera M. Ezzat Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr El-Ainy St., Cairo, 11562, Egypt. Tel: +20-2-3624105, Fax:+20-2-3635140 *To whom correspondence should be addressed; e-mail amaalkhaleel@hotmail.com Received: 23 December 2001; in revised form: 16 February 2002 / Accepted: 23 February 2002 / Published: 28 February 2002 Abstract: An acylated kaempferol glycoside, namely kaempferol-3--α-l-(2,3 -di-e-pcoumaroyl)-rhamnoside (1) was isolated from the flowers of Foeniculum vulgare Mill. and F. dulce DC. It is thus isolated for the first time from family Apiaceae. In addition, the different organs of both plants afforded six flavonoid glycosides - namely afzelin (kaempferol-3--α-l-rhamnoside) (2), quercitrin (3), isorhamnetin-3--β-d-glucoside (4), isoquercitrin (5), rutin (6), and miquelianin (quercetin-3--β-d-glucuronide) (7). Structure elucidation of the above mentioned flavonoids was achieved by UV, 1 H- and 13 C-NMR, 1 H- 1 H CSY, HMQC and EI-MS. Keywords. Foeniculum vulgare, F. dulce, acylated kaempferol glycoside, spectroscopy. Introduction Foeniculum vulgare Mill. is used in folk medicine as carminative, digestive, lactagogue and diuretic. The leaves, stalks and fruits are edible [1, 2]. F. dulce DC. is an annual herb grown especially for its bulb-like swollen leaf bases which are delicious in salads [3, 4]. Flavonoids are more common throughout the family Apiaceae than other constituents [5]. The presence of flavonol glycoside types

Molecules 2002, 7 246 in fennel species was based on morphological heterogenicity and variation in flavonol glycosides have been reported [6]. Kaempferol and quercetin were detected in leaves of F. vulgare Mill. [7] and the presence of kaempferol-3--glucuronide, quercetin-3--glucuronide, quercetin-3-arabinoside, kaempferol -3-arabinoside and rutin in leaves and fruits of the same plant was also reported [6, 8-10]. Moreover, the presence of quercetin and isoquercitrin in fruits [6,9,11] and isorhamnetin glycosides in leaves of the same fennel species was reported [9]. Since little research has been conducted on the leaf, fruit, and flower of F. vulgare and nothing has been found concerning the flavonoids of F. dulce, it was of interest to examine the flavonoid patterns in the different organs of the two species. Results and Discussion All isolated compounds displayed UV absorption data typical of 3-substituted flavonols. The 1 H-NMR spectrum of compound 2 displayed the characteristic signals of the kaempferol nucleus [12,13]: two doublets at δ H 6.20 and 6.40 ppm (J = 2.1 Hz), assigned to the H-6 and H-8 protons, respectively, and a pair of A 2 B 2 aromatic system protons at δ H 6.93 and 7.77 ppm (J = 8.4 Hz), assigned to H- 3, 5 and H-2, 6 respectively. Acid hydrolysis of 2 gave kaempferol and L-rhamnose which were identified by comparison with authentic samples. 1 H-NMR of the sugar moiety suggested the presence of L-rhamnose in the molecule (the anomeric proton at δ H 5.30 ppm, H-2 at δ H 3.89 and H-3 at δ H 3.49 ppm). The compound was identified as afzelin (kaempferol -3--α-L-rhamnoside). H H H H H H 8 9 2 1 4 3 6 5 1

Molecules 2002, 7 247 H H H H H H 2 R H H H -R 1 3-7 3 R=H, R 1 = α-l-rhamnose 4 R=CH 3, R 1 =β-d-glucose 5 R=H, R 1 =β-d-glucose 6 R=H, R 1 β-d-glucose- α-l-rhamnose 7 R=H, R 1 = β-d-glucuronic acid The UV shifts and 1 H-NMR spectra of compounds 3 and 5-7 were in agreement with a quercetin skeletal pattern [12,13]. In addition, TLC investigation of the hydrolysis products showed that 3 and 5-7 have the same aglycone moiety. Additionally, the sugar fraction of the hydrolysis product of 3 was L-rhamnose, of 5 was D-glucose, of 6 was L-rhamnose and D-glucose and of 7 was D-glucuronic acid. The identity of D-glucuronic acid was confirmed by 13 C-NMR: C-6 was found at δ 172.43 [14,15]. Therefore, 3 was identified as quercitrin, 5 as isoquercitrin, 6 as rutin and 7 as miquelianin (quercetin-3--β-d-glucuronide). Compound 4 was identified as isorhamnetin-3--β-d-glucoside by comparison of its UV and 1 H-NMR data with literature values [12,13].

Molecules 2002, 7 248 The characteristic UV spectrum of compound 1, a shoulder at λ max = 268 nm and a broad band at λ max = 312 nm, suggested a diacylated glycoside [16]. The 1 H-NMR spectrum displayed the typical signals of the kaempferol nucleus [13], in addition to two p-coumaroyl moieties as indicated by the presence of two pairs of doublets with a relatively large coupling constant (15.9 Hz) [17]. The first pair at δ H 6.63 and 7.62 ppm and the second at δ H 7.60 and 6.36 ppm, indicated two pairs of trans configured ethylenic protons. Additionally, two A 2 B 2 systems, each integrating for two protons, were found at δ H 7.44, 6.80 and 6.75, 7.37 ppm, respectively. This was also supported by a fragment at m/z 164 (56 %) in the EI-MS. The sugar moiety of 1 was identified as L-rhamnose by acid hydrolysis. 1 H- NMR showed the presence of three downfield sugar proton signals at δ H 5.30 (dd, J = 9.7, 3.4 Hz), 5.60 (d, J = 1.7 Hz) and 5.82 (d, J = 1.7 Hz) which could be ascribed to H-3, H-1 and H-2. This assignment was deduced by the correlation of H-1 with H-2, H-2 with H-1 and H-3, in 1 H- 1 H CSY. The downfield shift of H-2 and H-3, relative to the corresponding positions in compound 2 (kaempferol-3--α-l-rhamnoside) proved their acylation by the two p-coumaric acid units (+1.84, +1.81 for H-2 and H-3, respectively). The acylation at C-2 and C-3 positions is further confirmed by the upfield shift of the adjacent carbons in 13 C (-2.4 ppm for both carbons C-1 and C-4 ) relative to the corresponding carbons of kaempferol-3--l-rhamnoside [14]. The assignments of the chemical shifts of the carbons were deduced by a HMQC experiment. Therefore, compound 1 was identifed as kaempferol-3--α-l-(2,3 -E-di-p-coumaroyl)-rhamnoside, previously reported in Planatus acerifolia buds F. Platanaceae[18], but representing a new kaempferol derivative in family Apiaceae. The distrubution of the various isolated compounds in the leaves, flowers and roots of the two species is given in Table 1. Table 1: Comparison of the flavonoid contents of the different organs of F. vulgare and F. dulce. Comp. R f * F. vulgare Mill. F. dulce DC. leaf flower fruit stem root leaf flower fruit stem root 1 0.96 - ++ - - - - ++ - - - 2 0.89 - ++ - - - - ++ + - - 3 0.86 + - - - - - - - - - 4 0.81 - + - - - - + - - - 5 0.79 + ++ - - - - ++ + - - 6 0.58 - + - - - - + - - - 7 0.42 + ++ + - - - ++ + - - *Solvent system: ethyl acetate: methanol: water (100: 16.5: 13.5) Acknowledgments The authors are grateful to Dr. Meselhy Ragab (Cairo University, Egypt) for obtaining the spectral data of compound 1 at the Institute of Natural Medicine, Toyama Medical and Pharmaceutical University, Japan.

Molecules 2002, 7 249 Experimental General UV spectra were determined in methanol and after addition of different shift reagents on a Hewlett Packard 8452A diode array spectrophotometer. EI-MS was carried on a Finnigan Mat SSQ 7000 GC/MS instrument at 70 ev. Melting points were determined using a Gallenkamp apparatus. 1 H-NMR spectra were recorded in DMS-d6 on a JEL TMS Route instrument at 300 MHz using TMS as internal standard. 1 H-NMR, 1 H- 1 H CSY, 13 C-NMR and HMQC spectra of compound 1 were measured in CD 3 D on a Varian 500 instrument operated at 400 ( 1 H-) and 100 ( 13 C-) MHz, respectively. Thin-layer chromatography and preparative thin-layer chromatography were perfomed on silica gel GF 254 precoated plates (Machery Nagel, Germany) and developed with either 100:16.5:13.5 ethyl acetate/methanol/water (system A), 100:11:11:10 ethyl acetate/formic acid/acetic acid/water (system B), 9:1 chloroform/methanol (system C), 4:1:1 n-butanol/acetic acid/water (system D) or 4:5:1 n-butanol/acetic acid/water (system E); the compounds were visualized in UV light and AlCl 3 spray reagent (flavonoids) or using aniline phthalate spray reagent (sugars). Silica gel 60 (230-400 mesh ASTM, Machery Nagel, Germany), silica gel H for vacuum liquid chromatography (VLC) (Merck), and Sephadex LH-20 (Pharmacia) were used for column chromatography. Reference samples of flavonoid aglycones and sugars were obtained from E. Merck, Darmstadt, Germany and B.D.H., Poole, England. Plant material Samples of the different organs of Foeniculum vulgare and Foeniculum dulce (Family Apiaceae) were collected from February to April 2001 from the Experimental and Research Station of the Faculty of Pharmacy, Giza. Identification of the plants was carried out by Prof. Dr. Nabil El Hadidy, Faculty of Science, Cairo University, Egypt. Extraction and Isolation The air-dried flowers of F. vulgare (350 g) were extracted with 95% ethanol (5L) to yield 68g of dry residue. Fifty grams of the residue were then suspended in water (250 ml) and partitioned successively with petroleum ether (7.4 g), chloroform (2 g), ethyl acetate (4 g) and n-butanol (4 g). The ethyl acetate extract was chromatographed over 40 g Si gel H in a vacuum liquid chromatography column (VLC) (13 x 4 cm). Gradient elution was carried out using chloroform and increasing the polarity with ethyl acetate in 5% stepwise elutions to 100% ethyl acetate (40 x 100 ml) and then with ethyl acetate and increasing the polarity with methanol in 5% stepwise increments to 75% ethyl acetate-25% methanol (15 x 100 ml). Fractions 16 and 17 (99 mg) were combined and purified on a Sephadex LH-20 column (40 x 2 cm) using methanol as eluent to give compound 1 (43 mg). Fractions 28-30 (110 mg) and fractions 35 and 36 (100 mg) were treated separately as described for 1 to yield 2

Molecules 2002, 7 250 (18 mg) and 4 (12 mg) respectively. Fractions 39 and 40 (523 mg) were filtered on a Sephadex LH-20 column (40 x 2 cm) using methanol as eluent and then chromatographed over 25 g Si gel column (25 x 1.5 cm) eluting with 4:1chloroform/methanol to give 5 (25 mg). Fractions 41-48 (590 mg) were filtered on a Sephadex LH-20 column (40 x 2 cm) and then purified by preparative TLC using solvent system A to yield 6 (8 mg). Fractions 52-55 (90 mg) were purified on a Sephadex column (40 x 2 cm) to yield compound 7 (36 mg) The leaves (600 g) and fruits (400 g) of F. vulgare, as well as flowers (250 g) and fruits (700 g) of F. dulce were extracted and fractionated as indicated above. The leaves of F. vulgare yielded 8 mg of 3, which was present only in leaves, 9 mg of 5, and 15 mg of 7. The fruits of F. vulgare yielded only 6 mg of 7 while that of F. dulce yielded 2 (3 mg), 5 (11 mg) and 7 (10 mg). Kaempferol-3--α-L-(2,3 -E-di-p-coumaroyl)-rhamnoside (1). Yellow amorphous powder (43 mg), mp 190-193 o C; R f 0.96 (A); UV (MeH): λ max (log ε) 268 sh (4.48), 300 sh (4.73), 312 (4.76) (MeH + NaMe) 276, 312 sh, 362 (MeH + AlCl 3 ) 280 sh, 310, 396 (MeH +AlCl 3 + HCl) 280 sh, 310, 394 (MeH + NaAc) 280 sh, 312, 364 (MeH + NaAc + H 3 B 3 ) 268, 300, 310 nm; 1 H-NMR (400 MHz, δ H, CD 3 D): 1.06 (d, J = 6.3, H-6 ), 3.56 (m, H-5 ), 3.64 (t, J = 9.7, H-4 ), 5.30 (dd, J = 9.7, 3.4, Hz, H-3 ), 5.60 (d, J = 1.7 Hz, H-1 ), 5.83 (d, J =1.7 Hz, H-2 ), 6.21 (d, J =1.7 Hz, H-6), 6.28, 6.36 (d, J =15.9, H-2, H-2 ), 6.39 (d, J = 1.7 Hz, H-8), 6.75, 6.80 (d, J = 8.7, H-6,8, H-6,8 ), 6.99 (d, J = 8.7, H-3,5 ), 7.37, 7.44 (d, J = 8.4, H-5,9, H- 5,9 ), 7.60, 7.62 (d, J = 15.9, H-3, H-3 ), 7.86 (d, J = 8.7, H-2,6 ) ppm; 13 C-NMR (100 MHz, δ H, CD 3 D): 179.2 (C-4), 168.4, 167.7 (C-1, C-1 ), 165.7 (C-7), 163.1 (C-5), 161.5, 161.3 (C-7, C-7 ), 161.1(C-4 ), 158.9 (C-2), 158.3 (C-9), 147.6, 146.9 (C-3, C-3 ), 135.3 (C-3), 131.8 (C-2, 6 ), 131.3, 131.1 (C-5, 9, C-5, 9 ), 127,126.9 (C-4, C-4 ), 122.3 (C-1 ), 116.8, 116.7 (C-6, 8, C-6, 8 ), 116.67 (C-3, 5 ), 114.8, 114.3 (C-2, C-2 ), 105.9 (C-10), 100.1 (C-1 ), 99.9 (C- 6), 94.8 (C-8), 72.9 (C-3 ), 72.1 (C-5 ), 70.9 (C-4 ), 70.8 (C-2 ), 17.7 (C-6 ) ppm; EIMS (70 ev) m/z (%): 432 (32), 286 (100), 164 (55.7), 163 (18.3), 153 [A 1 +H] + (4), 152 [A 1 ] + (0.9), 147 (88.4), 134 [B 1 ] + (3.6), 121 [B 2 ] + (24), 120 (52). Hydrolysis of the isolated compounds A few mg of the glycosides were refluxed with 10% HCl in 50% methanol for 3 hrs. The aglycones and sugar fractions were identified by chromatographic comparison with authentic samples. References 1. Marotti, M.; Piccaglia, R.; Giovanelli, E. Effects of Variety and ntogenic Stage on the Essential il Composition and Biological Activity of Fennel. J. Essent. il Res. 1994, 6, 57-62. 2. Kowalchick, C.; Hylton, W.H.,eds. Rodales Illustrated Encyclopedia of Herbs, Rodale Press: Emmaus, Pennsylvania, 1988, 188.

Molecules 2002, 7 251 3. Mabberley, D.J. The Plant Book, 2nd ed., Cambridge Univ. Press: U.K, 1997, 286. 4. Baily, L.H.; Baily, E.Z. Hortus Third; Macmillan Publishing Co. Inc.: New York, 1976, 481. 5. Harborne, J.B., Williams, C.A. Flavonoid Pattern in the Fruits of the Umbelliferae. Phytochemistry, 1972, 11, 1741-50. 6. Harborne, J.B.; Saleh, N.A.M. Flavonol Glycoside Variation in Fennel, Foeniculum vulgare. Phytochemistry 1971, 10, 399-400. 7. Crowden, R.K.; Harborne, J.B.; Heywood, V.H. Chemosystematics of the Umbelliferae - A General Survey. Phytochemistry, 1969, 8, 1963-84. 8. hta, T.; Miyazaki, T. Foenicularin, a Quercetin-3--Arabinoside from the Leaves of F. vulgare. J. Pharm. Soc. Japan 1959,76, 323. 9. Kunzemann, J.; Herrmann, K. Z. Isolation and Identification of Flavonol--glycosides in Caraway (Carum carvi L.), Fennel (Foeniculum vulgare Mill.), Anise (Pimpenella anisum L.) and Coriander (Coriandrum sativum L.), and Flavonol-C-glycosides in Anise. Lebensm-Unters-Forsch 1977, 164, 194-200 [Chem. Abstr. 1977, 87, 166146y]. 10. Nakaoki, T.; Morita, Y.; Nagata, Y.; guri, H., Flavonoids of the Leaves of Nelumbo nucifera, Cosmos bipinnatus and Foeniculum vulgare. Yakugaku Zasshi 1961, 81,1158-59 [Chem. Abstr., 1962, 56,1527d]. 11. Ghodsi, M.B. Flavonoids of Foeniculum vulgare Mill. Maj-Daneshgah-e-Tehran Danesh kade-ye Darusazi 1976, 10, 14 [Chem. Abstr., 1980, 92, 72698f]. 12. Harborne, J.B.; Mabry, T.J.; Mabry, H., eds. The Flavonoids I, Academic Press: New York, 1975. 13. Mabry, T.J.; Markham, K.R.; Thomas, M.B. The Systemic Identification of Flavonoids, Springer- Verlag: New York, Heidelberg, Berlin, 1970. 14. Aritomi, M.; Kawasaki, T. Three Highly xygenated Flavone Glucuronides in Leaves of Spinacia oleracea. Phytochemistry 1984, 23, 2043-47. 15. Agrawal, P.K., ed. Carbon-13 NMR of Flavonoids, Elsevier: Amsterdam, xford, New York, and Tokyo, 1989. 16. Tomas-Barberan, F.A.; Gil, M.I.; Ferreres, F.; Tomas-Lorente, F. Flavonoid p-coumaroyl and 8- Hydroxyflavone Allosylglucosides in Some Labiatae. Phytochemistry 1992, 31, 3097-3102. 17. Fiorini, C.; David, B.; Fouraste, I.; Vercauteren, J. Acylated Kaempferol Glycosides from Laurus nobilis leaves. Phytochemistry 1998, 47, 821-25. 18. Kaouadji, M. Acylated and Non-acylated Kaempferol Monoglycosides from Planatus acerifolia Buds. Phytochemistry 1990, 7, 2295-97. Sample availability: Samples of compounds 1 (2 mg), 3 (5mg), 5 (5mg) and 7 (5 mg) are available from the authors. 2002 by MDPI (http://www.mdpi.org). Reproduction is permitted for non commercial purposes.