A quality control program for MR-guided focused ultrasound ablation therapy

Similar documents
APPLICATION AND DEPLOYMENT OF ADVANCED NDE TECHNIQUES IN HIGH PRESSURE VESSELS

Routine Quality Assurance Cookbook

Annular Array Transducer and Matched Amplifier for Therapeutic Ultrasound

Expanding therapy options for

Progress in Development of HIFU CMUTs for use under MR-guidance

Modeling of Thermal Damage from Focused Ultrasound Exposures for Heterogeneous Tissues

RECENT ADVANCES IN CLINICAL MR OF ARTICULAR CARTILAGE

DEVELOPMENT OF ELECTROMAGNETIC ACOUSTIC TRANSDUCER (EMAT) PHASED ARRAYS FOR SFR INSPECTION

Application of Phased Array Radar Theory to Ultrasonic Linear Array Medical Imaging System

MR QA/QC for MRgRT. Rick Layman, PhD, DABR Department of Radiology July 13, 2015

Modeling of the Impact of Blood Vessel Flow on the Temperature Distribution during Focused Ultrasound Treatments

Optimization of the T2 parametric image map calculation in MRI polymer gel dosimetry

Poster No.: C-0181 Congress: ECR Scientific Exhibit. Authors:

Ultra High-Field MRI as a Therapeutic Modality for the Treatment of Brain Metastases with Comparison to MR Guided Focused Ultrasound

Development of Ultrasound Based Techniques for Measuring Skeletal Muscle Motion

39th Annual UIA Symposium. Metrology research for External Beam Cancer Therapy. K.-V. Jenderka

The latest developments - Automated Breast Volume Scanning. Dr. med. M. Golatta

Certification Review. Module 28. Medical Coding. Radiology

How Much Tesla Is Too Much?

Amendment No. 2. Item No. 2 (Rfx/ Event number )

Descriptions of NDT Projects Fall 2004 October 31, 2004

NIH Public Access Author Manuscript Radiology. Author manuscript; available in PMC 2007 April 10.

Augmentation of the In Vivo Elastic Properties Measurement System to include Bulk Properties

Proceedings of Meetings on Acoustics

Pipeline Technology Conference 2007

Year-Old with Flank Pain / MR-Guided Focused Ultrasound Ablation

On the feasibility of speckle reduction in echocardiography using strain compounding

Imaging of Scattered Radiation for Real Time Tracking of Tumor Motion During Lung SBRT

Topics covered 7/21/2014. Radiation Dosimetry for Proton Therapy

A new geometric and mechanical verification device for medical LINACs

Non-invasive Neurosurgery using MR guided Focused Ultrasound

ACR MRI Accreditation Program. ACR MRI Accreditation Program Update. Educational Objectives. ACR accreditation. History. New Modular Program

Ultrasound Principles cycle Frequency Wavelength Period Velocity

Ultrasound Guided HIFU Ablation (USgFUS)

Quality Assurance of Ultrasound Imaging in Radiation Therapy. Zuofeng Li, D.Sc. Murty S. Goddu, Ph.D. Washington University St.

ADVANCE ULTRASONIC INSPECTION

Unrivaled, End-to-End

Performance Evaluation of Ultrasound Systems: Advanced Methods and Applications

Magnetic Resonance Angiography

Outline. QA/QC of Ultrasound Imagers: Basic Physics, Procedures and Experiences. Frame Rate Limitation. US Imaging Range Equation.

High power density prototype for high precision transcranial therapy

Radiologic Imaging Magnetic Resonance Imaging (MRI)

Ultrasound in Medicine

ULTRASONIC ARRAY APPROACH FOR THE EVALUATION OF ELECTROFUSION JOINTS OF POLYETHYLENE GAS PIPING

Focused ultrasound (FUS) thalamotomy was recently. FOCUS Neurosurg Focus 44 (2):E5, 2018

Stress Wave Focusing Transducers

Liver Fat Quantification

FOR IMMEDIATE RELEASE

ULTRASOUND IMAGING EE 472 F2018. Prof. Yasser Mostafa Kadah

Evaluation of the Quality of Thick Fibre Composites Using Immersion and Air- Coupled Ultrasonic Techniques

A hemisphere array for non-invasive ultrasound brain therapy and surgery

Ultrasonic Testing of Rails Using Phased Array

ACR MRI Accreditation: Medical Physicist Role in the Application Process

Research on Digital Testing System of Evaluating Characteristics for Ultrasonic Transducer

Linear Ultrasonic Wave Propagation in Biological Tissues

10 Years Experience in Industrial Phased Array Testing of Rolled Bars

A new method of sonograph lateral resolution measurement using PSF analysis of received signal

Methods of MR Fat Quantification and their Pros and Cons

Q-Sense fmri in the MRI environment

Repeatability of 2D FISP MR Fingerprinting in the Brain at 1.5T and 3.0T

Medical Physics 2.0. Ultrasound 2.0. N. J. Hangiandreou, Ph.D. 1 P. L. Carson, Ph.D. 2 Z. F. Lu, Ph.D. 3. Mayo Clinic 2. University of Michigan 3

Anatomical and Functional MRI of the Pancreas

Verification of treatment planning system parameters in tomotherapy using EBT Radiochromic Film

Visualization strategies for major white matter tracts identified by diffusion tensor imaging for intraoperative use

SYSTEM OVERVIEW MINIMALLY INVASIVE ROBOTIC LASER THERMOTHERAPY

A. DeWerd. Michael Kissick. Larry. Editors. The Phantoms of Medical. and Health Physics. Devices for Research and Development.

Improving Methods for Breast Cancer Detection and Diagnosis. The National Cancer Institute (NCI) is funding numerous research projects to improve

Underwater Acoustic Measurements in Megahertz Frequency Range.

8/3/2016. Diagnostic Ultrasound Imaging Quality Assurance. Purpose. Information on US QA. James A. Zagzebski 1, Ph.D. Zheng Feng Lu 2, Ph.D.

Real Time 2D Ultrasound Camera Imaging: A Higher Resolution Option to Phased Array Bob Lasser Randy Scheib Imperium, Inc.

China Medical Technologies, Inc.

8/15/2011. Quantitative Ultrasound Imaging: A Historical Perspective. Motivation. Motivation & Applications. Motivation & Applications

Ultrasound Physics & Terminology

CHARACTERIZATION OF ANNULAR ARRAY TRANSDUCER

Introduction. The goal of TRUS QA is to ensure your system can do all of this accurately.

Ultrasonic fingerprinting by phased array transducer

Ultrasound Tomosynthesis: A New Paradigm for Quantitative Imaging of the Prostate

The Evolution and Benefits of Phased Array Technology for the Every Day Inspector

Diploma of Medical Ultrasonography (DMU) Physical Principles of Ultrasound and Instrumentation Syllabus

ACR Accreditation Update in MRI

ieee transactions on ultrasonics, ferroelectrics, and frequency control, vol. 49, no. 4, april

Flaw Assessment Using Shear wave Phased array Ultrasonic Transducer

Table 1. Summary of PET and fmri Methods. What is imaged PET fmri BOLD (T2*) Regional brain activation. Blood flow ( 15 O) Arterial spin tagging (AST)

Improved Inspection of Composite Wind Turbine Blades with Accessible Advanced Ultrasonic Phased Array Technology

Automated ultrasonic testing of submerged-arc welded (SAW) pipes using phased-arrays

w. D. Jolly, F. A. Bruton, and C. Fedor

MRI Assessments of Cartilage

Verification of the PAGAT polymer gel dosimeter by photon beams using magnetic resonance imaging

Supplementary Information Methods Subjects The study was comprised of 84 chronic pain patients with either chronic back pain (CBP) or osteoarthritis

Full ultrasound breast volumes. Faster scans. Streamlined workflow. ACUSON S2000 Automated Breast Volume Scanner. Answers for life.

Improved ultrasound-based navigation for robotic drilling at the lateral skull base

Ultrasound Measurements and Non-destructive Testing Educational Laboratory

An fmri Phantom Based on Electric Field Alignment of Molecular Dipoles

ADVANCED PHASED ARRAY TECHNOLOGIES

The follow-up of uterine fibroids treated with HIFU: role of DWI and Dynamic contrast-study MRI

3/20/2017. Disclosures. Ultrasound Fundamentals. Ultrasound Fundamentals. Bone Anatomy. Tissue Characteristics

High-Sensitivity Coil Array for Head and Neck Imaging: Technical Note

The Physics of Ultrasound. The Physics of Ultrasound. Claus G. Roehrborn. Professor and Chairman. Ultrasound Physics

Non-Destructive Inspection of Composite Wrapped Thick-Wall Cylinders

ULTRASOUND QA SOLUTIONS. Ensure Accurate Screening, Diagnosis and Monitoring DOPPLER FLOW PHANTOMS MULTI-PURPOSE PHANTOMS TRAINING PHANTOMS

Transcription:

JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, VOLUME 3, NUMBER 2, SPRING 2002 A quality control program for MR-guided focused ultrasound ablation therapy Tao Wu* and Joel P. Felmlee Department of Radiology, Mayo Clinic, Rochester, Minnesota 55905 Received 10 October 2001; accepted for publication 1 January 2002 In this study, we propose a quality control program for MR-guided focused ultrasound FUS ablation treatment to assess FUS beam positioning accuracy, FUS power delivery accuracy, MR imaging quality, and FUS ablation system safety. A total of 353 sonication points in Lucite cards were measured, the average placement errors were 0.06 mm in the SI direction and 0.04 mm in the LR direction. Temperature elevation was calculated from MR phase difference images and the measured water proton chemical shift WPCS coefficient. WPCS calibration for phantoms yielded a coefficient of 0.011 ppm/ C. Sixteen experiments were conducted using six different phantoms to test the reliability of FUS power delivery. SNR and RF power calculated from phantom images were analyzed and stored at the MR console. A computer program was developed to integrate the system power delivery and the MR image quality control into one automated process. In the clinical trial at our institution, we expect this quality control program to be carried out before each patient treatment. If measured quality control values exceeds or below the preset values, a system service and retest should be conducted before the treatment. 2002 American College of Medical Physics. DOI: 10.1120/1.1459262 PACS number s : 87.61. c, 87.54. n Key words: quality control, thermal therapy, focused ultrasound, magnetic resonance imaging, thermal ablation INTRODUCTION Focused ultrasound FUS ablation has been proposed as a noninvasive treatment method decades ago, and has been studied experimentally and clinically in various applications. Due in part to the lack of control and monitoring of ultrasound beam during ablation, the procedure has not been widely accepted. The recent developments in MR imaging technique have made it possible to monitor the treatment process in near real time. 1 7 Both ex vivo and in vivo animal studies have shown that it is feasible to coagulate tissue using MR-guided FUS ablation. 3,4,8 10 MR-guided FUS ablation treatment is undergoing clinical trial at several sites in North America and the preliminary results are promising. 11,12 During FUS ablation, highly focused acoustic energy causes rapid elevation in target tissues, i.e., tumors, and results in tissue necrosis in seconds. The goal of the treatment is to completely coagulate target tissue volume and preserve surrounding healthy tissues. Accurate FUS beam positioning and reliable acoustic power delivery are required to achieve this goal. Currently, there is not an established quality control program for FUS ablation treatment. Considering the high- elevation involved in the procedure, and the accuracy and reliability requirement for the procedure, it is crucial to establish a quality control program to assure the safety and effectiveness of this treatment method. In this study, we propose a quality control program for FUS ablation treatment. It includes FUS focus positioning accuracy testing, FUS power delivery testing, MR scanner imaging quality testing, and FUS system safety inspection. 162 1526-9914Õ2002Õ3 2 Õ162Õ6Õ$17.00 2002 Am. Coll. Med. Phys. 162

163 T. Wu and J. P. Felmlee: A quality control program for MR-guided... 163 FIG. 1. Color A diagram of the experiment setup. The water tank is built inside a MR table. The sample in the figure represents the Lucite card or the phantom. When the card was used, it was placed at the focal plane of the focused ultrasound transducer. METHODS A prototype MR-guided FUS ablation system Mark II, TxSonics, Inc., Dallas, TX and a 1.5T MR-imaging system GE Medical Systems, Milwaukee, WI were used in this study. The FUS system employs an eight-element, spherical shell, air-backed phased-array ultrasound transducer. The eight elements were constructed in a sector-vortex fashion; 10,13 each of the elements has a curvature of 80 mm. The transducer has a diameter of 100 mm, a variable focal length from 60 mm to 200 mm, and was operated at a frequency of 1.5 MHz. A. FUS focus positioning accuracy testing FUS focus positioning accuracy was tested in coronal plane using Lucite cards 85 53 0.4 mm. 14 The experiment setup is shown in Fig. 1. The Lucite card was placed in a custom made holder, and water was placed in the interface between the card and the water tank to provide an acoustic path for the ultrasound beam. Multiple sets of melted spot grids were created in the cards by FUS using a treatment planning software program on the FUS workstation. The distance between neighboring spots was set to a specific length in the right-left and in the superior-inferior directions. On each card, the grid was created using 20-W, 3-sec sonications. The actual distance between two neighboring spots in each row left-right axis or column superior-inferior axis was measured using a digital caliper Central Tools Inc., Cranston, Rhode Island on the card. The difference between the prescribed distance and the actual distance was defined as placement error. When the actual distance was larger than the specific length, the error was assigned positive, if the actual distance was smaller, the error was assigned negative. B. FUS power delivery testing Tissue-simulating bovine gelatin phantoms 15% bovine powder, SIGMA Chemical Co., St. Louis, MO were made to test the reliability of the FUS system power delivering. The phantoms were cylinders with 10 cm in diameter and 4 cm in height. Twenty-five percent evaporated milk in volume was added to phantom to increase the absorption of the acoustic energy. 15 Potassium salt SIGMA Chemical Co., St. Louis, MO was added to prevent bacterial invasion. The water proton chemical shift WPCS coefficient calibration of the phantom material was conducted using previous established method. 16 Coronal images of the phantom at the FUS focus were acquired before, during, and after a 15-sec 80-W FUS sonication. The images were obtained using a multiphase 14 phases fast gradient echo sequence with 16 16 cm field of view, 256 160 acquisition matrix, TR 22 ms, TE 10.7 ms, a flip angle 60, and a 5-in. coil. Temperature elevation at the focus was calculated from the resulting phase difference images and measured WPCS coefficient.

164 T. Wu and J. P. Felmlee: A quality control program for MR-guided... 164 FIG. 2. FUS system placement error measurement in the SI direction. The error value is the difference between the prescribed distance and the actual measured distance between neighboring sonication spots. C. MR-image quality control and system inspection To assess MR-image quality with the FUS system at treatment position inside the MR scanner, transmitter gain, center frequency, and the SNR of the phantom images were analyzed. Both the image quality control process and FUS power delivery testing were integrated into one automated computer program. After image acquisition, the program can be executed using a single command line at the MR console. RESULTS A. FUS system positioning accuracy A total of 353 sonication points were measured, the overall average placement error in the superior-inferior SI direction was 0.06 mm with a standard deviation of 0.076 mm. The average error in the left-right direction was 0.04 mm with a standard deviation of 0.062 mm. Figure 2 shows the placement error measurements in SI direction. B. Power delivery testing The WPCS calibration result is shown in Fig. 3. Data points shown are measured phases in a selected region of interest at different. The phase values were converted into PPM in order to adjust to the magnetic field strength and imaging sequence echo time. 16 The FIG. 3. Color WPCS calibration for the phantom.

165 T. Wu and J. P. Felmlee: A quality control program for MR-guided... 165 FIG. 4. Phase difference images of a phantom during FUS sonication. The bright spot shows the phase change caused by FUS sonication. linear regression yielded a coefficient of 0.011 ppm/ C with a standard deviation of 0.0082 ppm/ C. The correlation coefficient of the linear regression was 0.97. Thirty-one experiments were conducted using six different phantoms to test the reliability of FUS power delivery. Figure 4 shows phase difference images of a phantom during one FUS sonication. The bright spot in the phantom indicates the elevation at the FUS focus. From top left to bottom right, these images illustrate the evolution during and after FUS sonication. The average changes at the focus from the 31 experiments are shown in Fig. 5. Sonication began during the acquisition of the third image and ended at seventh image. C. MR image quality control and system inspection Image quality parameters, along with the measurements at FUS focus, were calculated from the phantom images and stored in a text file at MR scanner. Table I shows the test results from two tests. The signal values were determined from the center of the phantom, and the noise values were determined from the four corners air of the images. The base is the average at FUS focus determined from the first two images; the peak is the average determined from the fifth to the eighth images; and the end is the average determined from the last four images. A mean value and a tolerance value for each parameter were determined based on 31 tests. Table II shows these values. FIG. 5. Color The average elevation at FUS focus for 31 tests. The bar shows one standard deviation of the measurement.

166 T. Wu and J. P. Felmlee: A quality control program for MR-guided... 166 TABLE I. Quality control results generated from two tests. Transmit gain Signal Noise SNR Center frequency Base Peak End Study Date 117 295 6.7 43.8 9270 0.93 20.276 9.126 2746 9/22/01 116 286 7.1 40.2 9420 1.199 18.879 9.071 3564 10/3/01 DISCUSSION The FUS focal spot placement accuracy is essential for a successful treatment. Previously, we have measured absolute error as the accuracy of sonication spot placement relative to an anatomical landmark. 14 In this paper, we measured relative error as an indication of placement precision for multiple sonications. Here the placement errors of sonication spots are the differences between the prescribed and actual distances of two neighboring spots. In our current system, the absolute error is measured and corrected during patient treatment. The accuracy data acquired in this study can be used to establish safety guidelines for clinical trials. If the positioning error of the system exceeds 1 mm in any direction, system maintenance and service should be conducted before next patient treatment. A reliable power delivery of the FUS system is crucial for the effectiveness of the treatment and safety of the patient. Through numerous trials, we have constructed a phantom suitable for FUS power delivery testing. This phantom has acoustic properties close to those of human tissue, 15 and is sensitive to heat induced by ultrasound energy. Properly stored, the phantom can be reused for months. In our experiment setup, the average base is 1.03 C, the average peak is 20.75 C, and the average end is 9.27 C. A tolerance range was assigned to each of these values Table II. If the measured value for a test falls beyond the tolerance range, a system warning will be given, and system inspection and retest should be conducted before patient treatment. We expect that the FUS system power delivery test be carried out before each patient treatment in our institution. Tissue during FUS treatment is calculated from MR-phase difference images. MR-image quality should be maintained at high levels to ensure accurate measurement during treatment. Similar to that of measurements, a tolerance range was assigned to each of image quality control parameter Table II. If any measured value of these parameters falls beyond the tolerance range, the automated program will give a system warning for inspection and retesting. We expect MR image quality control procedures be carried out before each patient treatment while the FUS system is in its treatment position. To cover other parts of the FUS ablation treatment system, we have composed a step-by-step treatment workbook with a system inspection list to ensure the proper implementation of system inspection, system quality control, and treatment procedure. In conclusion, we have developed a quality control program for MR-guided FUS ablation therapy. We believe this program is important to assure safety of the patient and effectiveness of the treatment. TABLE II. Tolerance values for the quality control program. The tolerance values are set to be twice the standard deviations for the mean values. Transmit gain Signal Noise SNR Center frequency Base Peak End Mean 118.00 291.24 7.77 39.47 9345.15 1.03 20.75 9.27 Tolerance 7.14 25.49 0.92 6.50 213.49 0.67 3.27 1.74

167 T. Wu and J. P. Felmlee: A quality control program for MR-guided... 167 ACKNOWLEDGMENT The authors thank TxSonics Inc. Dallas, TX for their technical assistance. a Present address: Department of Radiology, Mayo Clinic, Rochester, Minnesota, 55905. *Email address: wu.tao@mayo.edu, jpfelmlee@mayo.edu 1 C. Bohris et al., Quantitative MR monitoring of high-intensity focused ultrasound therapy, Magn. Reson. Imaging 17 4, 603 610 1999. 2 H. E. Cline et al., MR-guided focused ultrasound surgery, J. Comput. Assist. Tomogr. 16 6, 956 965 1992. 3 K. Hynynen, C. A. Damianou, A. Darkazanli et al., The feasibility of using MRI to monitor and guide noninvasive ultrasound surgery, Ultrasound Med. Biol. 19 1, 91 92 1993. 4 K. Hynynen et al., A clinical, noninvasive, MR imaging monitored ultrasound surgery method, Radiographics 16 1, 185 195 1996. 5 H. E. Cline et al., Focused US system for MR imaging-guided tumor ablation, Radiology 194 3, 731 737 1995. 6 N. McDannold et al., MRI evaluation of thermal ablation of tumors with focused ultrasound, J. Magn. Reson. Imaging 8 1, 91 100 1998. 7 R. J. Stafford, J. D. Hazle, and G. H. Glover, Monitoring of high-intensity focused ultrasound-induced changes in vitro using an interleaved spiral acquisition, Magn. Reson. Med. 43 6, 909 912 2000. 8 C. J. Hardy, H. E. Cline, and R. D. Watkins, One-dimensional NMR thermal mapping of focused ultrasound surgery, J. Comput. Assist. Tomogr. 18 3, 476 483 1994. 9 K. Hynynen et al., MR monitoring of focused ultrasonic surgery of renal cortex: Experimental and simulation studies, J. Magn. Reson Imaging 5 3, 259 266 1995. 10 N. J. McDannold et al., Usefulness of MR imaging-derived thermometry and dosimetry in determining the threshold for tissue damage induced by thermal surgery in rabbits, Radiology 216 2, 517 523 2000. 11 M. J. Fenstermacher et al., MR-guided focused ultrasound therapy of breast cancer as a non-invasive potential alternative to surgery Report of the first two cases with gross and histologic pathologic correlation, Radiology 218 2, M07H 2001. 12 K. Hynynen et al., MR imaging-guided focused ultrasound surgery of fibroadenomas in the breast: A feasibility study, Radiology 219 1, 176 185 2001. 13 T. Fjield et al., Design and experimental verification of thin acoustic lenses for the coagulation of large tissue volumes, Phys. Med. Biol. 42 12, 2341 2354 1997. 14 K. R. Kendell et al., MR-guided focused-ultrasound ablation system: Determination of precision and accuracy in preparation for clinical trials, Radiology 209 3, 856 861 1998. 15 E. L. Madsen, G. R. Frank, and F. Dong, Liquid or solid ultrasonically tissue-mimicking materials with very low scatter, Ultrasound Med. Biol. 24 4, 535 542 1998. 16 T. Wu et al., Reliability of water proton chemical shift calibration for focused ultrasound ablation therapy, Med. Phys. 27 1, 221 224 2000.