microrna 181 promotes prostate cancer cell proliferation by regulating DAX 1 expression

Similar documents
Original Article mir-181 regulation of BAX controls cisplatin sensitivity of prostate cancer cells

mir 375 inhibits the proliferation of gastric cancer cells by repressing ERBB2 expression

MiR-181a promotes epithelial to mesenchymal transition of prostate cancer cells by targeting TGIF2

Berberine Sensitizes Human Ovarian Cancer Cells to Cisplatin Through mir-93/ PTEN/Akt Signaling Pathway

Soft Agar Assay. For each cell pool, 100,000 cells were resuspended in 0.35% (w/v)

HEK293FT cells were transiently transfected with reporters, N3-ICD construct and

MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells

Oncolytic Adenovirus Complexes Coated with Lipids and Calcium Phosphate for Cancer Gene Therapy

MicroRNA 761 is downregulated in colorectal cancer and regulates tumor progression by targeting Rab3D

MicroRNA-204 targets signal transducer and activator of transcription 5 expression and inhibits proliferation of B-cell lymphoma cells

mir-542-3p targets sphingosine-1-phosphate receptor 1 and regulates cell proliferation and invasion of breast cancer cells

Effects of metallothionein-3 and metallothionein-1e gene transfection on proliferation, cell cycle, and apoptosis of esophageal cancer cells

Advances in Computer Science Research, volume 59 7th International Conference on Education, Management, Computer and Medicine (EMCM 2016)

Long non coding RNA GAS5 suppresses pancreatic cancer metastasis through modulating mir 32 5p/PTEN axis

CircHIPK3 is upregulated and predicts a poor prognosis in epithelial ovarian cancer

Profiles of gene expression & diagnosis/prognosis of cancer. MCs in Advanced Genetics Ainoa Planas Riverola

RNA extraction, RT-PCR and real-time PCR. Total RNA were extracted using

Supplementary Material

mir 483-5p promotes prostate cancer cell proliferation and invasion by targeting RBM5

CH Cho *, J Yu, WKK Wu 1,2

Annals of Oncology Advance Access published January 10, 2005

MicroRNA 98 suppresses cell growth and invasion of retinoblastoma via targeting the IGF1R/k Ras/Raf/MEK/ERK signaling pathway

Downregulation of microrna-196a inhibits human liver cancer cell proliferation and invasion by targeting FOXO1

Construction of a hepatocellular carcinoma cell line that stably expresses stathmin with a Ser25 phosphorylation site mutation

microrna Presented for: Presented by: Date:

TITLE: MiR-146-SIAH2-AR Signaling in Castration-Resistant Prostate Cancer

RESEARCH COMMUNICATION. sirna Mediated Silencing of NIN1/RPN12 Binding Protein 1 Homolog Inhibits Proliferation and Growth of Breast Cancer Cells

mirna Dr. S Hosseini-Asl

EXPERIMENTAL AND THERAPEUTIC MEDICINE 10: , 2015

Islet viability assay and Glucose Stimulated Insulin Secretion assay RT-PCR and Western Blot

LncRNA AWPPH promotes the growth of triple-negative breast cancer by. up-regulating frizzled homolog 7 (FZD7)

PUMA gene transfection can enhance the sensitivity of epirubicin-induced apoptosis of MCF-7 breast cancer cells

Mir-138-5p acts as a tumor suppressor by targeting pyruvate dehydrogenase kinase 1 in human retinoblastoma

RNA-Seq profiling of circular RNAs in human colorectal Cancer liver metastasis and the potential biomarkers

Mir-595 is a significant indicator of poor patient prognosis in epithelial ovarian cancer

mir-187 inhibits the growth of cervical cancer cells by targeting FGF9

Original Article Overexpression of mir-96 promotes cell proliferation by targeting FOXF2 in prostate cancer

Research Communication

York criteria, 6 RA patients and 10 age- and gender-matched healthy controls (HCs).

Low levels of serum mir-99a is a predictor of poor prognosis in breast cancer

mir-132 inhibits lung cancer cell migration and invasion by targeting SOX4

Supplemental Data. TGF-β-mediated mir-181a expression promotes breast cancer metastasis by targeting Bim.

MicroRNA-338-3p inhibits glucocorticoidinduced osteoclast formation through RANKL targeting

Supplementary information

mir-367 promotes uveal melanoma cell proliferation and migration by regulating PTEN

Supplementary Information POLO-LIKE KINASE 1 FACILITATES LOSS OF PTEN-INDUCED PROSTATE CANCER FORMATION

Marine Streptomyces sp. derived antimycin analogues. suppress HeLa cells via depletion HPV E6/E7 mediated by

ONCOLOGY LETTERS 15: , 2018

MicroRNA expression profiling and functional analysis in prostate cancer. Marco Folini s.c. Ricerca Traslazionale DOSL

microrna-200b and microrna-200c promote colorectal cancer cell proliferation via

Cellular Physiology and Biochemistry

Inhibition of mir-660-5p expression suppresses tumor development and metastasis in human breast cancer

MiRNA-202 impacts proliferation and apoptosis of granulose cells

A polymorphism site in the pre mir 34a coding region reduces mir 34a expression and promotes osteosarcoma cell proliferation and migration

INTERNATIONAL JOURNAL OF ONCOLOGY 54: , 2019

LncRNA LET function as a tumor suppressor in breast cancer development

Supplementary Materials and Methods

Long noncoding RNA linc-ubc1 promotes tumor invasion and metastasis by regulating EZH2 and repressing E-cadherin in esophageal squamous cell carcinoma

Supporting Information Table of content

MiR 7 inhibits progression of hepatocarcinoma by targeting KLF 4 and promises a novel diagnostic biomarker

CircMTO1 inhibits cell proliferation and invasion by regulating Wnt/β-catenin signaling pathway in colorectal cancer

Circular RNAs (circrnas) act a stable mirna sponges

Reduced mirna-218 expression in pancreatic cancer patients as a predictor of poor prognosis

MOLECULAR MEDICINE REPORTS 11: , YULIN XIONG, CHANGJIANG ZHANG, JING YUAN, YAN ZHU, ZHAOXIA TAN, XUEMEI KUANG and XIAOHONG WANG

Berberine inhibits Wilms' tumor cell progression through upregulation of Wilms' tumor gene on the X chromosome

Long non-coding RNA CCAT1/miR-218/ ZFX axis modulates the progression of laryngeal squamous cell cancer

Ling Xu, Wei-Qi Dai, Xuan-Fu Xu, Fan Wang, Lei He, Chuan-Yong Guo*

MiR-431 inhibits cell proliferation and induces cell apoptosis by targeting CDK14 in pancreatic cancer

mir-573 regulates melanoma progression by targeting the melanoma cell adhesion molecule

MicroRNA-30a functions as tumor suppressor and inhibits the proliferation and invasion of prostate cancer cells by down-regulation of SIX1

Supplementary Information Titles Journal: Nature Medicine

Long noncoding RNA CASC2 inhibits metastasis and epithelial to mesenchymal transition of lung adenocarcinoma via suppressing SOX4

mir 146a 5p targets interleukin 1 receptor associated kinase 1 to inhibit the growth, migration, and invasion of breast cancer cells

mir-204 suppresses non-small-cell lung carcinoma (NSCLC) invasion and migration by targeting JAK2

Silencing Dicer expression enhances cellular proliferative and invasive capacities in human tongue squamous cell carcinoma

Effect of lncrna LET on proliferation and invasion of osteosarcoma cells

microrna 761 regulates glycogen synthase kinase 3β expression and promotes the proliferation and cell cycle of human gastric cancer cells

Part-4. Cell cycle regulatory protein 5 (Cdk5) A novel target of ERK in Carb induced cell death

Original Article Up-regulation of mir-10a and down-regulation of mir-148b serve as potential prognostic biomarkers for osteosarcoma

mir-206 Expression Is Down-regulated in Estrogen Receptor A Positive Human Breast Cancer

Long noncoding RNA DARS-AS1 acts as an oncogene by targeting mir-532-3p in ovarian cancer

mir-125a-5p expression is associated with the age of breast cancer patients

Decreased expression of mir-490-3p in osteosarcoma and its clinical significance

LncRNA TUG1 promoted KIAA1199 expression via mir-600 to accelerate cell metastasis and epithelial-mesenchymal transition in colorectal cancer

http / /cjbmb. bjmu. edu. cn Chinese Journal of Biochemistry and Molecular Biology A431 . Western aza-dC FUT4-siRNA

MicroRNA 124 3p inhibits cell growth and metastasis in cervical cancer by targeting IGF2BP1

Doctoral Degree Program in Marine Biotechnology, College of Marine Sciences, Doctoral Degree Program in Marine Biotechnology, Academia Sinica, Taipei,

mir-26a inhibits invasion and metastasis of nasopharyngeal cancer by targeting EZH2

Research Article MiR-15b Targets Cyclin D1 to Regulate Proliferation and Apoptosis in Glioma Cells

Association of mir-21 with esophageal cancer prognosis: a meta-analysis

The inhibitory effect of mir-375 targeting sp1 in colorectal cancer cell proliferation

Original Article B7-H3 repression by mir-539 suppresses cell proliferation in human gliomas

Effect of Survivin-siRNA on Drug Sensitivity of Osteosarcoma Cell Line MG-63

Electronic Supplementary Information. Direct chemiluminescence detection of circulating. micrornas in serum samples using a single-strand specific

mir-19a promotes invasion and epithelial to mesenchymal transition of bladder cancer cells by targeting RhoB

The effect of mir-124-3p on cell proliferation and apoptosis in bladder cancer by targeting EDNRB

mir-101, downregulated in retinoblastoma, functions as a tumor suppressor in human retinoblastoma cells by targeting EZH2

Apigenin sensitizes BEL-7402/ADM cells to doxorubicin through inhibiting mir-101/nrf2 pathway

Downregulation of serum mir-17 and mir-106b levels in gastric cancer and benign gastric diseases

Expression of mir-146a-5p in patients with intracranial aneurysms and its association with prognosis

Transcription:

1296 microrna 181 promotes prostate cancer cell proliferation by regulating DAX 1 expression SHI JUN TONG *, JUN LIU *, XIANG WANG and LIAN XI QU Department of Urologic Surgery, Huashan Hospital Affiliated to Fudan University, Shanghai 200040, P.R. China Received January 10, 2014; Accepted May 19, 2014 DOI: 10.3892/etm.2014.1846 Abstract. micrornas (mirnas) are a class of short noncoding RNA molecules that have a critical role in the initiation and progression of types of human cancer, including prostate cancer. In the present study, the expression of mir 181 in prostate cancer tissues was evaluated and was demonstrated to be significantly upregulated in prostate cancer tissues compared with that in adjacent normal tissues. The results of in vitro MTT and BrdU incorporation assays, as well as cell cycle analysis, indicated that mir 181 overexpression markedly promoted the proliferation of LNCaP cells. Furthermore, mir 181 overexpression was found to promote the progression of LNCaP tumor growth in nude mice. Mechanistic studies demonstrated that dosage sensitive sex reversal, adrenal hypoplasia critical region, on chromosome X, gene 1 (DAX 1), a negative regulator of androgen receptor in prostate cancer, was inhibited by mir 181 overexpression. Therefore, the results from the present study suggest that mir 181 functions as a growth suppressive mirna during prostate cancer development. Introduction Prostate cancer, one of the most common types of cancer in males, has become a major public health concern (1). The molecular pathogenesis of prostate cancer is complicated and remains poorly understood (2). Therefore, the identification of novel molecular mechanisms may help to develop strategies for its diagnosis, treatment and prognosis. Recent studies have shown that micrornas (mirnas) have a critical role in the development of numerous different types of human cancer (3,4). mirnas regulate multiple Correspondence to: Dr Lian Xi Qu, Department of Urologic Surgery, Huashan Hospital Affiliated to Fudan University, 12 Wulumuqi Middle Road, Shanghai 200040, P.R. China E mail: qulianxi@medmail.com.cn * Contributed equally Key words: prostate cancer, cell proliferation, microrna, mir 181, DAX 1 genes by targeting mrnas, resulting in mrna degradation or translation repression (5). For example, mir 888 is a mirna secreted by prostate cells that promotes prostate cell growth and migration through the repression of the levels of protein produced by the tumor suppressor genes RBL1 and SMAD4 (6). Previous studies have demonstrated that the upregulation of hepatic mir 181 promotes the growth, clonogenic survival, migration and invasion of hepatocellular carcinoma cells (7,8). Furthermore, the expression level of mir 181 is significantly associated with overall survival in hematological malignancies and may be an important clinical prognostic factor for patients with hepatocellular carcinoma (9). However, the expression and function of mi 181 in prostate cancer has yet to be elucidated. Therefore, in the present study, the expression of mir 181 was determined in prostate cancer tissues. In addition, the proliferation of prostate cancer cells overexpressing mi R181 was analyzed in vivo and in vitro. Furthermore, the targets of mir 181 were investigated in order to determine the underlying mechanism of mir 181 in prostate cancer. Materials and methods Tissue samples and cell culture. A total of 20 prostate cancer samples and adjacent normal tissues were obtained from patients who underwent surgery at Huashan Hospital Affiliated to Fudan University (Shanghai, China). The present study was approved by the hospital institutional review board and written informed consent was obtained from each patient. LNCaP cells were provided by the Institute of Biochemistry and Cell Biology of Chinese Academy of Science (Shanghai, China). The cells were cultured in Dulbecco's modified Eagle's medium (Invitrogen Life Technologies, Carlsbad, CA, USA) supplemented with 10% fetal bovine serum (Invitrogen Life Technologies), 100 IU/ml penicillin and 100 µg/ml streptomycin sulfate. Cells were incubated at 37 C with 5% CO 2. RNA extraction and quantitative polymerase chain reaction (qpcr). Total RNA containing mirna and mrna was extracted from tissues or cells using TRIzol reagent (Invitrogen Life Technologies), in accordance with the manufacturer's instructions. To analyze mir 181 expression, specific stem loop reverse transcription primers (Invitrogen Life Technologies) were used. In order to determine the transcripts

TONG et al: microrna-181 PROMOTES PROSTATE CANCER CELL PROLIFERATION 1297 of the interest genes, qpcr was performed using a SYBR Green Premix Ex Taq (Takara, Dalian, China). The primer sequences were listed as follows: DAX-1 sense, 5'-AGCACAAATCAAG CGCAGG-3', antisense, 5'-GAAGCGCAGCGTCTTC AAC-3'; PSA sense, 5'-CTGCTGCACGTCAGTCAACTA-3', antisense: 5'-GAGGACTACACTGGTCTGGAAT-3'; CDK1 sense, 5'-AAACTACAGGTCAAGTGGTAGCC-3', antisense: 5'-TCCTGCATAAGCACATCCTGA-3' and CDK2 sense: 5'-CCAGGAGTTACTTCTATGCCTGA-3', antisense: 5' TTCATCCAGGGGAGGTACAAC-3'. qpcr was performed by TaqMan MicroRNA assay (Qiagen, Shanghai, China) using the Applied Biosystems 7300 system (Applied Biosystems, Foster City, CA, USA). The PCR conditions included an initial holding period at 95 C for 5 min, followed by a two-step PCR program consisting of 95 C for 5 sec and 60 C for 30 sec for 45 cycles. All samples were normalized against the internal control (U6 small nuclear RNA) and analyzed using the 2 ΔΔ Ct method. Cell proliferation and cell cycle assays. The viability of LNCaP cells was determined by assaying the reduction of 3-(4, 5-dimethylthiazol-2-yl)-2, 5-di-phenylte-trazolium bromide (MTT; Beyotime Company, Shanghai, China) to formazan. For the analysis of cell proliferation, cells were seeded onto 24 well plates. For the BrdU incorporation assays, a cell proliferation enzyme linked immunosorbent assay (ELISA; Beyotime, Shanghai, China) was used to analyze the incorporation of BrdU during DNA synthesis, in accordance with the manufacturer's instructions. Absorbance was measured at 450 nm using the Spectra Max 190 ELISA reader (Molecular Devices, Sunnyvale, CA, USA). For analysis of the cell cycle, cells were suspended in 0.5 ml solution containing 20 µg/ml propidium iodide and 50 µg/ml RNase, and then analyzed using flow cytometry (Becton Dickinson, San Jose, CA, USA). Histograms were used to represent the percentage of cells in each phase of the cell cycle (G0/G1, S and G2/M). microrna mimics and transfection. Human mir 181 mimics and negative controls (NC) were purchased from Qiagen (Shanghai, China). All transfections of LNCaP cells were performed using Lipofectamine 2000 (Invitrogen Life Technologies, Carlsbad, CA, USA), following the manufacturer's instructions. Western blot analysis. Total cell protein extracts were separated by 10% sodium dodecyl sulfate polyacrylamide gel electrophoresis, and transferred onto a polyvinylidene difluoride membrane. After blocking with 10% nonfat milk in phosphate buffered saline, the membranes were immunoblotted with antibodies as indicated, followed by horseradish peroxidase linked secondary antibodies (Cell Signaling Technology, Inc., Danvers, MA, USA). The signals were detected using a chemiluminescence detection kit (Millipore, Billerica, MA, USA). Anti dosage sensitive sex reversal, adrenal hypoplasia critical region, on chromosome X, gene 1 (DAX 1) and anti GAPDH antibodies were purchased from Abcam (Cambridge, MA, USA). Anti-PSA, CDK1 and CDK2 antibodies were purchased from Santa Cruz Biotechnology Inc. (Santa Cruz Biotechnology, CA, USA). Protein levels were normalized against those of GAPDH (Santa Cruz Biotechnology, Inc.). Figure 1. Expression levels of mir 181 in prostate cancer tissues. mir 181 expression was determined by quantitative polymerase chain reaction in human prostate cancer tissues and adjacent normal tissues (n=20). ** P<0.01, compared with normal tissues. Luciferase reporter assay. cdna fragments corresponding to the entire 3'-untranslated region (UTR) were amplified by qpcr from the total RNA extracted from LNCaP cells with KpnI and EcoRI linkers. The PCR products were cloned downstream of the Renilla luciferase open reading frame of the pmir-report (Qiagen), which also contained a constitutively expressed firefly luciferase gene that was used to normalize the transfections. For the luciferase reporter assays, the cells were seeded in 24-well plates and harvested 48 h after transfection. The wild type and mutant 3' untranslated region fragments from the human DAX 1 gene were cloned into pmir Report (Qiagen). Mutations were introduced in potential mir 181 binding sites using a site directed mutagenesis kit (Qiagen). Luciferase values were determined using the Dual Luciferase Reporter assay system (Promega Corporation, Madison, WI, USA). Tumor growth assay. Male BALB/c nude mice, aged 4 weeks, were purchased from the animal center of the Second Military Medical University (Shanghai, China). A total of 2x10 5 LNCaP cells stably expressing mir 181 or NC were injected subcutaneously into the dorsal flank of the mice. The mice were observed over 5 weeks for tumor formation. The mice were then sacrificed and the tumors were recovered and the wet weight of each tumor was determined. The tumor volume (mm 3 ) was calculated according to the following formula: Volume (mm 3 ) = 1/2 x length x width 2. The experimental protocol was approved by the Experimental Animal Care Commission of Huashan Hospital Affiliated to Fudan University. Statistical analysis. Differences between groups were analyzed using a Student's t test and expressed as the mean ± standard deviation from three independent experiments. P<0.05 was considered to indicate a statistically significant difference. Statistical analyses were performed using GraphPad Prism version.0 software (GraphPad Software, Inc., La Jolla, CA, USA). Results mir 181 is upregulated in prostate cancer tissues. The expression of mir 181 was analyzed in prostate cancer tissues and adjacent normal tissues using qpcr. It was found that mir 181

1298 A B C D Figure 2. mir 181 overexpression promotes prostate cancer cell proliferation. (A) Expression levels of mir 181 following transfection with mir 181 mimics or NC in LNCaP cells after 24 h. (B) The cell viability of LNCaP cells following transfection with mir 181 mimics or NC in LNCaP cells after 36 h, analyzed using the MTT assay. (C) The proliferative potential of LNCaP cells transfected with mir 181 mimics or NC in LNCaP cells after 36 h, analyzed using the BrdU assay.(d) The cell cycle phases of LNCaP cells transfected with mir 181 mimics or NC were analyzed using flow cytometry. NC, negative controls. A B C Figure 3. mir 181 overexpression promotes tumor growth in vivo. (A C) LNCaP cells stably transfected with mir 181 or NC were subcutaneously injected into nude mice (n=5 for each group) and tumor growth was monitored. (A) Representative images of the tumors were taken 5 weeks following injection, and the tumor (B) volume and (C) weight were determined. NC, negative control. is significantly upregulated in cancer tissues compared with that in normal adjacent tissues, as shown in Fig. 1. mir 181 overexpression promotes prostate cancer cell proliferation in vitro. Since mir 181 was found to be upregulated in prostate cancer tissues, the effect of mir 181 on prostate cancer cell growth was investigated. LNCaP cells were transfected with mir 181 mimics or NC (Fig. 2A). The results demonstrated that cell growth was significantly increased in mir 181 overexpressing cells compared with that of their corresponding controls, measured using the MTT and BrdU assays (Fig. 2B and C). Furthermore, mir 181 overexpression decreased the percentage of cells in the G1 phase and increased the percentage of cells in the S phase (Fig. 2D). mir 181 overexpression promotes tumor growth in vivo. To further investigate the function of mir 181 on tumor growth in vivo, LNCaP cells with stable overexpression of mir 181 were generated and injected subcutaneously into the dorsal flank of nude mice. Tumor growth was closely monitored for 5 weeks. The tumor size and volume were markedly increased in mice injected with LNCaP cells overexpressing mir 181 compared with those in control mice (Fig. 3A and B). In addition, the average tumor weight was significantly increased by mir 181 overexpression (Fig. 3C), suggesting that mir 181 may promote tumor growth in vivo. mir 181 targets the DAX 1 3' untranslated region (3' UTR) and downregulates its expression. In order to understand the underlying mechanism, potential targets of mir 181 were determined using TargetScan software. DAX 1 was identified as a potential target of mir 181. Notably, the 3' UTR of DAX 1 mrna was observed to contain a complementary site for the seed region of mir 181 (Fig. 4A). To investigate

TONG et al: microrna-181 PROMOTES PROSTATE CANCER CELL PROLIFERATION 1299 A C B Figure 4. mir 181 represses DAX 1 expression in LNCaP cells. (A) Prediction of mir 181 binding sites in the 3' UTRs of human DAX 1 gene using TargetScan software. Potential binding sites are highlighted in bold. (B) Luciferase reporter assays in LNCaP cells. Cells were transfected with wild type or mutant DAX 1 3' UTR reporter constructs together with mir 181 mimics or NC. (C) Protein and (D) mrna levels of DAX 1 were analyzed using western blot analysis and quantitative polymerase chain reaction in LNCaP cells transfected with mir 181 mimics or NC for 36 h. DAX 1, dosage sensitive sex reversal, adrenal hypoplasia critical region, on chromosome X, gene 1; UTR, untranslated region; NC, negative control. A B Figure 5. mir 181 regulates down stream target genes of the androgen receptor. (A) mrna and (B) protein levels of PSA, CDK1 and CDK2 were analyzed using quantitative polymerase chain reaction and western blot analysis in LNCaP cells transfected with mir 181 mimics or NC for 36 h.psa, prostate-specific antigen; CDK, cyclin-dependent kinase; NC, negative control. whether DAX 1 may be directly targeted by mir 181, a luciferase reporter vector was constructed, containing the putative mir 181 binding sites within the DAX 1 3' UTR. The results showed that mir 181 overexpression significantly decreased the luciferase activity, and mutations in the mir 181 binding site from the DAX 1 3' UTR abolished this effect, suggesting that mir 181 directly inhibited DAX 1 expression by targeting the 3' UTR (Fig. 4B). Furthermore, mir 181 mimics decreased the endogenous protein levels of DAX 1, as indicated by western blot analysis (Fig. 4C), while the DAX 1 mrna levels remained unchanged (Fig. 4D). Therefore, these results suggest that mir 181 may negatively regulate DAX 1 expression at the translational level in LNCaP cells. DAX1 has been previously demonstrated to repress the transcriptional activity of the androgen receptor (AR) in LNCaP cells (10). In the present study, elevated expression levels of AR target genes and proteins, including prostate specific antigen, cyclin-dependent kinase (CDK) 1 and CDK2, was observed in LNCaP cells overexpressing mir 181 (Fig. 5). In combination, these results further confirm that DAX 1 is an important target gene of mir 181 in prostate cancer cells. Discussion It has been previously demonstrated that several mirnas are dysregulated in prostate cancer tissues or cell lines, and they have been shown to be associated with prostate cancer progression and disease outcome (11 13). In the present study, it was demonstrated for the first time, to the best of our knowledge, that mir 181 overexpression may promote cell proliferation and cell cycle progression in LNCaP cells. In addition, mir 181 overexpression was observed to promote the growth of LNCaP tumors in nude mice. Therefore, mir 181 may be an onco mirna in the development of prostate cancer. Furthermore, in the present study DAX 1 was identified as a direct target of mir 181 in prostate cancer cells. DAX 1, a

1300 member of the orphan nuclear receptor family, is known to have an important role during development, particularly in gender determination and steroidogenesis (14,15). In humans, DAX 1 gene mutations usually lead to the X linked congenital adrenal hypoplasia and primary adrenal insufficiency associated with hypogonadotropic hypogonadism (16,17). With regard to the types of cancer observed in humans, DAX 1 expression has been reported in endocrine and sex steroid dependent neoplasms, including adrenocortical, pituitary, endometrial and ovarian tumors (18 20). For example, DAX 1 overexpression has been demonstrated to repress estrogen dependent breast cancer cell proliferation via the inhibition of aromatase expression (19). In addition, DAX 1 expression has been observed to be significantly downregulated in prostate cancer (10). In a previous study, at the molecular level, DAX 1 was demonstrated to interact with the AR and inhibit its nuclear localization. As a result, DAX 1 was found to repress androgen dependent gene transcription in prostate cancer cells (10). The results from the present study are in accordance with these findings. They demonstrate that mir 181 overexpression causes the upregulation of AR target genes, suggesting that the proliferative role of mir 181, at least in part, may be dependent on androgen signaling. In conclusion, the present study provides a novel role for mir 181 in prostate cancer cell proliferation. The results suggest that mir 181 may be a potential therapeutic target for the treatment of prostate cancer in the future. References 1. Emery JD, Shaw K, Williams B, et al: The role of primary care in early detection and follow up of cancer. Nat Rev Clin Oncol 11: 38 48, 2014. 2. Hutchinson L: Genetics: tracking clonal origin of prostate cancer. Nat Rev Clin Oncol 11: 4, 2014. 3. Ling H, Fabbri M and Calin GA: MicroRNAs and other non coding RNAs as targets for anticancer drug development. Nat Rev Drug Discov 12: 847 865, 2013. 4. van Kouwenhove M, Kedde M and Agami R: MicroRNA regulation by RNA binding proteins and its implications for cancer. Nat Rev Cancer 11: 644 656, 2011. 5. Sun K and Lai EC: Adult specific functions of animal micrornas. Nat Rev Genet 14: 535 548, 2013. 6. Lewis H, Lance R, Troyer D, et al: mir 888 is an expressed prostatic secretions derived microrna that promotes prostate cell growth and migration. Cell Cycle 13: 227 239, 2014. 7. Ji J, Yamashita T, Budhu A, et al: Identification of microrna 181 by genome wide screening as a critical player in EpCAM positive hepatic cancer stem cells. Hepatology 50: 472 480, 2009. 8. Wang B, Hsu SH, Majumder S, et al: TGFbeta mediated upregulation of hepatic mir 181b promotes hepatocarcinogenesis by targeting TIMP3. Oncogene 29: 1787 1797, 2010. 9. Lin S, Pan L, Guo S, et al: Prognostic role of microrna 181a/b in hematological malignancies: a meta analysis. PLoS One 8: e59532, 2013. 10. Holter E, Kotaja N, Mäkela S, et al: Inhibition of androgen receptor (AR) function by the reproductive orphan nuclear receptor DAX 1. Mol Endocrinol 16: 515 528, 2002. 11. Hessels D and Schalken JA: Urinary biomarkers for prostate cancer: a review. Asian J Androl 15: 333 339, 2013. 12. Sita Lumsden A, Dart DA, Waxman J and Bevan CL: Circulating micrornas as potential new biomarkers for prostate cancer. Br J Cancer 108: 1925 1930, 2013. 13. Kim WT and Kim WJ: MicroRNAs in prostate cancer. Prostate Int 1: 3 9, 2013. 14. McCabe ER: DAX1: Increasing complexity in the roles of this novel nuclear receptor. Mol Cell Endocrinol 265 266: 179 182, 2007. 15. El Khairi R, Martinez Aguayo A, Ferraz de Souza B, Lin L and Achermann JC: Role of DAX 1 (NR0B1) and steroidogenic factor 1 (NR5A1) in human adrenal function. Endocr Dev 20: 38 46, 2011. 16. Li J, Lu Y, Liu R, et al: DAX1 suppresses FXR transactivity as a novel co repressor. Biochem Biophys Res Commun 412: 660 666, 2011. 17. Jadhav U, Harris RM and Jameson JL: Hypogonadotropic hypogonadism in subjects with DAX1 mutations. Mol Cell Endocrinol 346: 65 73, 2011. 18. Chae BJ, Lee A, Bae JS, Song BJ and Jung SS: Expression of nuclear receptor DAX 1 and androgen receptor in human breast cancer. J Surg Oncol 103: 768 772, 2011. 19. Lanzino M, Maris P, Sirianni R, et al: DAX 1, as an androgen target gene, inhibits aromatase expression: a novel mechanism blocking estrogen dependent breast cancer cell proliferation. Cell Death Dis 4: e724, 2013. 20. Lalli E and Alonso J: Targeting DAX 1 in embryonic stem cells and cancer. Expert Opin Ther Targets 14: 169 177, 2010.