Short Communication Antioxidant effects of Citrus aurantifolia (Christm) juice and peel extract on LDL oxidation

Similar documents
Status of LDL Oxidation and antioxidant potential of LDL in Type II Diabetes Mellitus

Source Variation in Antioxidant Capacity of Cranberries from Eight U.S. Cultivars

Protein Cleavage Due to Pro-oxidative Activity in Some Spices

Inhibition of Oxidative Modification of Low Density Lipoprotein by Antioxidants. Etsuo NIKI, Noriko NOGUCHI, and Naohiro GOTOH

Depleting Lipoproteins from Serum

EFFECT OF LYCOPENE IN TOMATO SOUP AND TOMATO JUICE ON THE LIPID PROFILE OF HYPERLIPIDEMIC SUBJECTS

New Developments in Health and Nutritional Function Promoted by Chicken Eggs

Antioxidants in food, drinks and supplements for cardiovascular health

Triglyceride determination

CORRELATION BETWEEN LAG TIME OF LDL TO IN VITRO OXIDATION AND IN VIVO OXIDIZED LDL IN THE PATIENTS WITH CORONARY ARTERY DISEASE

PLASMA LIPOPROTEINS AND LIPIDS DETERMINATION OF PLASMA CHOLESTEROL AND TRIGLICERIDE LEVEL

Mid Term Test- Template Questions

BCH 447. Triglyceride Determination in Serum

Downloaded from journal.bums.ac.ir at 23:16 IRST on Saturday February 16th 2019

Flavonoids and Cardiovascular Disease

Antioxidant Activity of the plant Andrographis paniculata (Invitro)

Profiling Flavonoid Isomers in Highly Complex Citrus Juice Samples Using UPLC Ion Mobility Time-of-Flight Mass Spectrometry

TEST REPORT & SPECIFIC INFORMATION

Human Carbamylated LDL ELISA Kit (CBL-LDL Quantitation)

Rapid Gradient and Elevated Temperature UHPLC of Flavonoids in Citrus Fruit

Effect of oral supplementation with D-docopherol on the vitamin E content of human low density lipoproteins and resistance to oxidation1

SUPPLEMENTARY MATERIAL Antiradical and antioxidant activity of flavones from Scutellariae baicalensis radix

In Vitro and In Vivo Lipoprotein Antioxidant Effect of a Citrus Extract and Ascorbic Acid on Normal and Hypercholesterolemic Human Subjects

OxiSelect Human Oxidized LDL ELISA Kit (OxPL-LDL Quantitation)

Sequential Extraction of Plant Metabolites

Phenolic Pigment Extraction from Orange Peels: Kinetic Modeling

Correlation of Serum Lipids and Lipoproteins with Trace Elements in Water Buffalo (Bubalus bubalis)

Preparation and characterization of Aloe vera extract

Phytochemical Analysis and Antioxidant property of Aegle marmelos Extracts

Investigations on the mechanism of hypercholesterolemia observed in copper deficiency in rats

Pharmacologyonline 3: (2009) I VESTIGATIO OF A TIHYPERGLYCEMIC EFFECT OF MORUS IGRA O BLOOD GLUCOSE LEVEL I STREPTOZOTOCI DIABETIC RATS

Flavonoids and their contribution to health: a look at the scientific support

Nutritional and Health Benefits of Pulses: A Chemistry Perspective

Research Article GALLIC ACID AND FLAVONOID ACTIVITIES OF AMARANTHUS GANGETICUS

Bioavailability of Phyto(nutrients) in Orange Juice

Lipid Peroxidation Assay

Estimation of glucose in blood serum

THE EFFECT OF VITAMIN-C THERAPY ON HYPERGLYCEMIA, HYPERLIPIDEMIA AND NON HIGH DENSITY LIPOPROTEIN LEVEL IN TYPE 2 DIABETES

Effects of Diet, Packaging and Irradiation on Protein Oxidation, Lipid Oxidation of Raw Broiler Thigh Meat

Fruits and Vegetables Why More Matters

Elevating Antioxidant Levels in Food Through Organic Farming and Food Processing

A Study on the antioxidation effects and radiation damage tolerance by Lettuce cultivated with EMX. Etsuji Ueda and Teruo Higa

OxiSelect Human Oxidized LDL ELISA Kit (MDA- LDL Quantitation)

Oxidants & Antioxidants in Coronary Heart Disease.

MATERIAL AND METHODS

Folin Ciocalteau Phenolic Content Quantification Assay Kit KB tests (96 well plate)

SUPPLEMENTARY MATERIAL

Choline Assay Kit (Fluorometric)

The effect of anti oxidant drugs on platelet Enzymes

NIS/WW Report 1 1 of 11. Report 1. Testing of Willard s Water for antioxidant capacity and cellular uptake of selected nutrients.

MyBioSource.com. OxiSelect Ferric Reducing Antioxidant Power (FRAP) Assay Kit. Product Manual. Catalog Number

Loras College. Michael T. Wallerich Erin Dahlke Ph.D.

8. OXIDATIVE STRESS IN DIABETICS

Characteristics of Flavonoids in Niihime Fruit - a New Sour Citrus Fruit

Inhibitory effect of cysteine and glycine upon partial purified polyphenol oxidase of Pyrus communis

Title: The effect of temperature on enzymatic browning and how to treat them on fruits, such as, pears, banana and apple.

GSCI 2202 Food product and beverage for health

beneficial in that they lower plasma cholesterol levels (14). In fact, dietary intervention studies have shown that such diets

Analysis of Polyphenoloxidase Enzyme Activity from Potato Extract Biochemistry Lab I (CHEM 4401)

التأثري املضبد لاللتهبة ملستخلصبت قشىر وبذور الزمبن على أرجل فئزان التجبرة

Pharmacologyonline 3: (2009)

AF HDL and LDL/VLDL Assay Kit

The New Gold Standard for Lipoprotein Analysis. Advanced Testing for Cardiovascular Risk

Chapter. Phytochemicals: The Other Food Components. Images shutterstock.com

Introduction. Cell Biology OLM

Nutrition and Health Benefits of Rice Bran Oil. Dr. B. Sesikeran, MD, FAMS Former Director National Institute of Nutrition (ICMR) Hyderabad

Effect of Canning Variables on Physical Biochemical and Microbial Parameters of Peas

International Journal of Research in Pharmacy and Science

Ascorbic Acid Assay Kit

OxiSelect Hydrogen Peroxide Assay Kit (Colorimetric)

ANALYTICAL METHOD DEVELOPMENT FOR CHIRAL SEPARATIONS OF FRUITY FLAVONOIDS USING RP-HPLC WITH IMPROVED SELECTIVITY AND SENSITIVITY

Arsenate Exposure Affects Amino Acids, Mineral Nutrient Status and Antioxidant

Using Scientific Nutrition Research to Reach Millennial Consumers

Iron Chelates and Unwanted Biological Oxidations

Summary. Introduction

International Journal of Research in Pharmacology & Pharmacotherapeutics

J. Nutr. Sci. Vitaminol., 38, , Note. in Tissues

DiscovIR-LC. Application Note 026 May 2008 READING TEA LEAVES SUMMARY INTRODUCTION

THE SAME EFFECT WAS NOT FOUND WITH SPIRITS 3-5 DRINKS OF SPIRITS PER DAY WAS ASSOCIATED WITH INCREASED MORTALITY

Vitamin C Assay Kit. ( DNPH method )

Estimation of Carotenoids, Vitamin C, and Polyphenols in Traditional Okinawan Vegetables

Enhancement of flavonols water solubility by cyclodextrin inclusion complex formation - case study

Phytochemical Introduction

Exploring Food Science What s On Your Plate? Fruits and Vegetables -- Down with Brown Activity 3.1 Glossary

Browning Reactions. Maillard browning. Caramelization high temps. Enzymatic browning. + flavors. brown pigments. + flavors.

Fructose Assay Kit. Catalog Number KA assays Version: 03. Intended for research use only.

Suggested homework problems: 8.8, 8.13, ,

APOB (Human) ELISA Kit

foundation Scholar halee patel oklahoma city, Oklahoma freshman, university of missouri-kansas city final research manuscripts

Effects of Cacao Liquor Polyphenols on the Susceptibility of Low-density Lipoprotein to Oxidation in Hypercholesterolemic Rabbits

9/8/17. Reducing Inflammation + Supporting the Immune System. Module #2 Fighting Inflammation

note on methodology I

C-reactive protein (CRP): Effects and Natural Substances that May Lower CRP

Effects of Methionine and Cystine on the Cholesterol Concentrations in the Serum and Liver of Cholesterol-Fed

Wellness: Concepts and Applications 8 th Edition Anspaugh, Hamrick, Rosato

CHEM104 Exp. 9 Phytochemical Antioxidants with Potential Benefits in Foods Part I. 1

Evaluation of the Protective Effect of Plant Extracts Against Pheophorbide a-induced Photosensitive Damage

OPTIMIZATION OF MICROWAVE-ASSISTED EXTRACTION OF BIOACTIVE COMPOUNDS FROM LEAVES AND STEMS OF THAI WATER SPINACH (Ipomoea aquatic var.

PRODUCTION OF VALUE ADDED PRODUCTS FROM SOME CEREAL MILLING BY-PRODUCTS SAYED SAAD ABOZAIED SMUDA THESIS DOCTOR OF PHILOSOPHY

An advance chemical analysis technique for determination and kinetic study of Ascorbic acid in various samples

Transcription:

Received: 19.2.2011 Accepted: 14.6.2011 Short Communication Antioxidant effects of Citrus aurantifolia (Christm) juice and peel extract on LDL oxidation Maryam Boshtam 1, Jamal Moshtaghian 2, Gholamali Naderi 3, Seddigheh Asgary 4, Hashem Nayeri 5 Abstract BACKGROUND: We studied the antioxidant effects of fresh juice and peel extract of Citrus aurantifolia (Christm). METHODS: Low density lipoprotein (LDL) was separated from one hypercholesterolemic human serum by modified Bronzert and Brewer procedure. Oxidation of LDL was measured at 234 nm against 0, 5, 10, 20, 25, 30 and 40 µl of fresh lime juice and 0, 5, 10, 15 and 20 µl of peel polyphenolic extract solution in DMSO. RESULTS: 5 µl of lime juice didn't change LDL oxidation. 10 µl of juice inhibited LDL oxidation, and with increasing the juice concentration, LDL was oxidized faster. The higher concentrations of peel extract prevented LDL oxidation better than the lower ones. CONCLUSIONS: Both juice and peel demonstrated antioxidant properties, but the excessive consumption of lime juice seems not to be beneficial. Regarding the intensity and type of flavonoids, lime juice and peel may show different effects. KEYWORDS: Antioxidant, Citrus Aurantifolia (Christm), Juice, LDL Oxidation, Peel. J Res Med Sci 2011; 16(7): 951-955 T here are strong evidence that oxidative modification of low density lipoprotein (LDL) plays an important role in initiating vascular inflammation and atherosclerosis lesion formation. 1-3 The results of some researches suggest that a diet rich in vegetables and fruits may alter the atherogenicity of LDL particle 4 and protect its oxidation. 5 It has been found that this effect of fruits is attributable to antioxidants like vitamins and phenolic phytochemicals. 6 Citrus family is a large group of fruits which contains various bio functional nutrients as flavonoids, carotenoids and ascorbic acid. 7 One of the members of this group is lime fruit that has various species which is found in some countries like India, China and etc. Citrus aurantifolia (Christm) is the most widespread significant cropped and consumed lime species in Iran. This fruit which is found as a healthy fruit for a long time has antioxidative activity. 8 Although beneficial effects of the existing flavonoids in some types of fruits have been studied till now, the effects of whole fresh juice and also peel extract of Iranian species have not been examined on oxidation of LDL in vitro. Therefore, we decided to study antioxidant effects of fresh juice and peel extract of this type of lime fruit. 1- Isfahan Cardiovascular Research Center, Isfahan Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran. 2- Assistant Professor, Biology Department, Science Faculty, University of Isfahan, Isfahan, Iran. 3- Associate Professor, Isfahan Cardiovascular Research Center, Isfahan Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran. 4- Professor, Applied Physiology Research Center, Isfahan University of Medical Sciences, Isfahan, Iran. 5- Assistant Professor, Department of Biochemistry, Islamic Azad University Falavarjan Branch, Falavarjan, Isfahan, Iran. Corresponding Author: Maryam Boshtam E-mail: maryamboshtam@gmail.com J Res Med Sci / July 2011; Vol 16, No 7. 951

Methods Fruits of Citrus aurantifolia (Christm) were collected from gardens near the Shiraz city, Fars province, Iran in summer of 2008, and identified by a botanist at the Biology Department, Science Faculty of Isfahan University, Isfahan, Iran. A voucher specimen (5527) was deposited at the Herbarium of the Isfahan University. The whole peal of fruits was dried at room, pulverized and polyphenolic extract was prepared. LDL was separated from one human serum sample by a double step density gradient ultracentrifugation by modificated Bronzert and Brewer method. 9 At first step (VLDL separation) a discontinued gradient was formed from bottom to top with 6 ml of serum and 3 ml of 1.006 g/cm3 solution A. The centrifugation was carried out in a Beckman Coulter 90Ti rotor in a Beckman Optimal X-100 ultracentrifuge at 60000 rpm 10h at 16ºC. Immediately after centrifugation, the LDL fraction was collected, and dialyzed for 24 h at 4ºC in dark place against 0.01 mol/l phosphate buffered saline (PBS) buffer. The buffer was changed three times during the dialysis period and purified LDL was stored at -80ºC. Protein concentration of the LDL sample was determined by Lowry method. 10 The separated LDL sample was used for studying antioxidant effects of both juice and peel extract, and oxidation process was done in completely similar status. 10 µ l LDL (protein concentration of 150 µ g/ml) was diluted in 827 µ l PBS buffer. Then, after adding 250 µ l CuSO4 solution (5 µ M), oxidation of LDL was started. Oxidation was followed by measuring the absorption of conjugated dienes at 234 nm at 10- min intervals for nearly 500 minutes at 37ºC in a Shimadzu UV/VIS spectrophotometer. LDL oxidation was measured against 0, 5, 10, 20, 25, 30 and 40 µ l of fresh lime juice and 0, 5, 10, 15 and 20 µ l of peel poly phenolic extract in DMSO solution (Stock solution : 3.4 mg/ml). The juice and extract used were filtered with 0.45 µ m syringe filter (Orange Scientific No. 1520014). Results The study results are presented in Figures 1 and 2 (oxidation curves). The LDL oxidation didn't change using 5 µ l fresh lime juice (Figure 1). But, 10 µ l of juice inhibited LDL oxidation, and after increasing lime juice concentration, LDL was oxidized faster and lag time of oxidation curve was shorter. According to Figure 2, peel extract inhibited LDL oxidation with increasing the concentration. The higher concentration of peel extract prevented LDL oxidation better than lower ones and lag time of oxidation curve became higher. Figure 1. Effect of different concentrations of fresh lime juice on LDL oxidation 952 J Res Med Sci / July 2011; Vol 16, No 7.

Figure 2. Effect of different concentrations of lime peel extract on LDL oxidation J Res Med Sci / July 2011; Vol 16, No 7. 953 Discussion In this study it is found that the peel and fresh juice of lime have different effects on LDL oxidation. The low concentration of lime juice (5 l) did not show considerable effect on LDL oxidation, in vitro. But, antioxidant activity of lime juice was observed only after applying increased concentration of 10 µ l with LDL oxidative inhibition. Beyond this concentration, LDL oxidation was decreased. Therefore, it was demonstrated that peak stimulation for lime juice is 10 µ l for 150 µg/ml LDL. Additionally, oxidation curve is a proof for a doseindependent response of antioxidant effect found for the lime juice. It reflects that flavonoids composition and other component of lime juice do not show similar effects. Regarding the extract, the peak stimulation was 20 µ l (158 mg/ml of stock extract) with antioxidant activity to inhibit LDL oxidation. Comparing the two figures, it seems that flavonoids contents of the extract show their expected and natural effects but some or all flavonoids in lime juice reveal inverted-u response. Regarding the intensity and type, lime juice and peel appear to include flavonoids with different effects in this study. Results of several studies on the antioxidant effects of flavonoids have controversies [11]. For instance, naringin, one of the flavonoids in lime juice, showed the chemo-preventive effect in an experiment and has proved mild anti-oxidative effects on lipid peroxidation in another study. 2 On the other hand, although in some reports, an antioxidant effect has been demonstrated for this flavonoid, flavonoids containing phenol B rings, such as naringin, hesperidin, and apigenin have been implicated in the initiation of atherosclerosis and carcinogenesis. 12 Moreover, these flavonoids act as independent pro-oxidants in autoxidation reactions catalyzed by transition metal. 2 Also, it should be noted that aglycones of some flavonoids like naringin and hesperidin have less antiperoxidative potential compared to their corresponding aglycones. 13 In addition, a study has reported a weak antiperoxidative capacity for naringin when no decrease was observed in plasma and hepatic TBARS levels after its supplementation with a highcholesterol diet. 2 As mentioned before, flavonoids showed different antioxidant effects. For example, a research in Japan showed that tea flavonoids reduced oxidizability of LDL in vitro and in vivo. 14 Vitamin C is another effective component in lime juice. 15 It is a predominant reducing agent known to act as an antioxidant in vitro and in vivo. 16 Vitamin C protects human plasma lipids and LDL against peroxidative damage induced by various types of oxi

dants. 3 Compared to other endogenous antioxidants in plasma like vitamin E which is soluble in human lipids, this vitamin inhibits lipid peroxidation. 17-20 So, the inverted-u dose response for lime juice maybe related to the simultaneous effect of vitamin C together with some or all flavonoids in lime juice or inversely, they may dilute an intensive inverted-u dose response in one of its components. Perhaps, this response is attributable to some unknown effective components in limes cultivated in Iran, different from ones cited so far, or this property might belong to 5000 trace plant flavonoids have not been determined till now. The found effect was obtained with fresh hand-squeezed lime juice applied immediately. This is aligned with the 50 percent-decreased effects for the industrially processed juices compared to the handsqueezed ones other studies reported. 15 The results obtained from the extracts are logic. It seems that all flavonoids in the extract have antioxidant role and increasing their concentrations causes antioxidant role to be elevated. Conclusion We concluded that in contrast to lime peel, the excessive consumption of lime juice is not only beneficial but also harmful due to an inverted- U dose response and only intermediate effective concentration showed antioxidant effect. Therefore, the recommendation for consumption of this fruit especially its peel seems useful for all people but in vivo human studies are needed for any dietary recommendation. Acknowledgement This work was extracted from a research project number 85132, which has been approved and funded by Cardiovascular Research Center of Isfahan University of Medical Sciences, Isfahan, Iran. We would like to thank Prof. Nizal Sarrafzadegan and Dr. Ahmad Bahonar director and manager of the center, respectively; and also Miss Narges Jafari and other colleagues who supported us. Conflict of Interests Authors have no conflict of interests. Authors' Contributions MB was the coordinator of the study, analyzed the data and prepared the manuscript. JM and GhN have assisted in designing the study, coordinated all the experiments and participated in preparing the manuscript. SA and HN provided assistance in the study design and participated in preparing the manuscript. References 1. Steinberg D, Parthasarathy S, Carew TE, Khoo JC, Witztum JL. Beyond cholesterol. Modifications of low-density lipoprotein that increase its atherogenicity. N Engl J Med 1989; 320(14): 915-24. 2. Jeon SM, Bok SH, Jang MK, Lee MK, Nam KT, Park YB, et al. Antioxidative activity of naringin and lovastatin in high cholesterol-fed rabbits. Life Sci 2001; 69(24): 2855-66. 3. Retsky KL, Freeman MW, Frei B. Ascorbic acid oxidation product(s) protect human low density lipoprotein against atherogenic modification. Anti- rather than pro-oxidant activity of vitamin C in the presence of transition metal ions. J Biol Chem 1993; 268(2): 1304-9. 4. Mojzisova G, Kuchta M. Dietary flavonoids and risk of coronary heart disease. Physiol Res 2001; 50(6): 529-35. 5. Miyake Y, Sakurai C, Usuda M, Fukumoto S, Hiramitsu M, Sakaida K, et al. Difference in plasma metabolite concentration after ingestion of lemon flavonoids and their aglycones in humans. J Nutr Sci Vitaminol (Tokyo) 2006; 52(1): 54-60. 6. Kamata K, Kobayashi T, Matsumoto T, Kanie N, Oda S, Kaneda A, et al. Effects of chronic administration of fruit extract (Citrus unshiu Marc) on endothelial dysfunction in streptozotocin-induced diabetic rats. Biol Pharm Bull 2005; 28(2): 267-70. 954 J Res Med Sci / July 2011; Vol 16, No 7.

7. Sinclair WB. Some soluble and insoluble constituents of citrus fruits. In: Sinclair WB, Editor. The biochemistry and physiology of the lemon and other citrus fruits. California: University of California, Division of Agriculture and Natural Resources; 1984. p. 79-82. 8. MiyakeY, Yamamoto K, Osawa T. Isolation of eriocitrin (eriodictyol 7-rutinoside) from lemon fruit (Citrus limon BURM. f.) and its anti-oxidative activity. Food Sci Technol Int 1997; 3: 84-9. 9. Bronzert TJ, Brewer HB, Jr. New micromethod for measuring cholesterol in plasma lipoprotein fractions. Clin Chem 1977; 23(11): 2089-98. 10. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem 1951; 193(1): 265-75. 11. Hooper L, Kroon PA, Rimm EB, Cohn JS, Harvey I, Le Cornu KA, et al. Flavonoids, flavonoid-rich foods, and cardiovascular risk: a meta-analysis of randomized controlled trials. Am J Clin Nutr 2008; 88(1): 38-50. 12. Chan T, Galati G, O'Brien PJ. Oxygen activation during peroxidase catalysed metabolism of flavones or flavanones. Chem Biol Interact 1999; 122(1): 15-25. 13. Ratty AK, Das NP. Effects of flavonoids on non-enzymatic lipid peroxidation: structure-activity relationship. Biochem Med Metab Biol 1988; 39(1): 69-79. 14. Ishikawa T, Suzukawa M, Ito T, Yoshida H, Ayaori M, Nishiwaki M, et al. Effect of tea flavonoid supplementation on the susceptibility of low-density lipoprotein to oxidative modification. Am J Clin Nutr 1997; 66(2): 261-6. 15. Gattuso G, Barreca D, Gargiulli C, Leuzzi U, Caristi C. Flavonoid composition of Citrus juices. Molecules 2007; 12(8): 1641-73. 16. Bendich A, Machlina LJ, Scandurraa O, Burtonb OG, Wayner DD. The antioxidant role of vitamin C. Advances in Free Radical Biology & Medicine 1986; 2(2): 419-44. 17. Steinbrecher UP. Role of superoxide in endothelial-cell modification of low-density lipoproteins. Biochim Biophys Acta 1988; 959(1): 20-30. 18. Esterbauer H, Striegl G, Puhl H, Oberreither S, Rotheneder M, El Saadani M, et al. The role of vitamin E and carotenoids in preventing oxidation of low density lipoproteins. Ann N Y Acad Sci 1989; 570: 254-67. 19. Jialal I, Vega GL, Grundy SM. Physiologic levels of ascorbate inhibit the oxidative modification of low density lipoprotein. Atherosclerosis 1990; 82(3): 185-91. 20. Jialal I, Grundy SM. Preservation of the endogenous antioxidants in low density lipoprotein by ascorbate but not probucol during oxidative modification. J Clin Invest 1991; 87(2): 597-601. J Res Med Sci / July 2011; Vol 16, No 7. 955