Does reconstruction of isolated chronic posterior cruciate ligament injuries restore normal knee function?

Similar documents
Yuichiro Maruyama 1*, Katsuo Shitoto 1, Tomonori Baba 2 and Kazuo Kaneko 2

Optimal management of posterior cruciate ligament injuries: current perspectives

ACL Athletic Career. ACL Rupture - Warning Features Intensive pain Immediate swelling Locking Feel a Pop Dead leg Cannot continue to play

Impact of surgical timing on the clinical outcomes of anatomic double-bundle anterior cruciate ligament reconstruction

All-Soft Tissue Quadriceps Tendon Autograft for Anterior Cruciate Ligament Reconstruction: Short to Intermediate-Term Clinical Outcomes

A Comparison of Arthroscopically Assisted Single and Double Bundle Tibial Inlay Reconstruction for Isolated Posterior Cruciate Ligament Injury

Kohei Kawaguchi, Shuji Taketomi, Hiroshi Inui, Ryota Yamagami, Kenichi Kono, Keiu Nakazato, Kentaro Takagi, Manabu Kawata, Sakae Tanaka

Comparative study of sensitivity and specificity of MRI versus GNRB to detect ACL complete and partial tears

Anterior Cruciate Ligament (ACL) Injuries

3/21/2011 PCL INJURY WITH OPERATIVE TREATMENT A CASE STUDY PCL PCL MECHANISM OF INJURY PCL PREVALENCE

Knee Surg Relat Res 2011;23(4): pissn eissn Knee Surgery & Related Research

Disclosures. Outline. The Posterior Cruciate Ligament 5/3/2016

Cronicon ORTHOPAEDICS

ARTICLE IN PRESS. Technical Note

Management of neglected ACL avulsion fractures: a case series and systematic review

vs combined). The treatment options (conservative or surgical) are still a topic of debate.

Early tunnel enlargement after arthroscopic ACL reconstructions

Original Article A Study on the Results of Reconstructing Posterior Cruciate Ligament Using Graft from Quadriceps Muscle Tendon

Lateral ligament injuries of the knee

Endoscopically-assisted single-bundle posterior cruciate ligament reconstruction

Original Article Clinics in Orthopedic Surgery 2013;5:

Influence of Posterior Tibial Slope & Meniscal Tears on Preoperative Laxity in ACL-Deficient Knees

Anterior Cruciate Ligament Surgery

Evaluation of Arthroscopic Anterior Cruciate Ligament Reconstruction using Hamstring Graft

SPORTS SURGERY. Written by Marc Martens, Qatar

Functional outcome of arthroscopic anterior cruciate ligament reconstruction using semitendinosus autograft A prospective study

ACL AND PCL INJURIES OF THE KNEE JOINT

3/13/2018. Common Options. ACL Graft Selection in When my Cojones Are On the Line - What I Do in ACL Reconstruction

Disclosures. Background. Background

Proprioception and Clinical Results of Anterolateral Single-Bundle Posterior Cruciate Ligament Reconstruction with Remnant Preservation

Figure 3 Figure 4 Figure 5

Why anteromedial portal is the best

TABLE E-1 Search Terms and Number of Resulting PubMed Search Results* Sear Search Terms

Bone patellar tendon bone autograft versus LARS artificial ligament for anterior cruciate ligament reconstruction

Current Concepts for ACL Reconstruction

Faculty: Konsei Shino; Takeshi Muneta; Freddie Fu; Pascal Christel

Medical Practice for Sports Injuries and Disorders of the Knee

Human ACL reconstruction

Original Article Comparison of the operation of arthroscopic tibial inlay and traditional tibial inlay for posterior cruciate ligament reconstruction

W. Dilworth Cannon, M.D. Professor of Clinical Orthopaedic Surgery University of California San Francisco

Original Research Article. Nataraj A. R. 1 *, Nag H. L. 2, Rastogi S. 2, Devdutt Suhas Neogi 3

Double Bundle ACL Reconstruction using the Smith & Nephew Outside-In Anatomic ACL Guide System

Cartilage Repair Center Brigham and Women s Hospital Harvard Medical School

Treatment of meniscal lesions and isolated lesions of the anterior cruciate ligament of the knee in adults

An Institution-Specific Analysis of ACL Reconstruction Failure

The authors declare that there was no conflict of interest in conducting this work

Posterior cruciate ligament reconstruction via tibial inlay technique in multiligament knee injuries

Reconstruction of the Ligaments of the Knee

Anterior Tibial Subluxation with ACL Deficient Knees influences the Knee Stability after ACL Reconstruction.

LARS (Ligament Augmentation & Reconstruction System) Literature

Save the meniscus Mais pourquoi?

Comparison of high-flex and conventional implants for bilateral total knee arthroplasty

Knee Dislocation: Spectrum of Injury, Evolution of Treatment & Modern Outcomes

Where to Draw the Line:

Conservative treatment

Five year results of the first ten ACL patients treated with dynamic intraligamentary stabilisation

Does Cortical Non-Contact or Delayed Contact of an Adjustable-loop Femoral Button Affect Knee Stability after ACL Reconstruction?

Radiological Study of Anterior Cruciate Ligament of the Knee Joint in Adult Human and its Surgical Implication

Arthroscopic All-Inside Anterior Cruciate Ligament Reconstruction: Allograft versus Hamstring Autograft, a Randomized Controlled Pilot Study

Darren L. Johnson, M.D. Professor and Chairman Medical Director of Sports Medicine University of Kentucky School of Medicine

OMICS - 3rd Int. Conference & 2

Chronic patellar dislocation in adults

Arthroscopic Anterior Cruciate Ligament Reconstruction Using a Flexible Guide Pin With a Rigid Reamer AJO

Fibular collateral ligament reconstruction of knee using titanium button: a new fixation technique and an outcome of 35 cases

Arthrosis of the knee in chronic anterior laxity

ACL Rehabilitation and Return To Play

Comparison of effects of Mckenzie exercises and conventional therapy in ACL reconstruction on knee range of motion and functional ability

BAD RESULTS OF CONSERVATIVE TREATMENT OF ACL TEARS IN CHILDREN. Guy BELLIER PARIS France

*smith&nephew ENDOBUTTON CL. Knee Series Technique Guide. Fixation System

CIC Edizioni Internazionali. J oints. Surgical treatment of partial anterior cruciate ligament lesions: medium-term results. Abstract.

Outcomes for Surgical Treatment of Posterolateral Instability of the Knee

Bicruciate ligament lesions and dislocation of the knee: Mechanisms and classification

Double Bundle PCL Reconstruction. Surgical Technique

Comparison of Postoperative Outcomes for Medial Meniscal Ramp Lesions between Left without Repair and All-Inside Suture

ACL INJURIES WHEN TO OPERATE

Posterior cruciate ligament (PCL) reconstructions

THE TREATMENT OF KNEE LIGAMENT INJURIES. Ziali Sivardeen

UNUSUAL ACL CASE: Tibial Eminence Fracture in a Female Collegiate Basketball Player

Remnant Preservation in ACL Reconstruction: Is it Worth Doing?

Primary Tunnel Dilatation in Tibia, An Unrecognised Complication of ACL Reconstruction

Biologics in ACL: What s the Data?

What is the most effective MRI specific findings for lateral meniscus posterior root tear in ACL injuries

Validity of GNRB Ò arthrometer compared to Telos TM in the assessment of partial anterior cruciate ligament tears

Comparative study of anterior cruciate ligament reconstruction versus conservative treatment among non-athletes: A 10-years follow-up

Associations between isolated bundle tear of anterior cruciate ligament, time from injury to surgery, and clinical tests

Pseudo-arthrosis repair of a posterior cruciate ligament avulsion fracture

to the setting in which the patient is evaluated. Athletes are more likely. to sustain "isolated" PCL injuries as a result of a hyperflexion

Injury to the posterolateral ligament structures of the

Michael Elias Hantes Æ Vasilios C. Zachos Æ Athanasios Liantsis Æ Aaron Venouziou Æ Apostolos H. Karantanas Æ Konstantinos N.

Carlos Eduardo Franciozi Rogério T. De Carvalho Yasuo Itami Michelle McGarry Sheila Ingham Rene Abdalla James Tibone Thay Q. Lee

Pearls and Pitfalls of Single-bundle Transtibial Posterior Cruciate Ligament Reconstruction

Incidence of graft rupture 15 years after bilateral anterior cruciate ligament reconstructions

Graft Choices for ACL: Which is Best?

ACL RECONSTRUCTION HAMSTRING METHOD. Presents ACL RECONSTRUCTION HAMSTRING METHOD. Multimedia Health Education

KNEE LIGAMENT RECONSTRUCTION

Bilateral Simultaneous Anterior Cruciate Ligament Injury: A Case Report and National Survey of Orthopedic Surgeon Management Preference

Jia Li 1, Yongqian Li 1, Jingchao Wei 2, Jianzhao Wang 1, Shijun Gao 1 and Yong Shen 1*

Midterm Results of Remnant Preserving ACL Reconstruction, Using Hamstring Tendon Autograft and a Special Surgical Technique

CIC Edizioni Internazionali. MRI evaluation to predict tendon size for knee ligament reconstruction. Original article. Introduction.

Rehabilitation Guidelines for Anterior Cruciate Ligament (ACL) Reconstruction

Transcription:

Orthopaedics & Traumatology: Surgery & Research (2010) 96, 388 393 ORIGINAL ARTICLE Does reconstruction of isolated chronic posterior cruciate ligament injuries restore normal knee function? A. Wajsfisz a,, P. Christel b, P. Djian a a Goethe Medical Office, 23, avenue Niels, 75017 Paris, France b Riyadh, Saudi Arabia Accepted: 1 st March 2010 KEYWORDS Posterior cruciate ligament reconstruction; Chronic posterior instability Summary Introduction: Isolated posterior laxity is most often cared for with conservative functional treatment. However, when there is pain or instability, surgical treatment can legitimately be proposed. The objective of this study was to assess the results of surgical treatment for chronic isolated posterior laxity. Hypothesis: Surgical treatment of direct posterior laxity re-establishes sufficient anatomical integrity to stabilize and provide good function to the knee. Material and methods: This was a retrospective, continuous, single-operator study. Eleven operated patients were retained for this study, all followed up a mean 20.9 months, with a minimum follow-up of 1 year. Subjective and clinical assessments were carried out using the International Knee Documentation Score (IKDC) score. Surgical correction of posterior laxity was measured clinically and radiologically. Results: The subjective IKDC score increased from 53 preoperatively to 68.5 at the last followup (P = 0.006). For the objective IKDC score, all knees were classified C or D preoperatively; at the last follow-up, six were A or B and none D. All the knees had preoperative Clancy grade 2 or 3 laxity; after surgery, there were three. According to the IKDC laxity score, eight knees were classified A or B at the last follow-up. The radiographic workup noted a 48.6% (P = 0.05) posterior laxity correction on the TELOS TM test. Discussion: Posterior cruciate ligament reconstruction provides partial correction of posterior laxity. However, the subjective result remains insufficient, providing acceptable function for daily life activities but not sports activities. Level of evidence: Level IV, retrospective study. 2010 Elsevier Masson SAS. All rights reserved. Corresponding author. 25, avenue Robert-André-Vivien, 94160 Saint-Mandé, France. Tel.: +33 6 63 12 93 42. E-mail address: aw0@free.fr (A. Wajsfisz). 1877-0568/$ see front matter 2010 Elsevier Masson SAS. All rights reserved. doi:10.1016/j.otsr.2010.03.011

Reconstruction of isolated chronic posterior cruciate ligament injuries 389 Introduction Table 1 Clancy classification (90 knee flexion). Direct posterior laxity poses a different problem from postero-posterolateral laxity. In the majority of cases, functional treatment is recommended. However, in some cases, notably when there is pain or instability, surgical treatment can be proposed. Even though the level of evidence reported in the literature is insufficient, the long-term natural history of posterior laxity, usually well tolerated, can develop into osteoarthritis [1], medial tibiofemoral osteoarthritis [2] and/or patellofemoral osteoarthritis [3,4]. The physiological position of the tibia under the femur is maintained by the cruciate ligaments. The posterior cruciate ligament (PCL) is the main ligament preventing the tibia sliding back. When this ligament presents an isolated lesion, direct posterior laxity (DPL) can appear. Surgical reconstruction aims to reduce this posterior drawer. The objective of this study was to evaluate the surgical treatment of DPLs. We tested the hypothesis that surgical DPL treatment re-establishes sufficient anatomical integrity to stabilize and provide good function to the knee. To respond to this question, we conducted a retrospective study in a series of patients with a minimum follow-up of 1 year. Our main evaluation criterion was the knee s functional state based on both a subjective and a clinical examination. The secondary criterion was the correction of the laxity as evaluated by clinical and radiological examination. Material and methods This was a retrospective, continuous study in which all patients operated between September 1995 and November 2003 for isolated, chronic posterior laxity by one of the senior surgeons (PC) were reviewed. The inclusion criteria were patients operated for DPL with a minimum follow-up of 12 months. These were patients who had a clinical repercussion from their PCL rupture, either medial tibiofemoral or patellofemoral pain and/or functional instability with the sensation of the knee sliding towards the back. The exclusion criteria were rupture of both cruciate ligaments, combined rupture of the PCL in the posteromedial plane and/or the posterolateral plane, the presence of femorotibial arthritis, or a posterior drawer that could not be reduced at the clinical examination. Eleven patients (seven males and four females), mean age, 31.5 years (range, 19.5 45.3 years), were retained. In five patients, the lesional mechanism was a traffic accident and in six a sports accident. The clinical diagnosis of PCL rupture for all the patients included a posterior drawer test at 90 flexion in differ- Grade 0 Normal knee 1 Injuries to the anterior tibial crest remained 5 mm anterior to the femoral condyles, but had dropped back compared to the contralateral normal knee 2 The tibial crest was flushed with the femoral condyles. The posterior tibial displacement is between 5 and 10 mm 3 The tibial crest lay behind the femoral condyles. The posterior tibial displacement is greater than 10 mm ent rotations and in external and then internal rotation [5]. Spontaneous posterior subluxation of the tibia quantified the severity of the laxity according to the Bisson and Clancy classification [6] (Table 1). Each clinical examination was recorded on an International Knee Documentation Committee (IKDC) chart [7]. A subjective IKDC assessment quantified the knee function with a score ranging from 0 to 100. Differential posterior laxity compared to the healthy side was quantified using two dynamic X-rays, one posterior stress X-ray using the TELOS TM device with a 25-kg load applied and the other with the hamstring muscles contracted. For each dynamic X-ray, posterior tibial translation was measured at the posterior intercondylar area compared to the posterior condyles. After 2000, the axial view 70 flexion as described by Puddu et al. [8] was added. The frontal axis was evaluated using a lower-limb X-ray with load. All patients had arthroscopic double-bundle PCL ligament reconstruction [9 14]. The transplant was a bone patellar tendon bone transplant in one case and a quadriceps tendon graft in the 10 other cases. No peripheral reconstruction or tibial osteotomy was performed. The patients followed a strict rehabilitation protocol based on closed-kinetic chain exercises [15 17]. The patients were in immediate total weight bearing with a custom-designed adjustable articulated knee brace. The open-kinetic chain exercises of the hamstrings began only after the fourth postoperative month. All patients were reviewed with a mean follow-up of 20.9 months (range, 12 41 months) with a subjective IKDC questionnaire and a clinical examination recorded on the IKDC form. Dynamic X-rays (TELOS TM and contracted hamstrings) and an axial view 70 were also taken. We defined gain in laxity by the differential between the measurements Table 2 Preoperative and postoperative X-ray assessment (mm) and gain in knee laxity. Preoperative Postoperative Gain (%) ** HC 90 6.9 mm (1 14) 4.4 mm (1 13) 36.2 NS Posterior TELOS TM 90 3.7 mm ( 3 to 9) 1.9 mm ( 2 to 6) 48.6 0.05* AV 70 7.5 mm (3 17) 4.8 mm ( 4 to 10) 36 NS *P < 0.05 is significant; ** P-value calculated with Wilcoxon nonparametric test; NS: not significant; HC: hamstring contraction; AV: axial view.

390 A. Wajsfisz et al. of the preoperative and postoperative differentials recalculated to the preoperative differential measurements. Statistical analysis was carried out using Stat View TM 5.0.0 (SAS Institute NC 1992 1998, Cary, NC, USA). Paired data were analyzed within each group using the nonparametric Wilcoxon. The significance threshold chosen was 5%. Results Complications No complications were observed. Subjective assessment The mean subjective IKDC score increased from 53 (range, 25 98) preoperatively to 68.5 (range, 22 94) at the last follow-up (P = 0.066). One patient s subjective score worsened by more than 20 points, even though laxity had improved both clinically and radiologically. The subjective IKDC score was compared to the IKDC symptom score: at the last follow-up, nine patients no longer presented pain and two had retained some noninvalidating pain. The analysis of the IKDC questionnaire brought out resuming sports activities as a factor limiting a very good result. Figure 2 Clancy s classification. Objective clinical examination The mean preoperative mobility values were 4 extension and 130 flexion. At the last follow-up, they were 2 extension and 128 flexion. The overall clinical IKDC results are presented in Fig. 1. Before surgery, seven knees were classified C and four D; at the last follow-up, six knees were classified A or B and five C. Figure 3 score. Laxity assessment International Knee Documentation Score laxity On the Clancy classification (Fig. 2), preoperatively, nine knees were grade 2 and two grade 3. At the last follow-up, two knees had no spontaneous posterior drawer, six were grade 1, and three grade 2. According to the IKDC laxity score (Fig. 3), preoperatively, three knees had laxity classified D and eight classified C; at the last follow-up, eight had laxity graded A or B and none was graded D. The gain in laxity on the TELOS TM stress test (Table 2) was 48.6% (p = 0.05). The gains calculated on the 70 axial films and with the hamstring muscles contracted were 36% and 36.2%, respectively. Discussion Figure 1 Overall International Knee Documentation Score. Surgical treatment of DPL with intra-articular PCL reconstruction corrects posterior drawer with a mean subjective IKDC score of 68.5, 73% good to very good objective clinical results, and a significant gain in radiological laxity of 49% on the posterior TELOS TM test. The strong points of this study are the single-observer clinical evaluation and an unequivocal surgical tech-

Table 3 Literature review. Author Journal Year Study design n Graft Technique Follow-up (months) Wu et al. [25] Arthroscopy 2007 Prospective 22 QT Arthroscopy 66 (60 76) Chan et al. [19] Arthroscopy 2006 Prospective 20 HT 4 Arthroscopy 40 (36 50) Chen [20] Arthroscopy 2002 Retrospective 24 QT Arthroscopy 30 (24 36) Chen [20] Arthroscopy 2002 Retrospective 30 HT 4 Arthroscopy 26 (24 30) Ahn et al. [18] Arthroscopy 2005 Retrospective 18 HT 4 Arthroscopy 35 (28 55) Ahn et al. [18] Arthroscopy 2005 Retrospective 18 Achilles allog. Arthroscopy 27 (24 36) Deehan [21] Arthroscopy 2003 Prospective 27 HT 4 Arthroscopy 40 (24 64) Zhao et Huangfu [26] Knee 2007 Retrospective 21 HT 4 Arthroscopy 31 Zhao et Huangfu [26] Knee 2007 Retrospective 22 HT 7 Arthroscopy 30 Hermans. et al. [22] Am J Sp Med 2009 Retrospective 22 BTB/HT/Achilles allog. Arthroscopy 109 (78 151) Garofalo et al. [27] Arthroscopy 2006 Retrospective 15 BTB + HT Arthroscopy 38 (24 60) Lim et al. [23] KSSTA 2009 Retrospective 22 Achilles allog. Arthroscopy 33 (24 60) Sekiya et al. [24] Arthroscopy 2005 Retrospective 21 Achilles allog. Arthroscopy 71 (31 132) Our study OTSR 2010 Retrospective 11 QT/BTB Arthroscopy 21 (12 41) QT: quadriceps tendon; HT: hamstring tendon; BTB: bone tendon bone; Achilles allog.: Achilles allograft. Table 4 Literature outcomes of DPL surgical treatment. Author Lysholm Tegner Subjective IKDC a Objective IKDC Clancy TELOS TM (mm) Pre FU Pre FU C/D pre A/B FU C/D pre A/B FU 3+4Pre 1+2FU Pre FU Wu et al. [25] 67 89 3 6 82 % 100 % 82 % Chan et al. [19] 63 93 3 6.3 85 % 100 % 85 % 100 % 95 % Chen et al. [20] 90 86 % 82 % Chen et al. [20] 91 85 % 81 % Ahn et al. [18] 68.2 90.1 100 % 89 % 14.3 2.2 Ahn et al. [18] 68.6 85.8 100 % 78 % 13.8 2.9 Deehan et al. [21] 64 94 77 % 92 % 100 % 67 % Zhao et Huangfu [26] 83 76 % 100 % 76 % Zhao et Huangfu [26] 92 91 % 100 % 91 % Hermans et al; [22] 50 75 5.7 38 % 65 4.7 Garofalo et al. [27] 61 87.5 2 7.9 37 % 66 100 % 61 % 100 % 87 % 12.6 5.9 Lim et al. [23] 64 88 3 6 100 % 88 % 11 3 Sekiya et al. [24] 57 % 50 % Our study 53 68.5 100 % 54 % 100 % 79 % 3.7 1.9 IKDC: International Knee Documentation score; pre: preoperative; FU: follow-up; QT: quadriceps tendon; HT: hamstring tendon; BTB: bone tendon bone; Achilles allog: Achilles allograft. a IKDC subjective results are expressed as a score out of 100 or in % of A/B and C/D classification. Reconstruction of isolated chronic posterior cruciate ligament injuries 391

392 A. Wajsfisz et al. nique performed by a single operator. The multiplicity of the complementary examinations applied to all the patients has made it possible to cross the results. The study s main limitations include its retrospective design, the short follow-up period, and the small number of patients, which precluded establishing normal variables within this series and thus improve the significance of the results. Ten studies [18 27] have reported the surgical results of DPL (Tables 3 and 4). They all report cohorts consisting of 15 to 30 patients, underscoring the rarity of the surgical indication in these DPL cases. All surgical treatments were arthroscopic and the different grafts involved the quadriceps tendon, the hamstring tendons, the patellar tendon, or Achilles tendon allografts. The results were equivalent for all types of graft [18,20,26]. The mean follow-up varied from 26 months [20] to 109 months [22] with a minimum follow-up of 24 months; our series was limited to a mean follow-up of 20.9 months with a 12-month minimum. The subjective Lysholm score [28] was applied in nine cases out of 10 and the Tegner score [29] in five cases out of 10; we did not use these scores in our study because we found them to be less well adapted to this population. The subjective IKDC is distributed either as A, B, C, D or as a recalculated score as in our series. Hermans [22] and Garofalo et al. [27] presented IKDC scores of 65 and 66, respectively, at the last follow-up, comparable to our result. Correction of posterior drawer according to the Clancy classification was studied by Chan et al. [19], Zhao et Huangfu [26], Garofalo et al. [27], and Sekiya et al. [24]: the percentage of patients classified in stage 1 or 2 at the last follow-up varied from 50% [24] to 95% [19]; it was 79% in our series. As for the TELOS TM posterior stress radiographic evaluation, interpretation of the results reported in the literature is delicate. Several series reported preoperative side to side difference greater than 10 mm: this level of differential raises the question of isolated PCL rupture. Ahn et al. [18] presented a preoperative differential laxity of 14.3 and 13.8 mm, Garofalo et al. [27] and Lim et al. [23] 12.6 and 11 mm, respectively. Our preoperative differential laxity was a mean 3.7 mm. Nevertheless, the final results varied from 5.9 to 2.2 mm at the last followup; with 1.9 mm in our series, the correction of the posterior drawer was satisfactory. Although the posterior drawer contract was fulfilled, the subjective results are insufficient, with limitations mainly in sports activities. Conclusion Correction of posterior laxity by PCL reconstruction is satisfactory, with no morbidity related to the procedure. In agreement with the results reported in the literature, this correction is sufficient to obtain a functional knee for everyday activities but incomplete for recreational and particularly competitive sports. Conflicts of interest statement None. References [1] Shelbourne KD, Davis TJ, Patel DV. The natural history of acute, isolated, nonoperatively treated posterior cruciate ligament injuries. A prospective study. Am J Sp Med 1999;27:276 83. [2] Dejour H, Walch G, Peyrot J, Eberhard P. The natural history of rupture of the posterior cruciate ligament. Rev Chir Orthop 1988;74:35 43. [3] Skyhar MJ, Warren RF, Ortiz GJ, Schwartz E, Otis JC. The effects of sectioning of the posterior cruciate ligament and the posterolateral complex on the articular contact pressures within the knee. J Bone Joint Surg Am 1993;75:694 9. [4] Strobel MJ, Weiler A, Schulz MS, Russe K, Eichhorn HJ. Arthroscopic evaluation of articular cartilage lesions in posterior-cruciate-ligament-deficient knees. Arthroscopy 2003;19:262 8. [5] Cooper DE. Clinical evaluation of posterior cruciate ligament injuries. Sports Med Arthroscopy Rev 1999:243 52. [6] Bisson LJ, Clancy WG. Isolated posterior cruciate ligament injury and posterolateral laxity, in Chapman s orthopaedic surgery, M. Chapman, Editor. 2001: Philadelphia; 2393 416. [7] Aichorth PM, Cannon WDJ. International Knee Documentation Committee. Knee ligament injury and reconstruction evaluation. In: Knee surgery: current practice. New York, Martin Dunitz;1992, p. 759 60. [8] Puddu G, Gianni E, Chambat P, De Paulis F. The axial view in evaluating tibial translation in cases of insufficiency of the posterior cruciate ligament. Arthroscopy 2000;16: 217 20. [9] Chen CH, Chen WJ, Shih CH. Arthroscopic double-bundled posterior cruciate ligament reconstruction with quadriceps tendon-patellar bone autograft. Arthroscopy 2000;16:780 2. [10] Clancy WG, Timmerman LA. Arthroscopically-assisted posterior cruciate ligament reconstruction using autologous patellar tendon graft. Operative Techn Sports Med 1993;1:129 35. [11] Mariani PP, Adriani E, Santori N, Maresca G. Arthroscopic posterior cruciate ligament reconstruction with bone-tendonbone patellar graft. Knee Surg Sports Traumatol Arthrosc 1997;5:239 44. [12] Richards 2nd RS, Moorman 3rd CT. Use of autograft quadriceps tendon for double-bundle posterior cruciate ligament reconstruction. Arthroscopy 2003;19:906 15. [13] Swenson TM, Harner CD, Fu FH. Arthroscopic posterior cruciate ligament reconstruction with allograft. Sports Med Arthroscopy Rev 1994;2:120 8. [14] Warren RF, Veltri DM. Arthroscopically-assisted posterior cruciate ligament reconstruction. Operative Techn Sports Med 1993;1:136 42. [15] Edson CJ, Feldmann DD. Rehabilitation of posterior cruciate ligament injuries treated by operative methods. Sports Med Arthroscopy Rev 1999:303 11. [16] Lutz GE, Palmitier RA, An KN, Chao EY. Comparison of tibiofemoral joint forces during open-kinetic-chain and closedkinetic-chain exercises. J Bone Joint Surg Am 1993;75:732 9. [17] Schutz EA, Irrgang JJ. Rehabilitation following posterior cruciate ligament injury or reconstruction. Sports Med Arthroscopy Rev 1994;2:165 73. [18] Ahn JH, Yoo JC, Wang JH. Posterior cruciate ligament reconstruction: double-loop hamstring tendon autograft versus Achilles tendon allograft clinical results of a minimum 2-year follow-up. Arthroscopy 2005;21:965 9. [19] Chan YS, Yang SC, Chang CH, Chen AC, Yuan LJ, Hsu KY, et al. Arthroscopic reconstruction of the posterior cruciate ligament with use of a quadruple hamstring tendon graft with 3- to 5- year follow-up. Arthroscopy 2006;22:762 70. [20] Chen CH, Chen WJ, Shih CH. Arthroscopic reconstruction of the posterior cruciate ligament: a comparison of quadri-

Reconstruction of isolated chronic posterior cruciate ligament injuries 393 ceps tendon autograft and quadruple hamstring tendon graft. Arthroscopy 2002;18:603 12. [21] Deehan DJ, Salmon LJ, Russell VJ, Pinczewski LA. Endoscopic single-bundle posterior cruciate ligament reconstruction: results at minimum 2-year follow-up. Arthroscopy 2003;19:955 62. [22] Hermans S, Corten K, Bellemans J. Long-term results of isolated anterolateral bundle reconstructions of the posterior cruciate ligament: a 6- to 12-year follow-up study. Am J Sp Med 2009;37:1499 507. [23] Lim HC, Bae JH, Wang JH, Yang JH, Seok CW, Kim HJ, et al. Double-bundle PCL reconstruction using tibial double cross-pin fixation. Knee Surg Sports Traumatol Arthrosc 2009. [24] Sekiya JK, West RV, Ong BC, Irrgang JJ, Fu FH, Harner CD. Clinical outcomes after isolated arthroscopic singlebundle posterior cruciate ligament reconstruction. Arthroscopy 2005;21:1042 50. [25] Wu CH, Chen AC, Yuan LJ, Chang CH, Chan YS, Hsu KY, et al. Arthroscopic reconstruction of the posterior cruciate ligament by using a quadriceps tendon autograft: a minimum 5-year follow-up. Arthroscopy 2007;23:420 7. [26] Zhao J, Huangfu X. Arthroscopic single-bundle posterior cruciate ligament reconstruction: retrospective review of 4- versus 7-strand hamstring tendon graft. Knee 2007;14:301 5. [27] Garofalo R, Jolles BM, Moretti B, Siegrist O. Double-bundle transtibial posterior cruciate ligament reconstruction with a tendon-patellar bone-semitendinosus tendon autograft: clinical results with a minimum of 2 years follow-up. Arthroscopy 2006;22, 1331-8 e1. [28] Lysholm J, Gillquist J. Evaluation of knee ligament surgery results with special emphasis on use of a scoring scale. Am J Sp Med 1982;10:150 4. [29] Tegner Y, Lysholm J. Rating systems in the evaluation of knee ligament injuries. Clin Orthop 1985;198:43 9.