Research Article An Assessment of Antibacterial Activity of Four Endodontic Sealers on Enterococcusfaecalis by a Direct Contact Test:AnInVitroStudy

Similar documents
In-vitro antimicrobial evaluation of Endodontic cavity sealers against Enterococcus faecalis

The antibacterial activity of three endodontic sealers against Enterococcus faecalis in vitro

Remaining dentin thickness Shallow cavity depth Preparation 0.5 mm into dentin (ideal depth) Moderate cavity depth Remaining dentin over pulp of at le

Best Practice of in vitro Methods on Measuring Anti Microbial of Chemical Substance on Root Canal Treatment: Literature Review

Case Report Typical Radiographic Findings of Dentin Dysplasia Type 1b with Dental Fluorosis

Influence of calcium hydroxide as an intracanal medicament on apical leakage following obturation using three different sealers

Case Report Treatment of Two Canals in All Mandibular Incisor Teeth in the Same Patient

Case Report Endodontic Treatment of Bilateral Maxillary First Premolars with Three Roots Using CBCT: A Case Report

Histological Periapical Repair after Obturation of Infected Root Canals in Dogs

Comparison of White MTA And Grey MTA in the Apical Sealing Ability of Lased And Unlased Root Canal Walls - A Pilot Study

BioRoot RCS, a reliable bioceramic material for root canal obturation Jenner O. Argueta D.D.S. M.Sc.

THE ANTIMICROBIAL EFFICACY OF NANOSILVER MODIFIED ROOT CANAL SEALER

agents in pulpal and periapical disease.


Operative dentistry. Lec: 10. Zinc oxide eugenol (ZOE):

Review of literature Single Visit versus Multiple Visit Root Canal Therapy

EGYPTIAN DENTAL JOURNAL

Received on Accepted on:

Corresponding Author:Dr.Sneha Vaidya 3

Pulpal Protection: bases, liners, sealers, caries control Module A: Basic Concepts

Case Report Root Canal Treatment of Mandibular Second Premolar with Three Separate Roots and Canals Using Spiral Computed Tomographic

Case Report Endodontic Management of Maxillary Second Molar with Two Palatal Roots: A Report of Two Cases

September 19. Title: In vitro antibacterial activity of different endodontic irrigants. Author: Claudia Poggio et al.

In vitro evaluation of the antibacterial activity of cured dentin/enamel adhesive incorporating the antimicrobial agent MDPB

Original Research. Efficacy of endodontic sealers with antibiotics against E. Faecalis...Sharma D et al

Antimicrobial effect of calcium hydroxide as an intracanal medicament in root canal treatment: a literature review - Part II.

Treatment Outcomes in Endodontics

In vitro antibacterial activity of oligomer-based and calcium silicate-based root canal sealers

ENDODONTOLOGY. Editor: Larz S. W. Spångberg

Journal of Dental & Oro-facial Research Vol. 14 Issue 01 Jan. 2018

Microleakage of Root Canal Sealed with Temporary Endodontic Sealing Materials

TO EVALUATE THE ANTIBACTERIAL PROPERTIES OF SILVER NANO PARTICLE BASED IRRIGANT AS ENDODONTIC ROOT CANAL IRRIGANT

Page 164. Jasveen kaur sethi 1, Kavita dube 2, Shiv P Mantri 3, Bonny Paul 2.

Microbes and microbial products are the main etiologic factors of pulpitis and

CONTENTS. Endodontic therapy Permanent open apex teeth Intracanal Medication. A. Introduction I. Problems II. III. IV. B. Research C.

Smear layer removal evaluation of different protocol of Bio Race file and XPendo Finisher file in corporation with EDTA 17% and NaOCl

Case Report Four-Rooted Mandibular First Molar with an Unusual Developmental Root Fusion Line: A Case Report

SCIENTIFIC INFORMATION. On the Gold Standard in Root Canal Sealer Materials SEALED. EFFECTIVE. PROVEN.

Endodontic Microbiology

It has been well established that apical periodontitis is caused by bacteria within the

Case Report Management of Complex Root Canal Curvature of Bilateral Radix Entomolaris: Three-Dimensional Analysis with Cone Beam Computed Tomography

Coronal and apical leakage analysis of two different root canal obturation systems

EVALUATION OF SINGLE AND MULTIPLE VISIT ROOT CANAL THERAPY: A RANDOMIZED CLINICAL CASES

Endodontics: All You Need to Know

Research Article Evaluation of Manual and Two-Rotary Niti Retreatment Systems in Removing Gutta-Percha Obturated with Two Root Canal Sealers

Case Report Marfan Syndrome: A Case Report

Antimicrobial effects of Apexit Plus, Epiphany, MTA Fillapex and Dorifill sealers on Enterococcus faecalis at different time intervals

ENDODONTOLOGY. Evaluation of the effect of chlorhexidine gluconate as an endodontic irrigant on the apical seal - An in vitro study INTRODUCTION

Pediatric endodontics. Diagnosis, Direct and Indirect pulp capping DR.SHANKAR

THE INTERFACE OF GLASS IONOMER SEALER AND CONDITIONED ELEPHANT TUSK DENTINE: A SCANNING ELECTRON MICROSCOPY STUDY

Microorganisms play an important role in the development of pulpal and periapical

Comparative Efficacy Of Endodontic Medicaments Against Enterococcus Faecalis Biofilms

EFFECT OF SODIUM HYPOCHLORITE

PROPAEDEUTICS OF CONSERVATIVE DENTISTRY

Microbiolgical analysis of root canal flora of failed pulpectomy in primary teeth

Totalfill putty in action

GUIDELINES FOR THE MANAGEMENT OF TRAUMATISED INCISORS

The antibacterial effects of lasers in endodontics

CLINICAL AND RADIOGRAPHIC EVALUATION OF DIRECT PULP CAPPING PROCEDURES PERFORMED BY POSTGRADUATE STUDENTS

Removal efficiency of propolis paste dressing from the root canal

Microsurgical Management for Correction of Procedure Error in the Phase of Apical Mechanical Preparation in Endodontics: Apical Transport.

stabilisation and surface protection

Intraosseous Injection of Clindamycin Phosphate Into the Chronic Apical Lesion of Lower Molar - a Case Report

Dental material for filling the root canals "AUREOSEAL M.T.A."

Treatment Options for the Compromised Tooth

Non-Surgical Endodontic Retreatment after Unsuccessful Apicectomy: A Case Report

Field Guide to the Ultrasonic Revolution

Original Research. Materials and Methods Test materials used: Regular GP (RGP). (Dentsply, Maillefer)

MTA PULPOTOMY ASSOCIATED APEXOGENESIS OF HUMAN PERMANENT MOLAR WITH IRREVERSIBLE PULPITIS: A CASE REPORT

An in vitro comparative study on the antimicrobial effects of bioglass 45S5 vs. calcium hydroxide on Enterococcus faecalis

A comparison of chlorhexidine release rate from three polymeric controlled release drug prototypes

ENDODONTOLOGY. An in-vitro evaluation of apical sealing of three epoxy resin based commercial preparations INTRODUCTION MATERIALS AND METHODS ABSTRACT

The Adhesion of Streptococcus sa/ivarius and Staphylococcus aureus to Five Dental Composite Resins

Endodontics is the prevention or elimination of

Determination of the minimum inhibitory concentration of four medicaments used as intracanal medication

ENDODONTOLOGY. Introduction. Original Research ABSTRACT

Limitation of contemporary Endodontic treatment

5/8/2012. Endodontics. Root Canal Preparation Root Canal Filling. Coronal Access. Isolation. Follow-up. Diagnosis

Eradication or at least reduction of the microbial burden in the root canal system has

Med. J. Cairo Univ., Vol. 84, No. 2, March: , 2016

Principles of diagnosis in Endodontics. Pain History. Patient Assessment. Examination. Examination 11/07/2014

Knowledge attitude and practice regarding obturation materials on primary teeth

The Endodontics Introduction. By: Thulficar Al-Khafaji BDS, MSC, PhD

Clinical Study Apical Dimension of Root Canal Clinically Assessed with and without Periapical Lesions

Original Research. Journal of International Oral Health 2014; 6(4):12-17

1980 Harrison and Todd. The effect of root resection on the sealing property of root canal obturations.

Abstract. Received March 12, 2002 Revision Accepted July 16, 2002

Primary Tooth Vital Pulp Therapy By: Aman Bhojani

Infection and microleakage the caused of endodontic failure

In vitro evaluation of root canals obturated with four different techniques. Part 3: Obturation of lateral canals

Management of Internal Resorption with Perforation

RESTORATIVE MATERIALS

Evaluation of time-dependent antimicrobial effect of sodium dichloroisocyanurate (NaDCC) on Enterococcus faecalis in the root canal

/jp-journals An in vitro Study to Compare the Effectiveness of F-file with Ultrasonically Activated K-file to Remove Smear Layer

Original Research Article DOI: / Indian Journal of Conservative and Endodontics, October-December, 2017; 2(4):

In vitro evaluation of root canal preparation with plastic endodontic rotary finishing file - A SEM study

MISSED LINGUAL CANAL IN ALL MANDIBULAR INCISORS AS A CAUSE OF ENDODONTIC FAILURE: A CASE REPORT

Periapical status and quality of root fillings and coronal restorations in a Danish population

Inhibition of Enterococcus faecalis by Calcium Peroxide

Transcription:

International Scholarly Research Network ISRN Dentistry Volume 2012, Article ID 989781, 5 pages doi:10.5402/2012/989781 Research Article An Assessment of Antibacterial Activity of Four Endodontic Sealers on Enterococcusfaecalis by a Direct Contact Test:AnInVitroStudy Lavanya Anumula, 1 Swaroop Kumar, 2 Venkata Suneel Kumar, 3 Chandra Sekhar, 1 Murali Krishna, 4 Rama Mohan Pathapati, 5 Prathi Venkata Sarath, 3 Yamini Vadaganadam, 6 Rakesh Kumar Manne, 3 and Srinath Mudlapudi 7 1 Department of Conservative Dentistry and Endodontics, RIMS Government Dental College, Andhra Pradesh, Kadapa 516004, India 2 Department of Conservative Dentistry and Endodontics, Narayana Dental College and Hospital, Andhra Pradesh, Nellore 524003, India 3 Department of Oral Medicine & Radiology, Narayana Dental College and Hospital, Andhra Pradesh, Nellore 524002, India 4 Department of Conservative Dentistry & Endodontics, KLR s Lenora Institute of Dental Sciences, Andhra Pradesh, Rajahmundry 533101, India 5 Department of Pharmacology, Narayana Medical College and Hospital, Andhra Pradesh, Nellore 524002, India 6 Department of Pedodontics, Narayana Dental College and Hospital, Andhra Pradesh, Nellore 524002, India 7 Department of Orthodontics, Narayana Dental College and Hospital, Andhra Pradesh, Nellore 524002, India Correspondence should be addressed to Lavanya Anumula, lavanyamds@gmail.com Received 15 April 2012; Accepted 29 May 2012 Academic Editors: D. Schwartz-Arad and M. Tanomaru-Filho Copyright 2012 Lavanya Anumula et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Aim. To evaluate the antibacterial activity of four endodontic sealers on Enterococcus faecalis by a direct contact test. Material and Methods. Enterococcus faecalis was used as a test organism. Direct contact test which is based on measuring the effect of close contact between test bacteria and tested material on the kinetics of bacterial growth was performed to overcome the disadvantages of agar diffusion test. The sealers tested were zinc oxide eugenol-based sealer, glass-ionomer-based sealer, polydimethyl-siloxane-based sealer, and urethane dimethacrylate resin-based sealer. Data was collected by recording the optical density with the help of a spectrophotometer. Results. The sealers exhibited different inhibitory effects. The results obtained were subjected to statistical analysis by Kruskal Wallis analysis of variance and Dunn s multiple comparison test. Group comparison showed very highly significant difference between the groups. Conclusion. Zinc oxide eugenol-based sealer was the most effective and urethane dimethacrylate resin-based sealer was the least effective against Enterococcus faecalis, whereas glass-ionomer-based and polydimethyl-siloxane-based sealers were effective only for a short period. Inhibition of the bacterial growth is related to the direct contact of the microorganism with the sealer. 1. Introduction Bacteria or their byproducts are considered to be the primary etiological agents of pulpal necrosis and periapical lesions [1]. The main objective of endodontic therapy is therefore to eliminate bacteria from the infected root canal [2]. The majority of the bacteria found in the root canal system may be eliminated by the biomechanical cleaning and shaping of the root canal space. Failure of the root canal treatment is the result of microorganisms persisting in the apical portion of the root canal system, even in welltreatedteeth [3] due to the anatomical complexities of many root canals, such as dentinal tubules, ramifications, deltas, and fins which cannot be sufficiently cleaned, even after meticulous mechanical procedures. Enterococcus faecalis is a recalcitrant candidate among the many causative agents of failed endodontic treatment [4]. 38% of the failed root canal systems were contaminated with

2 ISRN Dentistry A well Microtitre well BHI broth Sealer Bacterial inoculum B well-15 µl of A well broth + fresh broth in absence of sealer Figure 1: Schematic representation of DCT. Enterococcus faecalis [5]. Chronic failure of an endodontically treated tooth is due to ability of E. faecalis to bind to the collagen of the dentinal tubule and remain viable within the tubules [6]. These microorganisms have the ability to grow even in a low-nutrient environment and can survive in the root canals as a monoinfection [7]. Eradication of E. faecalis from the root canal with chemomechanical preparation using disinfecting irrigants and antibacterial dressings is difficult. Most currently used root canal obturating materials do not possess a long-lasting perfect seal with the root canal wall. Microleakage remains a clinical problem and a possible cause of failure of endodontic therapy [8]. The use of sealers with antibacterial properties may be advantageous especially in clinical situations of persistent or recurrent infection [9]. The endodontic sealers have been shown to offer the greatest antimicrobial effects immediately after spatulation, following which there will be a gradual loss of antimicrobial effects over time [10]. The antibacterial property of the newly introduced resin-based sealers, polydimethyl-siloxane-based (Gutta Flow), and urethane dimethacrylate resin-based sealer, (Endo Rez) is questioned. The agar diffusion test is the most commonly used technique to assess antibacterial activity of sealers. But it has many limitations as it is dependent on diffusion and physical properties of tested materials. Direct contact test was developed by Weiss et al. [10]. The antibacterial activity of the endodontic sealers can be evaluated by measuring the kinetics of bacterial growth [11]. Even insoluble materials can be tested with this quantitative assay. To this purpose, we evaluated the in vitro antimicrobial activity of four endodontic sealers (zinc oxide eugenol sealer, Ketac Endo Applicap, Gutta Flow, and Endo Rez) on Enterococcus faecalis by direct contact test. 2. Material and Methods In our study, we used the Enterococcus faecalis (ATCC 35550) strain which was grown aerobically on frozen stock cultures of brain heart infusion (BHI) broth at 37 C. Cells were harvested by centrifugation and resuspended in fresh medium. Inoculum was prepared by the resuspension of washed cells to predetermined optical densities which relate to known concentrations. The tested materials were categorized as follows. Group I: zinc oxide eugenol sealer (DPI). Group II: glass ionomer sealer (Ketac Endo Applicap). Group III: polydimethyl siloxane based (Gutta Flow). Group IV: resin based (Endo Rez). Group V: control-bacterial suspension in the absence of sealer. The sealers were prepared in strict compliance with the manufacturers recommendation. 2.1. Direct Contact Test (DCT) (Figure 1). The direct contact test, a turbidometric determination of bacterial growth kinetics, was monitored in each well every 30 min for 16 hours using a spectrophotometer (Stat fax 2100 reader M/s Awareness Technology, Inc., USA) at 600 nm at 37 C. 96 wells of a microtitre plate were used out of which 8 wells were utilized per sealer of which 4 were designated as A wells (with the sealer) and the other 4 as B wells (without the sealer). The A wells were held vertically, that is, the plate s surface was maintained perpendicular to the floor plane and the side wall was coated with freshly mixed tested material. Even and thin coating was achieved by using a small size round ended dental instrument, such as a cavity liner applicator. Special care was taken to avoid the material s flow to the bottom of the well, which would interfere with the path of light through the microplate well and result in false readings. After 20 min, a 10 µl bacterial suspension containing 10 6 bacteria was placed on the test material. The plate was held in a vertical position, and wells were inspected for evaporation of the suspension s

ISRN Dentistry 3 0.7 Direct contact test of endodontic sealer in A wells 0.7 Direct contact test of endodontic sealers in B wells 0.6 0.6 Optical density 0.5 0.4 Optical density 0.5 0.4 0.3 0.3 0.2 0:00 0:30 1:00 1:30 2:00 2:30 3:00 3:30 4:00 4:30 5:00 5:30 6:00 6:30 7:00 7:30 8:00 8:30 9:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00 Group I (ZnOE) Group II (Ketac Endo) Group III (Gutta Flow) Time Group IV (resin) Group V (control) Figure 2: Direct contact test of endodontic sealer in A wells. liquid, which occurred within 1 hr at 37 C. This ensured direct contact between bacteria and tested material. Brain heart infusion broth (245 µl) was added to each of these A wells and gently mixed for 2 min. 15 µl of broth was then transferred from A wells to an adjacent set of B wells containing fresh medium (215 µl). This resulted in two sets of 4 wells for each tested material containing an equal volume of liquid medium so that bacterial out growth could be monitored both in the presence and in the absence of the tested material. Following the outgrowth of the microorganism in the presence of the tested material (Group A wells) is equivalent to measuring both the direct contact effect and the effect of those components which are capable of diffusing into the liquid medium, whereas following bacterial growth in the absence of the tested materials (Group B wells) measures the effect of the direct contact incubation period only. 4 uncoated wells in the same microtiter plate served as positive control, that is, identical bacterial inoculums were placed on the side wall of the uncoated wells and processed as the experimental A and B wells. The whole experiment was carried out under aseptic conditions and was repeated six times to ensure reproducibility. 3. Statistical Analysis Data were recorded then plotted and statistically analyzed using Kruskal Wallis test followed by Dunn s post hoc analysis. 4. Results The results of the direct contact test of endodontic sealers for the time period of 16 hours are shown in Figures 2 and 3. Each point on the growth curve is the average 0.2 0:00 1:00 2:00 3:00 4:00 5:00 6:00 7:00 8:00 9:00 11:00 13:00 15:00 Time Group I (zinc oxide eugenol sealer) Group IV (Endo Rez) Group II (Ketac Endo Applicap) Group V (control) Group III (Gutta Flow) Figure 3: Direct contact test of endodontic sealers in B wells. Table 1: Showing bacterial kinetics (mean optical density). Groups Well A Well B Group I (ZnOE) 0.30 ± 0.01 0.31 ± 0.01 Group II (Ketac Endo) 0.37 ± 0.04 0.41 ± 0.06 Group III (Gutta Flow) 0.46 ± 0.08 0.49 ± 0.08 Group IV (resin) 0.49 ± 0.07 0.49 ± 0.08 Group V (control) 0.49 ± 0.07 0.50 ± 0.09 of optical density measurements in 4 wells at any given time (0 16 hrs). In both wells, Group I showed constant and complete inhibition of the bacterial growth throughout the incubation period, Group II showed inhibition of the bacteria in the first 10 hours and slowly decreased in efficiency, Group III inhibited bacteria only in the first 3 hours followed by a brisk decrease only in A wells where as in B wells there was no inhibition of bacterial growth, Group IV did not show any antibacterial activity, and Group V showed continuous growth of microorganism. The mean and standard deviations of OD of all 0 16 time points were shown in Table 1. The intergroup comparisons between groups for both A and B wells were shown in Table 2. Itcanbenoticed that on comparison to control group in both A and B wells, Group I and Group II showed significant difference in overall bacterial kinetics. However, such a difference was not observed with Groups III and IV. 5. Discussion The golden rule in the practice of endodontology is to debride and obturate the canals as efficiently and three dimensionally as possible and to prevent subsequent reinfection. However, part of the root canal space often

4 ISRN Dentistry Table 2: Showing intergroup statistical significance of bacterial growth kinetics. Dunn s multiple comparison test A wells B wells Group I (ZnOE) versus Group II (Ketac Endo) P<0.01 P<0.001 Group I (ZnOE) versus Group III (Gutta Flow) P<0.001 P<0.001 Group I (ZnOE) versus Group IV (resin) P<0.001 P<0.001 Group I (ZnOE) versus Group V (control) P<0.001 P<0.001 Group II (Ketac Endo) versus Group III (Gutta Flow) P<0.05 P>0.05 Group II (Ketac Endo) versus Group IV (resin) P<0.001 P<0.05 Group II (Ketac Endo) versus Group V (control) P<0.001 P<0.05 Group III (Gutta Flow) versus Group IV (resin) P>0.05 P>0.05 Group III (Gutta Flow) versus Group V (control) P>0.05 P>0.05 Group IV (resin) versus Group V (control) P>0.05 P>0.05 remains untouched during chemomechanical preparation regardless of the technique and instruments employed [12, 13]. Obturating the root canal system using a sealer with antibacterial properties may be advantageous especially in clinical situations of persistent or recurrent infections [9]. These antibacterial effects of sealers may explain the minute difference in the success rate of root canal treatment completed in one or more appointments [14, 15]. Most important requirements of sealers are biocompatibility, excellent seal, adequate adhesion, and antimicrobial property. Rappaport, 1964, stressed on the fact that the ideal root canal cement should be bactericidal [16]. In this study, direct contact test (DCT) has been used to assess the antibacterial activity which has many advantages over agar diffusion test [10, 11, 17]. The present study utilizes and proves direct contact test as an appropriate method of testing antimicrobial activity as in accordance with other studies [11, 17 19]. Zinc oxide eugenol has a long time record and is utilized as a standard sealer which has shown the maximum antibacterial activity [20 22]. In this study the antibacterial activity glass-ionomer-based, urethane dimethacrylate resin-based, and polydimethyl-siloxane-based sealers were evaluated and compared. In our study, also zinc oxide eugenol sealer showed a complete inhibition of the bacterial growth throughout the incubation period. Ketac Endo Applicap (glass-ionomer-based sealer) demonstrated a lower antibacterial activity when compared to that of zinc oxide eugenol-based sealers. It showed antibacterial activity only for a short time (10 hours). GIC has strong antimicrobial property, the mechanism of which is probably a function of both fluoride release and low ph [23], although additional factors like release of zinc ions andbetterhomogenousstructuremaybeinvolved[24, 25]. The release of fluoride from the glass ionomer materials is ph dependent, burst effect of fluoride for the first and second day followed by a significant decrease. This may explain the initial antibacterial effect of GIC-based sealer. Fluoride can have three effects on bacteria, that is, inhibition of metabolism, inhibition of growth, and bacterial death. Growth of inhibition was directly related to the amount of fluoride ions released. A direct bactericidal effect does not occur from fluoride released, since the amount of fluoride released is too low. Gutta Flow (polydimethyl siloxane) based endodontic sealer showed a slight antibacterial activity for the first 3 hours which drastically reduced with time, whereas, in B wells, there was no inhibition of bacterial growth. The antibacterial activity is attributed to the nanosilver present in the sealer which is used as a preservative. This may be related to the oligodynamic effect, that is, high affinity of metal ions (silver) to cellular proteins that combine with sulfur groups and denature the proteins [26]. Endo Rez (urethane dimethacrylate resin) based endodontic sealer did not show any antibacterial activity against Enterococcus faecalis, which may be due to the absence of an antibacterial component in its composition. 6. Conclusion The sealers evaluated in this study showed different inhibitory effects during the time interval studied. Zinc oxide eugenol-based sealer was the most effective and urethane dimethacrylate resin-based sealer was the least effective against Enterococcus faecalis. The antibacterial property of the endodontic sealers gradually decreased over time. Inhibition of the bacterial growth is related to the direct contact of the microorganism with the sealer. Hence, the incorporation of antimicrobial components into root canal sealers may become an essential factor in preventing the regrowth of residual bacteria and control of bacterial reentry into the root canal space. References [1] S. Kakehashi, H. Stanley, and R. Fitzgerald, The effect of surgical exposures of dental pulps in germ-free and conventional laboratory rats, Oral Surgery, Oral Medicine, Oral Pathology, vol. 20, pp. 340 349, 1965. [2] I. M. Saleh, I. E. Ruyter, M. Haapasalo, and D. Ørstavik, Survival of Enterococcus faecalis in infected dentinal tubules after root canal filling with different root canal sealers in vitro, International Endodontic Journal, vol. 37, no. 3, pp. 193 198, 2004. [3]P.N.R.Nair,U.Sjo gren,g.krey,k.-e.kahnberg,andg. Sundqvist, Intraradicular bacteria and fungi in root-filled,

ISRN Dentistry 5 asymptomatic human teeth with therapy-resistant periapical lesions: a long-term light and electron microscopic follow-up study, Endodontics, vol. 16, pp. 580 588, 1990. [4] A. K. Mickel, T. H. Nguyen, and S. Chogle, Antimicrobial activity of endodontic sealers on Enterococcus faecalis, Journal of Endodontics, vol. 29, no. 4, pp. 257 258, 2003. [5] G. Sundqvist, D. Figdor, S. Persson, and U. Sjögren, Microbiologic analysis of teeth with failed endodontic treatment and the outcome of conservative re-treatment, Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontics, vol. 85, no. 1, pp. 86 93, 1998. [6] M. Haapasalo and D. Orstavik, In vitro infection and disinfection of dentinal tubules, JournalofDentalResearch, vol. 66, no. 8, pp. 1375 1379, 1987. [7] M. Trope, E. O. Delano, and D. Ørstavik, Endodontic treatment of teeth with apical periodontitis: single verses multivisit treatment, JournalofEndodontics,vol.25,no.5,pp. 345 350, 1999. [8] S. Madison and L. R. Wilcox, An evaluation of coronal microleakage in endodontically treated teeth. Part III. In vivo study, Endodontics, vol. 14, no. 9, pp. 455 458, 1988. [9] D. Orstavik, Antibacterial properties of endodontic materials, International Endodontic Journal, vol. 21, no. 2, pp. 161 169, 1988. [10] E. I. Weiss, M. Shalhav, and Z. Fuss, Assessment of antibacterial activity of endodontic sealers by a direct contact test, Endodontics and Dental Traumatology, vol. 12, no. 4, pp. 179 184, 1996. [11] M. Shalhav, Z. Fuss, and E. I. Weiss, In vitro antibacterial activity of a glass ionomer endodontic sealer, Endodontics, vol. 23, no. 10, pp. 616 619, 1997. [12] L. M. Lin, E. A. Pascon, J. Skribner, P. Gangler, and K. Langeland, Clinical, radiographic, and histologic study of endodontic treatment failures, Oral Surgery Oral Medicine and Oral Pathology, vol. 71, no. 5, pp. 603 611, 1991. [13] J. F. Siqueira Jr., M. De Uzeda, and M. E. Fonseca, A scanning electron microscopic evaluation of in vitro dentinal tubules penetration by selected anaerobic bacteria, Endodontics, vol. 22, no. 6, pp. 308 310, 1996. [14] W. Soltanoff, A comparative study of the single-visit and the multiple-visit endodontic procedure, Endodontics, vol. 4, pp. 278 281, 1978. [15] S. Oliet, Single-visit endodontics: a clinical study, Endodontics, vol. 9, pp. 147 152, 1983. [16] H. M. Rappaport, G. E. lilly, and P. kapsimalis, Toxicity of endodontic filling materials, Oral Surgery, Oral Medicine, Oral Pathology, vol. 18, pp. 785 802, 1964. [17] Z. Fuss, E. I. Weiss, and M. Shalhav, Antibacterial activity of calcium hydroxide-containing endodontic sealers on Enterococcus faecalis in vitro, International Endodontic Journal, vol. 30, no. 6, pp. 397 402, 1997. [18] G. Pizzo, G. M. Giammanco, E. Cumbo, G. Nicolosi, and G. Gallina, In vitro antibacterial activity of endodontic sealers, Dentistry, vol. 34, no. 1, pp. 35 40, 2006. [19] J. Baer and J. S. Maki, In vitro evaluation of the antimicrobial effect of three endodontic sealers mixed with amoxicillin, Endodontics, vol. 36, no. 7, pp. 1170 1173, 2010. [20] A. E. Kaplan, M. Picca, M. I. Gonzalez, R. L. Macchi, and S. L. Molgatini, Antimicrobial effect of six endodontic sealers: an in vitro evaluation, Dental Traumatology, vol. 15, no. 1, pp. 42 45, 1999. [21] J. F. Siqueira Jr., A. Favieri, S. M. M. Gahyva, S. R. Moraes, K. C. Lima, and H. P. Lopes, Antimicrobial activity and flow rate of newer and established root canal sealers, Endodontics, vol. 26, no. 5, pp. 274 277, 2000. [22] M.R.Leonardo,L.A.B.daSilva,M.TanomaruFilho,K.C. Bonifácio, and I. Y. Ito, In vitro evaluation of antimicrobial activity of sealers and pastes used in endodontics, Endodontics, vol. 26, no. 7, pp. 391 394, 2000. [23]D.McCombandD.Ericson, Antimicrobialactionofnew, proprietary lining cements, Dental Research, vol. 66, no. 5, pp. 1025 1028, 1987. [24] C. J. Palenik, M. J. Behnen, J. C. Setcos, and C. H. Miller, Inhibition of microbial adherence and growth by various glass ionomers in vitro, Dental Materials, vol. 8, no. 1, pp. 16 20, 1992. [25] K. Shashibhushan, N. Basappa, and V. Subba Reddy, Comparison of antibacterial activity of three fluorides- and zincreleasing commercial glass ionomer cements on strains of mutans streptococci: an in vitro study, Indian Society of Pedodontics and Preventive Dentistry, vol. 26, no. 6, pp. S56 S61, 2008. [26] W.Kubey,P.Luneburg,S.Ericson,J.Brown,andC.J.Holmes, A longitudinal in vitro antimicrobial evaluation of two silver polymer surface treatments for peritoneal dialysis catheters, Advances in Peritoneal Dialysis, vol. 11, pp. 193 196, 1995.

Advances in Preventive Medicine The Scientific World Journal Case Reports in Dentistry International Dentistry Scientifica Pain Research and Treatment International Biomaterials Environmental and Public Health Submit your manuscripts at Oral Implants Computational and Mathematical Methods in Medicine Advances in Oral Oncology Anesthesiology Research and Practice Orthopedics Drug Delivery Dental Surgery BioMed Research International International Oral Diseases Endocrinology Radiology Research and Practice