The impact of high fat dietinduced gut microbiota on circadian rhythm and obesity

Similar documents
8/14/2016. Diet, Gut Bacteria, and Metabolic Disease: Strategies to Promote Healthy Microbial Communities. Outline. The Human Microbiome:

Gut Reaction. Mary ET Boyle, Ph. D. Department of Cognitive Science UCSD

Exploration of the microbiota in inflammatory diseases. Matthew Stoll MD Research Computing Day September 13, 2012

Supplemental Information. Effects of Diurnal Variation of Gut Microbes. and High-Fat Feeding on Host. Circadian Clock Function and Metabolism

Overview of the Microbiome in Health and Disease Cindy D. Davis

THE ROLE OF MICROBIOME IN IBD

The Gut Microbiota: Evidence For Gut Microbes as Contributors to Weight Gain

Circadian pathways as a mediator between alcohol and liver disease

Microbiome in You: Optimizing Gut Bacteria for Better IBD Management

Is there an anti-inflammatory diet in IBD?

Gut Immune Maturation Depends on Colonization with a Host-Specific Microbiota

Diet, Microbiome and Health Cindy D. Davis

Teacher Resource for: Gut Microbiota from Twins Discordant for Obesity Modulate Metabolism in Mice.

Going With Your Gut: The Microbiome and You

Transcription Regulation And Gene Expression in Eukaryotes (Cycle G2 # )

The number of microorganisms residing in our intestines is 10 times the number of our somatic and germ cells.

HOW THE MICROBIOME AFFECTS OUR HEALTH

general meeting 1 20 October 2016

Behavioral implications of the dynamic regulation of microglia: the influence of a day versus a lifetime

The Physiology of Weight Regulation: Implications for Effective Clinical Care

GUT MICROBIOME WHAT IS IT? WHY IS IT IMPORTANT FOR HUMAN HEALTH?

Issues at Hand. Inflammatory Bowel Disease Paradigm. Diet changes the fecal microbiome. Experience with diet in IBD

CIRCADIAN SIGNALING NETWORKS

Time of day and eating behaviors are associated with the composition and function of the human gastrointestinal microbiota

Disappearing microbiota and epidemic obesity

Why Obese People are Unable to Keep Weight Off After Losing It

MICROBIOM AND OBESITY HEINZ GYAKY 2018 BUDAPEST

Interactions Among Diet, Gut Microbiome, and the Brian: Implications for Mood and Behavior.

Hygiene Hypothesis: 10 years later. Christina Ciaccio MD, MSc Assistant Professor The University of Chicago

Stable Isotope Probing of gut bacteria RNA. Wayne Young. Identifying gut bacteria that can use sialic acid using an RNA-SIP approach

Socioeconomic State & Intestinal Microbiota. Ali Keshavarzian, MD Rush University Medical Center Chicago, IL

Pro- and prebiotics as modulators of gut microbiome in management of obesity and metabolic diseases. Sampo Lahtinen, DuPont Nutrition & Health

*corresponding author; Tel: 1 (403)

GUT INSTINCT MAKING SENSE OF IT ALL GI RESEARCH FOUNDATION DONOR APPRECIATION PICNIC INSIDE THIS ISSUE

New Insights on the Structure of the Human Gut Microbiota. Chaysavanh Manichanh, PhD Vall d Hebron Research Institute Barcelona

Microbiome GI Disorders

The Gut Microbiome: 101 Justin Carlson University of Minnesota

The use of molecular nutrition and nutrigenomics research to understand metabolic plasticity and health

Examining the effects of pre and probiotics on gut microbiota during the ageing process

Cormac Gahan APC, University College Cork, Ireland

Cultural and Biological Factors That May Underlie Obesity Disparities. Stephen J D O Keefe University of Pittsburgh

Our microbiome: The role of vital gut bacteria, diet, nutrition and obesity

1. Digestion of foods and absorption of nutrients takes place in stomach and small bowel in only 2-3 h.

Pro and Cons of Intermittent Fasting

2018 Jennifer L. Kaczmarek

Food Intake Regulation & the Clock. Mary ET Boyle, Ph. D. Department of Cognitive Science UCSD

Gut microbiota: importance

Gut microbiota, metabolic syndrome, obesity and the nutrient sensor pathways

Gut Microbes Are Essential: What to Feed Them? David M. Klurfeld USDA Agricultural Research Service Beltsville, MD

Il microbiota intestinale: come regola la riserva e la spesa energetica? Gerardo Nardone.

Diet, genetics and microbes in the global epidemic of modern lifestyle diseases

What is Metabolic About Metabolic Surgery? The New ADA Recommendations

Sharing Our Bodies: The Symbiosis of Humans and Our Microbiota

About the Editors List of Contributors

Selective enrichment of key bacterial groups within the human colon in response to changes in diet

Diet, microbiota and the immune system: A gut feeling about type 1 diabetes. Dr. Eliana Mariño Monash University Melbourne, Australia

Prevalence and predicted ongoing rise of obesity among preschool children

Dietary Options for Inflammatory Bowel Disease

The Intestinal Microbiota and the Developing Immune System

The human gut is a diverse ecosystem harboring. Complex Interactions Among Diet, Gastrointestinal Transit, and Gut Microbiota in Humanized Mice

Getting into the weed: the endocannabinoid system of the gut-brain axis in energy homeostasis. Keith Sharkey

The Role of LCPUFA in Obesity. M.Tom Clandinin. The Alberta Institute for Human Nutrition The University of Alberta Edmonton, Alberta, Canada

Gut Microbiome Essentials

Personalized Nutrition by Prediction of Glycemic Responses. Tal Korem Lab of Prof. Eran Segal Weizmann Institute of Science

Applied Nutritional Medicine. Supplement Categories. E.I.Nu.M.

Getting Ahead of the Curve in the Trouble with Fat

6/24/2014. How do you study microbial communities? Outnumbers Cells of the Body 10:1 Outnumber Human Genes 100:1. Michael T. Bailey, Ph.D.

Welke rol speelt het microbioom bij malaborptie? - Microbiome and malabsorption -

Exploring the link between gut microbiota and metabolic health

R&D Forum 2. Protein

Industrialized Food Components and Obesity Risk. Kylie Kavanagh, VMS MS MPH Department of Pathology

Stool Testing for the Microbiome - Ready for Primetime?

Dietary protein, red meat and colorectal cancer risk

Leptin Intro/Signaling. ATeamP: Angelo, Anthony, Charlie, Gabby, Joseph

Nutrigenomics Revisited: Separating the Hype from the Opportunity

Human Microbiome Research at NIH: Past, Present & Future

Etiology, Assessment and Treatment

Diet and the Human Gut Microbiome: Whose Diet is It Anyway?

Fungal microbiome. Gwen Falony BVMDM symposium 19 th of November 2015

Targeting of the circadian clock via CK1δ/ε to improve glucose homeostasis in obesity

The acute effects of time-of-day-dependent high fat feeding on whole body metabolic flexibility in mice

Human Digestion -Microbiome Gut Microbiome Origin of microbiome collectively all the microbes in the human body, community of microbes

The human microbiome and how it affects heath. Nafisa M. Jadavji, PhD

Ali Keshavarzian MD Rush University Medical Center, Chicago, IL

Sue Cummings, MS, RD

Nature Immunology: doi: /ni Supplementary Figure 1

PREBIOTICS, THE INTESTINAL MICROBIOME AND BONE HEALTH

Gut microbiome in Hadza huntergatherers, adaptation to a Paleolithic lifestyle

The enteric microbiota: Implications for IBD. Eugene B. Chang, M.D. University of Chicago

Gut microbiota, bacterial metabolites and metabolite sensing GPCRs protect against food allergy

Investigating Massage as a Complementary Therapy for Weight Loss By Morgan J Lawless, LMT

Bibliografia Microbiota

BREAKTHROUGH SOLUTION TO ADDRESS PET OBESITY

Diverticular Disease: Looking beyond fiber

The role of intestinal microbiota in metabolic disease-a novel therapeutic target.

The A, B, C s of Bowel Flora

Even Fjære. NIFES; National Institute of Nutrition and Seafood Research

Microbiome, allergy and inflammatory diseases

Harnessing habituation, via reducing dietary variety, to enhance obesity treatment

Work The h c e o c mpl p exi exi y t of tas t k as k dem and an i d n i g n ener en gy!!

Transcription:

The impact of high fat dietinduced gut microbiota on circadian rhythm and obesity Vanessa A. Leone, Ph.D. Postdoctoral scholar Impact of circadian dysrhythmia in gastrointestinal diseases Circadian rhythms in GI health and diseases Chicago, IL

Prevalence of New Age disorders has increased over the past half century Obesity (BMI 3kg/m 2 ) Obesity (BMI 3kg/m 2 ) 1985 1994 2 21 213 No Data <1% 1-13.9% <14% 14 17.9% 18 21.9% 22.% 25.9% 26.% Type 2 Diabetes 1994 2 21 15% <2% 2% <25% 25% <3% 3% <35% 35% No Data <4.5% 4.5% 5.9% 6.% 7.4% 7.5% 8.9% >9.% Source: Behavioral Risk Factor Surveillance System, CDC 2

Development of obesity is multi-factorial and complex Sleep 3

Diet shapes gut bacteria profiles in humans Gut bacteria profiles A Different dietary intake results in differences in gut bacteria B A.) Burkina Faso, Africa Dietary intake, ages 1-6 672.2 996.1 kcal/day» Protein: 3.9-4.2g» Fat: 18.9-31.2g» Carbohydrate: 12.6 148.6g B.) European Union, Italy Dietary intake, ages 1-6 168.7 1512.7 kcal/day» Protein: 41.9 66.7g» Fat: 56.1 73.9g» Carbohydrate: 19. 29.g De Filippo et al. Proc Natl Acad Sci USA. 17. 14691 (21) 4

Germ-free mice are resistant to diet-induced obesity Standard environment + Microbes Germ-free environment - Microbes Low Fat diet High Fat diet Low fat or High Fat diet Lean Obese Lean 5

Western dietary intake shifts gut microbes altering host metabolism Pediatr Gastroenterol Hepatol Nutr. 213 March; 16(1): 22 27. 6

Hepatic genes up-regulated in germ-free (GF) vs. conventionalized mice Androgen and Estrogen Metabolism PXR/RXR Activation Methionine Metabolism LXR/RXR Activation Fatty Acid Metabolism Linoleic Acid Metabolism Circadian Rhythm Signaling Xenobiotic Metabolism Signaling Metabolism of Xenobiotics by Cytochrome P45 Biosynthesis of Steroids LPS/IL-1 Mediated Inhibition of RXR Function p<.5 3 6 9 Leone, et al., Cell Host & Microbe. 215 7

Relationship between circadian clock and nuclear receptors Circadian genes Nuclear receptors Leone, et al., Cell Host & Microbe. 215 8

Circadian clock networks regulate daily metabolic functions Bass, J. Nature 212 9

Hypothesis Diet-induced gut microbiota provide critical inputs that regulate circadian gene networks, affecting metabolic outcome. Do GF mice exhibit altered circadian gene expression patterns on low fat (regular chow) and high fat diets? Do gut microbes exhibit diurnal patterns, and are these patterns altered under high-fat feeding conditions? Bass, J. Nature 212 If so, how are these patterns regulated? 1

1 28: ; 9+: <86+=>? Germ-free mice are resistant to high fat (HF) diet-induced obesity D<E5F8G+G564HI J9856+=3G<EK7<L? "#& "#! ""& ""! "! & "!! RC Body weight RC ( ) * +,+- * ( ) * +,+. * / * +,+- * / * +,+. * ' &! " # $ % & 1 2234+56+7829 "C "B "A "& "% "$ "# Caloric consumption "" ( ) * +,+- RC * ( ) * +,+. * / * +,+- RC * / * +,+. * "!! @& "@! "@& #@! #@& $@! $@& %@! %@& &@! 1 2234+56+7829 Leone, et al., Cell Host & Microbe. 215 n = 17 or 18 age-matched, individually housed male mice/trt group Bass, J. Nature 212 ***p<.1; **p<.1; *p<.5 11

Bmal1 expression (relative GAPDH) 3 4 5 &6$) 78.) 99*: ; $1.) <=+*>) $? 5 " @' 2 -./ 1("23' "44#/ 5(+' ".6$#7"(8 9 : ; <, Bmal1 3 4 5 &6$) expression 78.) 99*: ; $1.) (relative <=+*>) $? GAPDH) 5 " @' 2 -./ 1("23' "44#/ 5(+' ".6$#7"(8 9 : ; <, " ).A$) 78.) 99*: ; $1.) <=+*>) $? 5 " @' 2 - Cry1 ' =>("23' expression "44#/ 5(+' ".6$#7"(8 (relative 9 GAPDH) : ; <, " ).A$) 78.) 99*: ; $1.) <=+*>) $? 5 " @' 2 Cry1 - ' =>("23' expression "44#/ 5(+' (relative ".6$#7"(8 GAPDH) 9 : ; <, Bmal1 3 4 5 &6$) expression 78.) 99*: ; $1.) (relative <=+*>) $$? GAPDH) 5 " @' 2 -./ 1("23' "44#/ 5(+' ".6$#7"(8 9 : ; <, Bmal1 3 4 5 &6$) expression 78.) 99*: ; $1.) (relative <=+*>) $$? GAPDH) 5 " @' 2 -./ 1("23' "44#/ 5(+' ".6$#7"(8 9 : ; <, " ).A$) 78.) 99*: ; $1.) <=+*>) $? 5 " @' 2 Cry1 - ' =>("23' expression "44#/ 5(+' (relative ".6$#7"(8 GAPDH) 9 : ; <, " ).A$) 78.) 99*: ; $1.) <=+*>) $? 5 " @' 2 Cry1 - ' =>("23' expression "44#/ 5(+' (relative ".6$#7"(8 GAPDH) 9 : ; <, Germ-free mice exhibit altered central and peripheral circadian gene expression 3 =9:?64/ ) B*=<$' * "@#6.(< C8: +D=<= =3/ $A6.6* E9 B4! '! "! '! (! '! %! '! $! '! # SPF! " #$%$&# - RC( ) * +,+-. / 12 ( ) * +,+3 45612! SPF " #$%$' - HF #! '! &! '!!! " # $% $& %! %"! " # $% $& %! %"! "#$%"&"' () #* "(+! ), ( ) *+, ) - ).$/ * ) $1( / 2! '! %#! SPF!'! " 8#$%$&# - RC! '! %" SPF! " #$%$' - HF #( ) * +,+-. / 12 ( ) * +,+3 45612! '! %!! '! "! '! $&! '! $%! '! "! '! % 3 =<6$%$! " # 3 =<6$%$? # " ).A$%$! " # -./ 1(D(E: F Bmal1-./- 1(D(8 GF F Cry1 - ' =>(D(E: - SPF F " ).A$%$? - ' # =>(D(8 F! '!! #! '! $! '!! "! '!!!! '!!! " # $% $&! " # $% $& %! ( ) *+, ) -! ) "#$%"&"'.$/ * ) $1( () / #* 2 "(+! ), %! %" %"! '! "! '! (! '! %! '! $! '!? # GF #$%$&# - RC 9 * +,+-. / 12 GF? #$%$' - HF # 9 * +,+3 45612! '! &! '!!! "! " # # $% $% $& $& %! %! %" %" ( ) *+,! ) "#$%"&"' - ).$/ * () ) $1( #* / "(+! 2 ), &*>). C#7"' Bmal1 - SPF Bmal1 - GF -./ 1(D(E: F -./ 1(D(8 F! '! 7! '! % Bmal1 Mediobasal Hypothalamus Liver Bmal1 - SPF! '! %#! '!? 8GF #$%$&# - RC! '! %"? #$%$' # 9 * +,+-. / 12 9 * +,+3 45612 GF - HF! '! "! '! %!! '! $&! '! $%! '!! #! '!! "! '! "! '! %! '!!!! '!!! " # $% $& %! %"! " # $% $& %! %" ( ) *+,! ) "#$%"&"' - ).$/ * ) () $1( #* / 2 "(+! ),! '! %!! '! #!?'! #$%$&# %!! " #$%$&# SPF ( ) * +,+- - RC. / 12 ( SPF ) * +,+3 - HF 45612 GF 9 * +,+- - RC. / 12! " #$%$' #? #$%$' # GF 9 * +,+3 - HF 45612! '! $&! '! $&! '! &! '!!!! '!!! " # $% $& %! %"! " #! "#$%"&"' $& () #* "(+! %! ), %" ( ) *+, ) - ).$/ * ) $1( / 2 Bass, J. Nature 212 n = 2 or 3 mice/time point/trt group; Zeitgeber (ZT) = lights on, 6am; ZT12 = lights off, 6pm! '! #! '! &! '! "! '! % 3 =<6$%$! " # 3 =<6$%$? # " ).A$%$! - ' =>(D(E: " # F " ).A$%$? - ' # =>(D(8 F! '! 7! '! %! '! $! '( %! " #$%$&#! '! %!! " #$%$' #( SPF ) * +,+- - RC. / 12! '%"! '! $& ( SPF ) * +,+3 - HF 45612! '$&! '! #! '! $%! '!! #! '!! "! '!!!! " # $% $& %! %"! " #! "#$%"&"' $& () #* "(+! %! ), %" ( ) *+, ) - ).$/ * ) $1( / 2! '! $%! '!! #! '!! " Cry1 - SPF Cry1! '!!! '!!!! '!!! '!!!! "! #" $% # $% $& $& %! %! %" %"! "! # " $% # $% $& $& %! %! %" %" ( ) *+, ) -! )"#$%"&"'.$/ * ) $1( () #* / 2"(+! ), ( ) *+, ) -!) "#$%"&"'.$/ * ) $1( ()/#* 2 "(+! ),! '! "! '! %! '( %! '%"! '$&! '! #! '! $%! '!! #! '!! "? #$%$&#! '! %!? #$%$' #! '! $& GF 9 * +,+- - RC. / 12! '! $% GF 9 * +,+3 - HF 45612! '!! #! '!! " Cry1 - GF Cry1 - GF Leone, et al., Cell Host & Microbe. 215 12

PC2 13.9% High fat diet elicits shifts in gut microbial membership PC2 13.9% PCoA: PC1 versus PC2 H F RC PCoA: PC1 versus PC2 HF RC Zeitgeber Time (ZT) = ZT 2 = ZT 6 = ZT 1 = ZT 14 = ZT 18 = ZT 22 PC1 56.2% PC1 56.2% Leone, et al., Cell Host & Microbe. 215 Bass, J. Nature 212 n = 2 or 3 mice/time point/trt group; Zeitgeber (ZT) = lights on, 6am; ZT12 = lights off, 6pm 13

Relative abundance Relative abundance High fat diet alters diurnal oscillations of specific 16s rrna operational taxanomic units (OTUs) Relative abundance Relative abundance Relative abundance Relative abundance Relative abundance Relative abundance RC oscillating OTUs 14 12 1 8 6 4 2 OTU #3666 - Lachnospiraceae SPF - RC SPF - HF 4 8 12 16 2 24 25 2 15 1 2 1 Zeitgeber Time (ZT) HF oscillating OTUs OTU #265793 - Oscillospira SPF - RC SPF - HF 4 8 12 16 2 24 Zeitgeber Time (ZT) * 125 1 75 5 25 OTU #2374993 - Lachnospiraceae SPF - RC SPF - HF 4 8 12 16 2 24 125 1 75 5 25 Zeitgeber Time (ZT) OTU #263272 - Ruminococcus SPF - RC SPF - HF 4 8 12 16 2 24 Zeitgeber Time (ZT) OTU #267411 - Lachnospiraceae 4 8 12 16 2 24 Leone, et al., Cell Host & Microbe. 215 Bass, J. Nature 212 n = 2 or 3 mice/time point/trt group; Zeitgeber (ZT) = lights on, 6am; ZT12 = lights off, 6pm 25 2 15 1 3 2 1 15 125 1 75 5 25 Zeitgeber Time (ZT) OTU #16734 - Oscillospira SPF - RC SPF - HF SPF - RC SPF - HF 4 8 12 16 2 24 Zeitgeber Time (ZT) 15 125 1 75 5 25 4 3 2 1 OTU #261365 - Ruminococcus SPF - RC SPF - HF 4 8 12 16 2 24 175 15 125 1 75 5 25 Zeitgeber Time (ZT) OTU #18535 - Oscillospira SPF - RC SPF - HF 4 8 12 16 2 24 Zeitgeber Time (ZT) 14

PC2 PC2 High fat diet alters diurnal oscillations of gut microbiota function PCoA: PC1 versus PC2 RC LF HF PCoA: PC1 versus PC2 RC LF HF Zeitgeber Time (ZT) = ZT 2 = ZT 6 = ZT 1 = ZT 14 = ZT 18 = ZT 22 Substrate RC Osillating HF Non-oscillating 1% 41% 59% 9% Sensitivity chemical RC Oscillating HF Non-oscillating 8% 36%$ 64%$ 92% Oscillating Non-oscillating Oscillating Non-oscillating PC1 PC1 Leone, et al., Cell Host & Microbe. 215 Bass, J. Nature 212 n = 2 or 3 mice/time point/trt group; Zeitgeber (ZT) = lights on, 6am; ZT12 = lights off, 6pm 15

High fat diet impacts diurnal patterns of known microbially-produced metabolites : ; 2<5=2)8! 7 >?@3)>A)B>C2C2D9 "$# "#! ""# "!! %$# %#! %"# %!! $# #! "#!.... &' ( )*)+, &' ( )*)- (! " # $% $& %! %" / 12345)617 )8/ 69... - # &)8! 7 : ;<3): =)>:?2?2@9 %"! $"! #"!.. &' ( )*)+,. &' ( )*)- (! "!! " # $% $& %! %" / 12345)617 )8/ 69 Leone, et al., Cell Host & Microbe. 215 Bass, J. Nature 212 n = 2 or 3 mice/time point/trt group; Zeitgeber (ZT) = lights on, 6am; ZT12 = lights off, 6pm 16

Per2 expression (relative GAPDH) Bmal1 expression (relative GAPDH) Microbial metabolites elicit a direct impact on hepatic circadian gene expression in vitro Butyrate H 2 S.7.6.5.4.3.2.1 * *** No trt 5mM Butyrate 8 16 24 32 4 48 Time after serum-shock (hours).7.6.5.4.3.2.1 ** No trt 1mM NaHS 8 16 24 32 4 48 Time after serum-shock (hours) Hepatic organoid.1.8.6.4 No trt 5mM Butyrate * *.1.8.6.4 No trt 1mM NaHS.2.2 8 16 24 32 4 48 Time after serum-shock (hours) Bass, J. Nature 212 8 16 24 32 4 48 Time after serum-shock (hours) Leone, et al., Cell Host & Microbe. 215 17

! "#$%&' ( )* %1 6! 7%-/ 84! "#$%&' ( )* %1 6! 7%-/ 84 Butyrate elicits a direct impact on hepatic circadian gene expression in vivo <. =84>/?/ @%AB$4A/ @/ 1 5? 214! " #$%&%' (' ) * 12! " #$%&%' (+* ) 14 312 Control Saline (PBS) Saline (PBS) 314 BUT ZT2 BUT ZT14 BUT Saline (PBS) ZT2 Saline (PBS) BUT ZT14 ZT 6 12 18 24 Bass, J. Nature 212. 12 C8D. -! " #$%& ' ( )*+*, -. ' ( )*+*, - /, -. / 1. 2%3-45$.. 9$%&%' (' +:. 4 / 6! " # $%&%' (; : + / 5 / /. / 4 6 5. 4! " #$%& ' ( )*+*, -. ' ( )*+*, - /, -. / 1. 2%3-45$ Leone, et al., Cell Host & Microbe. 215 18

Gut microbes sense dietary cues that translate into outputs that maintain circadian networks Dietary intake When How much What Gut microbiota Shift work Sleep apnea Jet lag Circadian Networks Microbial Oscillations Microbial signals Metabolome High fat diet Bass, J. Nature 212 19

High-fat diet induced gut microbiota lack outputs that are required for maintenance of circadian networks Dietary intake When How much What Gut microbiota Circadian Networks Microbial Oscillations signals Metabolome 2

University of Chicago Dr. Eugene Chang Dr. Mark Musch Dr. Brian Prendergast Dr. Betty Theriault Dr. Joseph Pierre Dr. Candace Cham Dr. Aaron Dinner Dr. Kristina Martinez Dr. Edmond Huang Dr. Yong Huang Dr. Sean Gibbons Dr. Anuradha Nadimpalli Acknowledgements Alan Hutchison Nathaniel Hubert, M.S. Elizabeth Zale Chang lab members Gnotobiotic animal care staff UW-Madison Dr. Kenneth Kudsk Dr. Aaron Heneghan Argonne National Lab Dr. Jack Gilbert Funding NIDDK P3 NIDDK DDRCC Gastro-intestinal Research Foundation (GIRF) Sunrise from the Knapp Center for Biomedical Discovery after a long circadian study 21

What might be contributing to the increasing prevalence of Western disorders? 22

FMT from lean donors improves insulin sensitivity in obese subjects 6 weeks *Improved symptoms of Type II Diabetes and Metabolic syndrome Lean male donors Obese male recipients BMI 3 Vrieze et al., Gastro. (212) 143:913-916 23

Germ-free mice exhibit altered metabolic response to Western diets compared to controls Backhed et al, 24; Backhed et al, 27 24