INTRODUCTION CH 3 CH CH 3 3. C 37 H 48 N 6 O 5 S 2, molecular weight Figure 1. The Xevo QTof MS System.

Similar documents
Jose Castro-Perez, Henry Shion, Kate Yu, John Shockcor, Emma Marsden-Edwards, Jeff Goshawk Waters Corporation, Milford, MA, U.S. and Manchester, UK

[ APPLICATION NOTE ] APPLICATION BENEFITS INTRODUCTION WATERS SOLUTIONS KEYWORDS

Latest Innovations in LC/MS/MS from Waters for Metabolism and Bioanalytical Applications

Applying a Novel Glycan Tagging Reagent, RapiFluor-MS, and an Integrated UPLC-FLR/QTof MS System for Low Abundant N-Glycan Analysis

Rapid, Simple Impurity Characterization with the Xevo TQ Mass Spectrometer

Rapid Lipid Profiling of Serum by Reverse Phase UPLC-Tandem Quadrupole MS

O O H. Robert S. Plumb and Paul D. Rainville Waters Corporation, Milford, MA, U.S. INTRODUCTION EXPERIMENTAL. LC /MS conditions

Rapid Analysis of Water-Soluble Vitamins in Infant Formula by Standard-Addition

Chemical Analysis Business Operations Waters Corporation Milford MA

A UPLC/MS Approach for the Diagnosis of Inborn Errors of Metabolism

[ APPLICATION NOTE ] High Sensitivity Intact Monoclonal Antibody (mab) HRMS Quantification APPLICATION BENEFITS INTRODUCTION WATERS SOLUTIONS KEYWORDS

UPLC/MS Monitoring of Water-Soluble Vitamin Bs in Cell Culture Media in Minutes

Profiling Flavonoid Isomers in Highly Complex Citrus Juice Samples Using UPLC Ion Mobility Time-of-Flight Mass Spectrometry

A Metabolomics Approach to Profile Novel Chemical Markers for Identification and Authentification of Terminalia Species

UPLC-MS/MS Analysis of Azole Antifungals in Serum for Clinical Research

Matrix Factor Determination with the Waters Regulated Bioanalysis System Solution

The Application of UPLC/MS E for the Analysis of Bile Acids in Biological Fluids

A Definitive Lipidomics Workflow for Human Plasma Utilizing Off-line Enrichment and Class Specific Separation of Phospholipids

CHARACTERIZATION AND DETECTION OF OLIVE OIL ADULTERATIONS USING CHEMOMETRICS

Analysis of Testosterone, Androstenedione, and Dehydroepiandrosterone Sulfate in Serum for Clinical Research

A NOVEL METHOD OF M/Z DRIFT CORRECTION FOR OA-TOF MASS SPECTROMETERS BASED ON CONSTRUCTION OF LIBRARIES OF MATRIX COMPONENTS.

Automated Lipid Identification Using UPLC/HDMS E in Combination with SimLipid

PosterREPRINT RAPID, SELECTIVE SCREENING OF URINE SAMPLES FOR GLUCURONIDES BY LC/MS/MS INTRODUCTION ABSTRACT

Analysis of N-Linked Glycans from Coagulation Factor IX, Recombinant and Plasma Derived, Using HILIC UPLC/FLR/QTof MS

Ultra Performance Liquid Chromatography Coupled to Orthogonal Quadrupole TOF MS(MS) for Metabolite Identification

John Haselden 1, Gordon Dear 1, Jennifer H. Granger 2, and Robert S. Plumb 2. 1GlaxoSmithKline, Ware, UK; 2 Waters Corporation, Milford, MA, USA

Profiling and Quantitation of Metabolomic Signatures for Breast Cancer Cell Progression

Analysis of the Non-Ionic Surfactant Triton-X Using UltraPerformance Convergence Chromatography (UPC 2 ) with MS and UV Detection

Data Independent MALDI Imaging HDMS E for Visualization and Identification of Lipids Directly from a Single Tissue Section

SEPARATION OF BRANCHED PFOS ISOMERS BY UPLC WITH MS/MS DETECTION

Impurity Identification using a Quadrupole - Time of Flight Mass Spectrometer QTOF

SYNAPT G2-S High Definition MS (HDMS) System

A RAPID AND SENSITIVE UPLC/UV/MS METHOD FOR SIMVASTATIN AND LOVA S TAT IN IN SU P P O RT O F C L E A NING VA L I DAT IO N S T U DIES

Meeting Challenging Requirements for the Quantitation of Regulated Growth Promoters Dexamethasone and Betamethasone in Liver and Milk

A High Sensitivity UPLC/MS/MS Method for the Analysis of Clopidogrel and Clopidogrel Carboxylic Acid Metabolite in Human K 2 EDTA Plasma

[ APPLICATION NOTE ] Oasis PRiME HLB Cartridge for Cleanup of Infant Formula Extracts Prior to UPLC-MS/MS Multiresidue Veterinary Drugs Analysis

Providing a Universal, One-step Alternative to Liquid-Liquid Extraction in Bioanalysis

Rapid Analysis of Bisphenols A, B, and E in Baby Food and Infant Formula Using ACQUITY UPLC with the Xevo TQD

[ application note note ] ]

Development of a High Sensitivity SPE-LC-MS/MS Assay for the Quantification of Glucagon in Human Plasma Using the ionkey/ms System

Method Development for the Analysis of Endogenous Steroids Using Convergence Chromatography with Mass Spectrometric Detection

Fast Separation of Triacylglycerols in Oils using UltraPerformance Convergence Chromatography (UPC 2 )

High resolution mass spectrometry for bioanalysis at Janssen. Current experiences and future perspectives

PosterREPRINT EVALUATION OF A RF-ONLY STACKED RING BASED COLLISION CELL WITH AXIAL FIELD FOR THE LC-MS-MS ANALYSIS OF THE METABOLITES OF RABEPRAZOLE

Reducing Sample Volume and Increasing Sensitivity for the Quantification of Human Insulin and 5 Analogs in Human Plasma Using ionkey/ms

Phospholipid characterization by a TQ-MS data based identification scheme

[ APPLICATION NOTE ] UPLC-MS/MS Analysis of 45 Amino Acids Using the Kairos Amino Acid Kit for Biomedical Research INTRODUCTION APPLICATION BENEFITS

MS/MS as an LC Detector for the Screening of Drugs and Their Metabolites in Race Horse Urine

Increased Identification Coverage and Throughput for Complex Lipidomes

Removal of Triton X-100 from Plasma Samples Using Mixed-Mode Solid Phase Extraction (SPE)

Analysis of Rosuvastatin in Dried Blood Spot and Plasma Using ACQUITY UPLC with 2D Technology

ACHIEVEMENTS ARE LIMITED ONLY BY ASPIRATIONS.

ApplicationNOTE EXACT MASS MEASUREMENT OF ACTIVE COMPONENTS OF TRADITIONAL HERBAL MEDICINES BY ORTHOGONAL ACCELERATION TIME-OF-FLIGHT.

Using Software Tools to Improve the Detection of Impurities by LC/MS. Application Note. Christine Miller Agilent Technologies.

Analysis of Food Sugars in Various Matrices Using UPLC with Refractive Index (RI) Detection

Metabolomic and Lipidomic Research in Diabetes and Obesity 08/07/2013

Agilent 6410 Triple Quadrupole LC/MS. Sensitivity, Reliability, Value

Polymer Additive Analysis by EI and APCI

Using Multiple Mass Defect Filters and Higher Energy Collisional Dissociation on an LTQ Orbitrap XL for Fast, Sensitive and Accurate Metabolite ID

Advancing your Forensic Toxicology Analyses; Adopting the Latest in Mass Spectrometry Innovations

Jody Dunstan, 1 Antonietta Gledhill, 1 Ailsa Hall, 2 Patrick Miller, 2 Christian Ramp 3. Waters Corporation, Manchester, UK 2

[ APPLICATION NOTE ] Profiling Mono and Disaccharides in Milk and Infant Formula Using the ACQUITY Arc System and ACQUITY QDa Detector

Lipid Class Separation Using UPC 2 /MS

A Novel Solution for Vitamin K₁ and K₂ Analysis in Human Plasma by LC-MS/MS

[application note] DIRECT TISSUE IMAGING AND CHARACTERIZATION OF PHOSPHOLIPIDS USING A MALDI SYNAPT HDMS SYSTEM

Rapid and Accurate LC-MS/MS Analysis of Nicotine and Related Compounds in Urine Using Raptor Biphenyl LC Columns and MS-Friendly Mobile Phases

PTM Discovery Method for Automated Identification and Sequencing of Phosphopeptides Using the Q TRAP LC/MS/MS System

Uptake and Metabolism of Phthalate Esters by Edible Plants

Improving Selectivity in Quantitative Analysis Using MS 3 on a Hybrid Quadrupole-Linear Ion Trap Mass Spectrometer

Supplementary Information

Simultaneous Analysis of Intact Human Insulin and Five Analogs in Human Plasma Using μelution SPE and a CORTECS UPLC Column

Towards High Resolution MS in Regulated Bioanalysis

The use of mobile-device data to better estimate dynamic population size for wastewater-based epidemiology

A RAPID AND SENSITIVE ANALYSIS METHOD OF SUDAN RED I, II, III & IV IN TOMATO SAUCE USING ULTRA PERFORMANCE LC MS/MS

An Untargeted Exposure Study of Small Isolated Populations Using Atmospheric Gas Chromatography Coupled with High Resolution Mass Spectrometry

Quantitative Analysis of Drugs of Abuse in Urine using UHPLC Coupled to Accurate Mass AxION 2 TOF Mass Spectrometer

COMBINED USE OF GC TOF MS AND UPLC-QTOF MS FOR INVESTIGATIVE ANALYSIS OF HONEYBEE POISONING

Quantitative Analysis of Vit D Metabolites in Human Plasma using Exactive System

Waters ASMS Users Meeting May 30 th, Overview

SPE-LC-MS/MS Method for the Determination of Nicotine, Cotinine, and Trans-3-hydroxycotinine in Urine

Comparison of a UPLC Method across Multiple UHPLC Systems

Dry eye disease commonly known as atopic keratoconjunctivitis is an autoimmune disease of

Quantification of Budesonide Using UPLC and Xevo TQ-S

SWATH Acquisition Enables the Ultra-Fast and Accurate Determination of Novel Synthetic Opioids

The Development of LC/MS Methods for Determination of Polar Drugs of Abuse in Biological Samples

Dienes Derivatization MaxSpec Kit

Ultra High Definition Optimizing all Analytical Dimensions

INTRODUCTION TO MALDI IMAGING

THE POWER OF MASS SPECTROMETRY FOR IC ANALYTICAL CHEMISTS. Unleash New Possibilities with Enhanced Detection for IC Applications

[ APPLICATION NOTE ] A Generic Kit-Based Approach for LC-MS/MS Quantification of Urinary Albumin for Clinical Research APPLICATION BENEFITS

Paul Silcock 1, Anna Karrman 2, and Bert van Bavel 2. Aim. Introduction. Sample preparation

Moving from targeted towards non-targeted approaches

Identification of Ginsenosides Using the SCIEX X500R QTOF System

application Natural Food Colorants Analysis of Natural Food Colorants by Electrospray and Atmospheric Pressure Chemical Ionization LC/MS

Supporting Information (SI)

Probing for Packaging Migrants in a Pharmaceutical Impurities Assay Using UHPLC with UV and Mass Detection INTRODUCTION

Bioanalytical Quantitation of Biotherapeutics Using Intact Protein vs. Proteolytic Peptides by LC-HR/AM on a Q Exactive MS

Liquid Chromatograph Mass Spectrometer LCMS-8040 C146-E188E

Identification & Confirmation of Structurally Related Degradation Products of Simvastatin

ACQUITY UPLC WITH PDA DETECTION: DETERMINING THE SENSITIVITY LIMITS OF OXYBUTYNIN AND RELATED COMPOUNDS

Transcription:

Fast and Sensitive in vitro Metabolism Study of Rate and Routes of Clearance for Ritonavir using UPLC CUPLED with the Xevo QTof MS System Jose Castro-Perez, Kate Yu, John Shockcor, Henry Shion, Emma Marsden-Edwards, Jeff Goshawk Waters Corporation, Milford, MA, U.S. and Manchester, U.K. Yasuhiro Yamada Showa University, Tokyo, Japan Motoji shikata ihon Waters, Tokyo, Japan ITRDUCTI A typical in vitro metabolic study includes the investigation of both the rate and metabolic routes of the parent drug. A desirable analytical protocol for this type of study needs to provide both the analytical speed and the sensitivity to detect metabolites at substrate concentration levels that mimic in vivo conditions. In this application note, we present a simple and generic strategy for metabolite identification studies that utilizes UPLC and a new, highly-sensitive hybrid quadrupole oa-tf benchtop mass spectrometer: the Waters Xevo QTof MS (Figure 1). This mass spectrometer follows Waters instrument design philosophy of Engineered Simplicity to provide enhanced performance together with ease of use. The Xevo QTof MS features high desolvation temperature (up to 650 C), optimized gas flow dynamics, and efficient ionization to accommodate high LC flow rates and highly aqueous solvents, common in reversed-phase LC conditions. As a result, the Xevo QTof MS combines both speed and sensitivity to provide the best interface for UPLC/MS applications. To prove the power of this technology, an in vitro study of ritonavir (Figure 2) was conducted. Ritonavir is an antiretroviral drug from the protease inhibitor class used to treat HIV infection and AIDS. An intelligent Metabolite ID Workflow (Figure 3) developed by Waters was utilized for this study. This workflow takes full advantage of the speed and sensitivity offered by pairing the ACQUITY UPLC System with the Xevo QTof MS, and maximizes productivity by utilizing intelligent software algorithms in MassLynx Software s MetaboLynx XS Application Manager. Figure 1. The Xevo QTof MS System. H H C CH 3 3 S CH 3 CH 3 CH S 3 C 37 H 48 6 5 S 2, molecular weight 720.3128 Figure 2. The chemical structure of ritonavir.

AALYZE ACQUITY UPLC Maximum chromatographic resolution, sensitivity, and speed for MS-based studies Xevo QTof MS with MS E Exact mass analysis with data-rich information EXPERIMETAL Ritonavir was incubated at 37 C with rat hepatocytes at 1 µm. Multiple time points were taken for the reaction. The reaction was terminated with equal volume of acetonitrile/methanol (1:1, v/v) to 0, 0.5, 1, 2, and 4 hours respectively for all time points. The samples were centrifuged at 13,000 RPM for 1 minute and the supernatants were directly used for injections. LC conditions MetaboLynx XS data processing Identification of expected & unexpected metabolites Dealkylation/Mass Defect Filter LC system: Column: Flow rate: Mobile phase A: Mobile phase B: Waters ACQUITY UPLC System ACQUITY UPLC HSS T3 Column 2.1 x 100 mm, 1.7 µm, 55 C 500 µl/min Water + 0.1% formic acid MeH ITERPRET DECIDE MassFragment structural elucidation Automated metabolite fragment structure assignment and confirmation A ITELLIGET METABLITE ID WRKFLW FR MAXIMUM PRDUCTIVITY Figure 3. Waters intelligent Metabolite ID Workflow combines ACQUITY UPLC, Xevo QTof MS, and MetaboLynx XS to deliver maximum productivity. Gradient: Time Composition Curve 0 min 98%A 7 min 20%A Curve 6 8 min 0%A Curve 1 11 min 98%A Curve 1 MS conditions MS system: Waters Xevo QTof MS Ionization mode: ESI positive Capillary voltage: 0.5 kv Cone voltage: 20 V Desolvation temp.: 550 C Desolvation gas: 600 L/Hr Source temp.: 150 C Acquisition range: 150 to 1200 m/z Scan duration: 0.1 sec Collision gas: Argon Data processing Compound screening & identification: MetaboLynx XS Application Manager Structural elucidation: MassFragment

RESULTS Figure 4 shows the base peak ion chromatogram (BPI) and the extracted ion chromatogram (XIC) for ritonavir at time zero. At 1 µm substrate concentration, the ritonavir peak showed more than 24,000 RMS signal-to-noise ratio. The measured [M+H] + for the parent drug was 721.3211 (mass error 0.5 mda, 0.7 ppm). The major bottleneck in metabolite identification is data processing and interpretation. The strategy discussed in this work is a structure-driven MetaboLynx XS 3 data processing workflow that incorporates MassFragment for structural elucidation. The entire data processing workflow is displayed below in Figure 5. MetaboLynx s Chemically-Intelligent Workflow 1 Structure-driven process Take structure from sample list and analyze in batch mode 2 Use Dealkylation tool to create dealkylated metabolites and list of mass defects with the Mass Defect Filter tool, to create new MDF raw file 3 To each dealkylated metabolite, add Phase 1, or 2, or both, depending on t he method Figure 4. BPI and XIC of ritonavir at time zero with 1 µm substrate concentration. 4 From either Phase 1 or 2 combination, generate MDF containing limits and groupings As demonstrated in Figure 4, in addition to the superb sensitivity, the ritonavir peak obtained from UPLC is 6 seconds wide at the base; at 0.1 sec scan time, more than 15 data points were obtained across the peak. This is sufficient for both qualitative and quantitative analysis. 5 Pass this information to the MetaboLynx method for each sample analyzed in the sample list, updating the method on the fly Figure 5. The workflow for chemically-intelligent data processing using MetaboLynx XS. As indicated in the Metabolite ID Workflow shown in Figure 3, MS E is used for the data acquisition strategy. 1,2 Here, the mass spectrometer obtains data in two distinct but parallel acquisition functions via rapid switching. ne function scans at low collision energy (CE), the other function scans at high collision energy. The resulting raw data file contains two distinct chromatograms, one containing intact m/z information, while the other contains fragment m/z information. Therefore, from a single LC injection, MS full scan and fragment ion information can be accomplished simultaneously.

MetaboLynx XS updates the method on-the-fly according to the The fragment information obtained from the high CE scan is aligned structure in question. The results can be interactively reviewed from in time and by scan number with their respective [M+H]+ or [M-H]- ion the MetaboLynx XS browser as shown in Figure 6. Upon opening in the low energy mode. The potential metabolites identified can be the browser, the screening results based on the low CE scan are further confirmed by reviewing their respective high energy spectra displayed along with the list of potential metabolites, their from the MS Fragment Analysis window as shown in Figure 6. full-scan MS spectra, XIC chromatograms, as well as the parent drug structure. Figure 6. The MetaboLynx XS browser shows the results of metabolite ID for ritonavir, with an interactive results review window above, and the Fragment Analysis window below.

For structural elucidation, the fragment ions can be imported from the Fragment Analysis window directly into MassFragment. The structural elucidation results obtained from MassFragment provide the proposed fragment structures along with the exact mass information (Figure 7). As stated in the introduction, a typical metabolite study in drug discovery includes not only the qualitative identification of the major metabolites, but also a semi-quantitative estimation of the rate of the clearance for the parent drug. With the fast data acquisition obtained from the Xevo QTof MS, even for the narrow LC peaks delivered by UPLC, enough data points are obtained for quantitative estimation of the rate of disappearance for the parent drug and for the identification of metabolites, giving rise to an all-in-one approach that maximizes productivity. Figure 8 shows an overlay of one of the major metabolites of ritonavir (-dealkylated metabolite cleaving the 4-methyl-2-(propan-2-yl)-1,3-thiazole motif) over 4 hours with a clear display of the concentration increase over the time. 4 hr 2 hr 1 hr H H C CH 3 3 CH 3 0.5 hr S 0 hr Figure 8. Extracted ion chromatogram (XIC) at different time points for the -dealkylated metabolite of ritonavir..figure 7. Fragment Analysis window for MS E data review and data input into MassFragment. As a result, using the UPLC/MS E data acquisition strategy combined with MetaboLynx XS for data processing, the entire metabolite identification task can be accomplished from a single LC injection. This strategy also allows for a more conventional approach where precursor selection with the quadrupole (Q1) is utilized for MS/MS experiments.

Figures 9A and 9B show the disappearance curve for the parent drug and formation rates for the major metabolites, respectively. These were obtained with a single injection of each time point at a low incubation level, which is representative of the detected in vivo metabolite concentrations. The intrinsic clearance (CLint) obtained here is 2.09 µl/min/106 cells. The routes of the metabolism CC LUSI A fast, sensitive, and efficient Metabolite ID Workflow utilizing ACQUITY UPLC with the Xevo QTof MS, combined with MetaboLynx XS data processing, has been demonstrated to provide maximum productivity for metabolite identification. were also obtained at the same time, again helping to maximize The Xevo QTof MS, with its innovative Engineered Simplicity design the productivity. that makes exact mass MS more accessible, offers the best interface to UPLC. In addition to its exact mass capability, the Xevo QTof MS delivers high data acquisition speeds, up to 20 spectra/sec, and provides superb sensitivity in full MS scan and MS/MS modes. By using this UPLC/MS E data acquisition strategy, along with the chemically-intelligent MetaboLynx XS data processing workflow, the complete metabolite identification task can be accomplished from a single LC injection extremely rapidly. With multiple time-point samples injected, the rate and routes of metabolism of a target drug can be obtained with ease at very low incubation levels. This unique combination of an efficient Metabolite ID Workflow with powerful instrumentation and software enables laboratories to utilize resources more effectively, and decrease time to market. Figure 9A, above, disappearance curve for ritonavir. Figure 9B, below, formation rates for its major metabolites.

References 1. Bateman K, Castro-Perez JM, Wrona M, Shockcor JP, Yu K, balla R, icoll-griffith D. Rapid Commun. Mass Spec. 2007; 21 (9): 1485-96. 2. Mortishire-Smith RJ, Connor D, Castro-Perez JM, Kirby J. Rapid Commun. Mass Spec. 2005; 19 (18): 2659-70. 3. Mortishire-Smith RJ, Castro-Perez JM, Yu K, Shockcor JP, Goshawk J, Hartshorn MJ, Hill A. Rapid Commun. Mass Spec. 2009; 23 (7): 939-48. Waters, ACQUITY UPLC, and UPLC are registered trademarks of Waters Corporation. Xevo, MassLynx, MetaboLynx, MassFragment, and The Science of What s Possible is a trademark of Waters Corporation. All other trademarks are the property of their respective owners. 2009 Waters Corporation. Printed in the U.S.A. April 2009 720003025en AG-UM Waters Corporation 34 Maple Street Milford, MA 01757 U.S.A. T: 1 508 478 2000 F: 1 508 872 1990 www.waters.com